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PROBABILITY INTEGRAL AS A LINEARIZATION

Dušana Babicová

Slovak Academy of Sciences, Košice, SLOVAKIA

ABSTRACT. In fuzzified probability theory, a classical probability space
(Ω,A, p) is replaced by a generalized probability space (Ω,M(A),

∫
(.) dp

)
, where

M(A) is the set of all measurable functions into [0,1] and
∫
(.)dp is the probabil-

ity integral with respect to p. Our paper is devoted to the transition from p to∫
(.) dp. The transition is supported by the following categorical argument: there

is a minimal category and its epireflective subcategory such that A and M(A)
are objects, probability measures and probability integrals are morphisms, M(A)
is the epireflection of A,

∫
(.) dp is the corresponding unique extension of p, and

M(A) carries the initial structure with respect to probability integrals.

We discuss reasons why the fuzzy random events are modeled by M(A)
equipped with pointwise partial order, pointwise �Lukasiewicz operations (logic)
and pointwise sequential convergence. Each probability measure induces on clas-
sical random events an additive linear preorder which helps making decisions.
We show that probability integrals can be characterized as the additive lineariza-

tions on fuzzy random events, i.e., sequentially continuous maps, preserving order,
top and bottom elements.

Introduction

In [37], L. A. Z a d e h has proposed to replace a classical probability space
(Ω,A, p) with a fuzzified probability space

(
Ω,M(A),

∫
(.) dp

)
, where M(A)

is the set of all measurable functions into [0,1] and
∫
(.) dp is the probability

integral with respect to p. Fundamental results on fuzzified probability theory
(motivation, definitions of notions, technical results, applications, categorical
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approach) can be found in [4], [5], [12]–[14], [16], [19]–[21], [24], [27], [32], [33],
and in papers cited therein.

In [29], M. N a v a r a observed that no justification to define the probabil-
ity of a fuzzy event f ∈ M(A) by the formula

∫
(f) dp was given by Z a d e h

and he discussed two distinct approaches to generalized probability, probability
on tribes and probability on MV-algebras with products [34]. In our contribu-
tion, we present another supportive argument for the transition from (Ω,A, p)
to

(
Ω,M(A),

∫
(.) dp

)
: categorical approach to generalized probability [17], [20].

Indeed, there is a minimal category and its epireflective subcategory such that A
and M(A) are objects, probability measures and probability integrals are mor-
phisms, M(A) is the epireflection [1] of A and

∫
(.) dp is the corresponding unique

extension of p. Each object M(A) is equipped with the multivalued �Lukasiewicz
logic, carries the initial structure with respect to probability integrals, and each
probability integral can be characterized as the additive linearization of fuzzy
random events.

The idea of quantification of uncertainty about the future development
(as a number p, 0≤p≤1) goes back to Jacob Bernoulli: “The probability namely
is the degree of certainty and differs from it as a part from the whole”
(see [3]). The quantification of future events (assigning a number) induces a lin-
ear (pre)order on the events and helps to conjecture (make decisions). This
explains our understanding of linearization. Besides having philosophical and
methodological aspects, it has contributed to “mathematization” of probability.

Kolmogorov has “mathematized” probability theory (via axioms) in [25].

• At the beginning we have a probability space (Ω,A, p), where Ω is the
set of all outcomes of a random experiment, A is a σ-field of subsets of Ω,
each A ∈ A is called an event, events of the form A = {ω}, ω ∈ Ω, are
called elementary events;

• p : A → [0, 1] is a normalized σ-additive measure called probability, p(A)
measures how “big” is A ∈ A in comparison to Ω; the most important
example is (R,BR, p), where R are the real numbers, BR is the real Borel
σ-field, and p is a probability on BR.

Kolmogorov’s axiomatization of probability was actually an attempt to solve
the sixth problem of D. H i l b e r t : to axiomatize physics, because probability
was considered as part of physics. From the viewpoint of category theory, Kol-
mogorov’s probability has a weak point: it uses Boolean operations on events,
but probability measures do not preserve these operations. The transition from
A to M(A) is a minimal extension of the field of events so that basic maps
become morphisms and the extended probability models the following quantum
phenomenon: a classical outcome (point) can be mapped to a genuine probabil-
ity measure. In fact (cf. [18], [22]), this is related to the divisibility of random
events (each fuzzy random event u ∈ M(A) is divisible in M(A), i.e., for each
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positive natural number k we have u/k ∈ M(A), but classical random events
from A fail to be divisible in A).

In what follows, systems of functions X ⊆ [0, 1]Ω are equipped with the nat-
ural pointwise partial order and pointwise convergence of sequences.

Observe that the Lebesgue Dominated Convergence Theorem, LDCT in short,
implies that each probability integral

∫
(.) dp on M(A) (hence each probabil-

ity measure p on A) is sequentially continuous. Consequently, the σ-additivity
of a normalized additive measure is equivalent to sequential continuity (not only
to monotone continuity, as usually claimed). For this reason, we consider only
sequentially continuous linearizations.

���������� 0.1� A sequentially continuous map L : M(A) −→ [0, 1], preserving
order, top and bottom elements, is called a linearization of M(A). If for u,
v ∈ M(A), u(ω) + v(ω) ≤ 1, ω ∈ Ω, we have L(u + v) = L(u) + L(v), the L is
said to be additive.

Phenomena in quantum physics motivate studies of generalized probability
and mathematical quantum structures. In order to describe such phenomena,
we seek suitable generalizations of classical models [4], [5], [24]. Random events in
classical probability theory [25] can be generalized in different ways [4], [5], [24],
[27], [31], [34]. For example, generalized random events are modeled by quantum
logics, effect algebras, difference posets, etc. [7], [9], [26], [35].

We use another structure called A-posets which is isomorphic to effect alge-
bras and D-posets [36]. It is defined in terms of a partial order and a partial
operation “addition” which generalizes the original “disjoint disjunction” intro-
duced by G. B o o l e (cf. [2]) and hence it has a more direct logical interpretation
than the difference in D-posets [7], [26].

1. Why probability integral

In this section we outline arguments from which it follows that probability
integral is the proper quantification of fuzzy random events. Technical details
(definitions and propositions) will be presented in the last section.

L. A. Z a d e h in his pioneering paper [37] has proposed to extend random
events, represented by the indicator functions of a sigma-field A of sets, to fuzzy
random events, represented by the set M(A) ⊂ [0, 1]Ω of all measurable fuzzy
sets, and to consider the probability integral

∫
(.) dp as the extension of the prob-

ability measure p. Further, he proposed max,min and the usual complementa-
tion as operations on fuzzy random events. In the follow-up papers, Z a d e h
concentrates on applications in engineering and soft computing.
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A thorough study of fuzzified probability can be found in [29]. As stated
by N a v a r a,

∫
(.) dp is a natural extension of p, but no justification was given

by Z a d e h and N a v a r a discussed two distinct approaches to generalized
probability, probability on tribes and probability on MV-algebras with products.
Our goal is to describe a more complex reason based on the categorical approach
to probability. It can be summarized as follows.

	
���� There is a suitable category such that

• (Ω,A, p) and
(
Ω,M(A),

∫
(.) dp

)
are models of probability theory the basic

notions of which are defined within the category in question;

• A, M(A) are objects and p,
∫
(.) dp are morphisms. Moreover, p and

∫
(.) dp

are linearizations characterized by a fundamental property of probability–
–additivity;

• A and M(A) carry the initial structure with respect to all probability
measures on A and with respect to of all probability integrals on M(A),
respectively.

• (
Ω,M(A),

∫
(.) dp

)
is a “minimal” extension of (Ω,A, p). The minimality

is based on natural properties of fuzzy random events and the extension
can be characterized as an epireflection.

Let us point out some requirements concerning the category in question.

������������

• Objects are sets equipped with a suitable structure.

• Morphisms are “structure preserving maps”.

• Both A (boolean structure) and M(A) (fuzzy structure) have to be equipped
with “the same” structure.

• Each probability measure p : A −→ [0, 1] and each probability integral has
to be a morphism, hence A, M(A) and [0, 1] (equipped with a suitable
structure) have to be objects of the corresponding category.

• Objects of the form M(A) have to form a distinguished subcategory.

Let us recall (cf. [19]) why M(A) is a natural candidate to model fuzzy
random events. Let A be a σ-field of subsets of Ω. Denote aΩ, a ∈ [0, 1], the
constant function such that aΩ(ω) = a, ω ∈ Ω. Then M(A) is the smallest
of all subsets X ⊆ [0, 1]Ω containing A (indicator functions of sets in A) and
closed with respect to negations (if u ∈ X , then (1Ω − u) ∈ X ), pointwise
suprema, pointwise sequential limits, and divisible ((1/n)Ω ∈ X , n ∈ N+). So,
M(A) has the necessary properties of a fuzzification of A and, as we shall see, it
can be equipped with the appropriate structure (multivalued �Lukasiewicz logic).
Further, there is a one-to-one correspondence between σ-fields and measurable
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functions into [0,1] and a one-to-one correspondence between probability mea-
sures and probability integrals. As indicated above, the correspondence is func-
torial (epireflection). Finally, let T = {∅,Ω} be the trivial field of sets, where Ω
is a singleton. Since each function in M(T) is determined by a single number
in [0,1], hence [0,1] can be viewed as M(T).

To sum up, the transition from (Ω,A, p) to
(
Ω,M(A),

∫
(.) dp

)
has a cate-

gorical background: M(A) is a categorical extension of A and
∫
(.) dp is the

corresponding unique categorical extension (epireflection) of p.

2. Why A-posets

As explicitly stated in [10], any generalized probability theory based on (al-
gebraic) measure theory should be restricted to events for which “there are
enough (generalized) probability measures”.This leads to ID-posets, i.e.,D-posets
of functions, the structure of which is determined by sequentially continuous
D-homomorphisms (see [16], [17], [30]). On the one hand, fuzzified probability
theory by R. F r i č and M. P a p č o is based on the category of ID-posets,
i.e., it uses the language of partial order and difference, but on the other hand,
fuzzy random events are modeled via bold algebras and �Lukasiewicz operations
(generalizations of Boolean disjunction, negation and conjunction). Con-
sequently, some mathematical and interpretational effort is needed to pass from
“difference” to “plus”.

Therefore, at ISCAMI 2014, V. S k ř i v á n e k has introduced A-posets and
the corresponding category of fuzzy events which serves as an alternative ref-
erence category for the fuzzification of classical Kolmogorov’s probability the-
ory (see [36]). A-posets, D-posets and effect algebras are isomorphic structures
(see [36]), but A-posets lead more directly to the �Lukasiewicz logic. A-posets
are defined in terms of a partial order and a partial operation “addition” and
they are motivated by the original approach to logic via “disjoint disjunction” of
G. B o o l e [2]. The resulting partial operations of disjunction and conjunction
(along with negation) act on generalized random events and lead to a smooth
transition from the classical to fuzzified probability: their extension to binary
operations results in the usual �Lukasiewicz operations on fuzzy random events.

���������� 2.1� An A-poset is a system (S,≤, 0, 1,⊕) consisting of partial
ordered set S with top element 1 and bottom element 0 and a partial binary
operation ⊕ such that:

(A1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.

(A2) If (a⊕b)⊕c is defined, then a⊕(b⊕c) is defined and (a⊕b)⊕c = a⊕(b⊕c).

(A3) For each a ∈ S there exists a unique ac ∈ S such that a⊕ ac = 1.
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(A4) If a⊕ b is defined, a1 ≤ a and b1 ≤ b, then a1 ⊕ b1 is defined and a1 ⊕ b1 ≤
a⊕ b.

Observe that a⊕ 0 = a and (A4) is equivalent to “a⊕ b is defined if and only if
a ≤ bc”.

If no confusion can arise, then an A-poset (S,≤, 0, 1,⊕) will be condensed
to S.

���������� 2.2� Let S1 and S2 be A-posets and let h be a map on S1 into
S2 preserving the order, constants, and addition. Then h is said to be an A-ho-
momorphism.

Example 2.3. Let A be a field of subsets of Ω. Then A can be reorganized into
an A-poset as follows:

(i) A is partially ordered by inclusion.

(ii) ∅ and Ω represent the bottom element and the top element, respectively.

(iii) For A ∈ A define Ac = Ω \A.

(iv) For A,B ∈ A define A⊕B = A ∪B if and only if A ∩B = ∅.

Clearly, axioms (A1)–(A4) are satisfied.

Example 2.4. Let X ⊆ [0, 1]Ω be a system of functions on Ω into [0,1] such that
the constant functions 0Ω, 1Ω belong to X , if u ∈ X then 1Ω−u ∈ X , if u, v ∈ X
and v ≤ 1Ω − u then u + v ∈ X .

(i) For u ∈ X define uc = 1Ω − u.

(ii) For u, v ∈ X , v ≤ 1Ω − u, define u⊕ v = u + v.

Then X equipped with the pointwise partial order becomes an A-poset. Let A
be a σ-field of subsets of Ω. Denote s(A) the simple functions in M(A), i.e.,
functions of the form

∑n
i=1 ciχAi

, where ci ∈ [0, 1], A1, A2, . . . , An are disjoint
subsets in A covering Ω, and n is a natural number. Then s(A) and M(A)
(hence also [0,1] considered as M(T)) can be viewed as A-posets. Observe that
s(A) is divisible. Let A be a σ-field of subsets of Ω. Denote e1 the embedding
of A into s(A) and denote e2 the embedding of s(A) into M(A). Clearly, e1,
e2, and their composition e2 ◦ e1 are A-morphisms.

In what follows, the composition e2 ◦ e1 will be denoted as id. Clearly, the
A-homomorphisms e1, e2, and the composition id = e2 ◦ e1 are sequentially
continuous with respect to the pointwise convergence of functions.

����� 2.5� Let A and B be fields of subsets of Ω and Ξ, respectively. Let h be
an A-homomorphism of B into A, considered as A-posets. Then h is a Boolean
homomorphism.
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P r o o f. Clearly, h(Ξ) = Ω and h(∅) = ∅. Let B1, B2 ∈ B, B1 ∩ B2 = ∅. Then
h(B1∪B2) = h(B1⊕B2) = h(B1)⊕h(B2) = h(B1)∪h(B2) and h(B1)∩h(B2) = ∅.
Consequently, h

(
B∪ (Ξ\B)

)
= Ω = h(B)∪h(Ξ\B), where h(B)∩h(Ξ\B) = ∅

and hence h(Bc) = h(B)c. Further, for B1, B2 ∈ B the set B1 ∪B2 is the union
of three disjoint sets B1 \ B2, B1 ∩B2 and B2 \ B1, h(B1) is the disjoint union
of h(B1) \ h(B1 ∩ B2) and h(B1 ∩ B2), h(B2) is the disjoint union of h(B2) \
h(B1 ∩B2) and h(B1 ∩B2). Necessarily, h preserves the union of two sets. From
De Morgan’s laws it follows that h preserves also the intersection of two sets.
Thus h is a Boolean homomorphism. �

Recall the notion of a categorical product of two objects. An object A to-
gether with two morphisms (called projections) pri : A −→ Ai, i = 1, 2, is called
the product of two objects A1 and A2, called factors, if for each object B and
each two morphisms hi : B −→ Ai, i = 1, 2, there exists a unique morphism
h : B −→ A such that pri ◦h = hi, i = 1, 2. The product of an indexed family of
factors is defined analogously. If the product exists, then it is unique (up to an
isomorphism).

Denote A the category with A-posets as objects and A-homomorphisms as
morphisms.

����� 2.6� The category A has products.

P r o o f. Let A1 and A2 be A-posets. Let A be the set of all pairs (a1, a2),
ai ∈ Ai, i = 1, 2. Define projections pri : A −→ Ai, i = 1, 2, in the usual
way: pr1(a1, a2) = a1 and pr2(a1, a2) = a2. Define the A-poset structure on A
pointwise. It is easy to see that A together with projections pri, i = 1, 2, is the
categorical product of A1 and A2. The product of an indexed family of A-posets
is constructed analogously. �

3. Generalized random events

In [36] R. F r i č and V. S k ř i v á n e k introduced a fuzzified probability on
A-posets of functions. The resulting generalized random events form a probabil-
ity domain (cf. [16], [19], [20]) cogenerated by the closed unit interval I = [0, 1],
considered as an A-poset. Such probability domains are analogous to ID-posets
(cf. [16], [30], [31]) but, unlike the partial operation difference � in an ID-poset
X ⊆ IX, the partial operation addition ⊕ has a clear logical interpretation:
“disjunction for disjoint fuzzy events”.

The Boolean logic can be extended to fuzzy events in many ways. In particu-
lar, via the �Lukasiewicz logic. As pointed out by D. M u n d i c i in [28], among
all continuous t-norms, �Lukasiewicz conjunction is the only one yielding a logic
with a continuous implication connective.
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���������� 3.1� An A-poset of functions whose values are in [0, 1] is said to be
an IA-poset. A sequentially continuous A-homomorphism of an IA-poset X ⊆ IX

into I is said to be a state. A sequentially continuous A-homomorphism of an
IA-poset X ⊆ IX into an IA-poset Y ⊆ IY is said to be an observable.

���������� 3.2� �Lukasiewicz tribe is a system X ⊆ [0, 1]Ω closed with respect
to pointwise sequential limits, containing the constant functions 0Ω, 1Ω and
closed with respect to the usual �Lukasiewicz operations disjunction, conjunction,
negation defined pointwise: for u, v ∈ X and ω ∈ Ω) we put

• (u⊕ v)(ω) = u(ω) ⊕ v(ω) = min
{

1, u(ω) + v(ω)
}

;

• (u v)(ω) = u(ω)  v(ω) = max
{

0, u(ω) + v(ω) − 1
}

;

• u∗(ω) = 1 − u(ω).

Obviously, each σ-field A and the corresponding measurable functions M(A)
are canonical examples of �Lukasiewicz tribes (see also [11]). As pointed out
in [22], the upgrading of classical probability lies in the divisibility of M(A).

Let X ⊆ [0, 1]Ω be a �Lukasiewicz tribe. Then there exists a unique σ-field
AX of subsets of Ω such that AX ⊆ X ⊆ M(AX ). Moreover, X = M(AX ) if
and only if X contains all constant functions rΩ, r ∈ [0, 1] ([6], [35]). �Lukasiewicz
tribes of the form M(A) are said to be a full. We say that two �Lukasiewicz
tribes X ⊆ [0, 1]Ω and Y ⊆ [0, 1]Ω are equivalent whenever AX = AY . Clearly,
AX and M(AX ) are equivalent. Further, AX and M(AX ) are extremal, AX
is the bottom element and M(AX ) is the top element in the equivalence class
in question.

If we identify A ⊆ Ω and its indicator function χA ∈ {0, 1}Ω, χA(ω) = 1 for
ω ∈ A and χA(ω) = 0 for ω ∈ Ac, then each indicator function can be viewed as
a Boolean propositional function ”ω belongs to A” and each measurable function
can be viewed as a fuzzy propositional function.

Observe that G. B o o l e used partial union. He did not introduce Boolean
algebra, it was introduced later [2]. Accordingly, the A-poset of fuzzy sets is
a natural fuzzification of the original Boole’s idea.

Denote by IA the category having IA-posets as objects and sequentially con-
tinuous A-homomorphisms as morphisms. To deal with the transition from A to
M(A) in terms of category theory, we introduce the following subcategories of
IA: the objects of LIA are �Lukasiewicz tribes, the objects of ELIA are extremal
�Lukasiewicz tribes (bottom or top elements in an equivalence class), and the
objects of FELIA are full �Lukasiewicz tribes.

	
�����

• Basic notions of the classical probability theory: random events and Boolean
logic operations, random variables, and probability measures can be defined
within ELIA.
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• Via the epireflection, to each classical probabilistic notion there corresponds
its “fuzzified” notion within FELIA.

• All “stochastic maps” become morphisms in FELIA.

• Basic constructions in probability theory become categorical.

• M(A) carries the initial A-poset structure with respect to states, i.e., mor-
phisms into [0, 1] = M(T) (cogenerator).

The next lemma is a categorical bookkeeping.

����� 3.3� Let Xt, t ∈ T , be an indexed family of A-posets and let X be product
of Xt, t ∈ T .

(i) Let each Xt be an object of LIA. Then X is an object of LIA.

(ii) Let each Xt be an object of FELIA. Then X is an object of FELIA.

P r o o f. (i) Each Xt is a �Lukasiewicz tribe consisting of functions on a set
Ωt into [0,1], t ∈ T . Let Ω be their disjoint union. Then each u ∈ X is
represented as a function on Ω into [0,1] “disjointly glued” of functions
from Xt, t ∈ T , and X is equipped with the pointwise A-structure. Clearly,
X is an object of LIA.

(ii) follows from (i).
�

4. Epireflection

As outlined in introductory sections, the transition from (Ω,A, p) to(
Ω,M(A),

∫
(.) dp

)
can be described in terms of a categorical epireflection. In this

section we state and prove the underlying assertions.

In [15], it has been proved that the category of full �Lukasiewicz tribes is
an epireflective subcategory of the category of bold algebras and sequentially
continuous D-homomorphisms (see also [23]). This is a rather general assertion
and the proof of it uses powerful machinery of abstract analysis. On the one
hand, the transition from A to M(A) and from p to p =

∫
(.) dp is a corollary

of this general assertion, on the other hand, our assertions and their proofs are
rather transparent and appropriate to describe the transition from the classical
probability to its “minimal” fuzzification within ELIA.

����� 4.1� Let A be a σ-field of subsets of Ω, let p : A −→ [0, 1] be a probability
measure, and let p =

∫
(.) dp be the corresponding probability integral on M(A).

Then

(i) p can be viewed as a sequentially continuous A-homomorphism of M(A)
into M(T);

(ii) p can be viewed as a sequentially continuous A-homomorphism of A into
M(T).

9
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P r o o f.

(i) We consider [0,1] as M(T). Due to the LDCT p is sequentially continu-
ous. Since each probability integral, as a mapping of M(A) into M(T),
preserves order, constants and addition, the assertion holds true.

(ii) Since p is the restriction of p to the A-poset A, (ii) follows from (i). �

����� 4.2� Let A be a σ-field of subsets of Ω and let h be a sequentially
continuous A-homomorphism of A into M(T). Then h is a probability measure.

P r o o f. Consider h as a mapping of A into [0,1]. Clearly, h(∅) = 0, h(Ω) = 1 and
h(A∪B) = h(A)+h(B) whenever A∩B = ∅. Since h is sequentially continuous,
it follows that h is σ-additive and hence a probability measure on A. �

Consequently, probability measures are exactly sequentially continuous A-ho-
momorphisms of σ-fields of sets into M(T).

����� 4.3� Let A and B be fields of subsets of Ω and Ξ, respectively.

(i) Let g and h be a sequentially continuous A-homomorphisms of s(A) into
M(B). If g(A) = h(A) for all A ∈ A, then g = h.

(ii) Let g and h be a sequentially continuous A-homomorphisms of M(A) into
M(B). If g(A) = f(A) for all A ∈ A, then g = h.

(iii) The sequentially continuous A-homomorphism id : A −→ M(A) is an epi-
morphism.

P r o o f.

(i) Let l be a positive natural number. Then for each natural number k, k≤ l,
and each A ∈ A we have g

(
(k/l)χA

)
= (k/l)g(χA) = (k/l)h(χA) =

h
(
(k/l)χA

)
. Consequently h and g coincide on all

∑n
i=1 ciχAi

∈ s(A),
where ci, i = 1, 2, . . . , n, are rational numbers in [0,1]. Since g and h are
sequentially continuous, it follows that g = h.

(ii) It follows from (i) that g and h coincide on s(A). The assertion follows
from the fact that each u ∈ M(A) is a limit of a sequence {un}∞n=1, where
un ∈ s(A) and g(un) = h(un). Indeed, g and h are sequentially continuous
and hence g(u) = limn→∞ g(un) = limn→∞ h(un) = h(u).

(iii) Let g and h be a sequentially continuous A-homomorphisms of M(A) into
M(B) such that g(A) = f(A) for all A ∈ A. Then g ◦ id = h ◦ id. We have
to verify that g = h. But that is exactly what (ii) claims.

�

����� 4.4� Let A be a σ-field of subsets of Ω and let h be a sequentially contin-
uous A-homomorphism of A into M(T). Then there exists a unique sequentially
continuous A-homomorphism hs of s(A) into M(T) extending h over s(A).

10
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P r o o f. According to Lemma 4.2, h is a probability measure on A. Denote
h =

∫
(.) dh the corresponding probability integral on M(A) and denote hs the

restriction of h to s(A). It follows from Lemma 4.1 that h is a sequentially contin-
uous A-homomorphism on M(A) into M(T) and hence hs is a sequentially con-
tinuous A-homomorphism on s(A) into M(T) which extends h. By Lemma 4.3,
hs is uniquely determined. �

����� 4.5� Let A be a σ-field of subsets of Ω and let hs be a sequentially
continuous A-homomorphism of s(A) into M(T). Then there exists a unique
sequentially continuous A-homomorphism hm of M(A) into M(T) extending hs

over M(A).

P r o o f. It follows from Lemma 4.4 that there is a unique probability measure h
on A such that hs is the restriction of the probability integral

∫
(.) dh on M(A)

to s(A). It suffices to put hm =
∫
(.) dh. By Lemma 4.3, hm is determined

uniquely. �

������� 4.6� Let A be a σ-field of subsets of Ω and let h be a sequentially
continuous A-homomorphism of A into M(T). Then there exists a unique se-
quentially continuous A-homomorphism hm of M(A) into M(T) extending h
over M(A).

P r o o f. It follows from the previous lemmas that h is a probability measure
on A and hm is exactly the probability integral h =

∫
(.) dh on M(A), which is

uniquely determined. �

	���

��� 4.7� Let A be a σ-field of sets and let L be a map of M(A) into
[0, 1]. Then the following are equivalent

(i) L is an additive linearization.

(ii) There exists a unique probability measure p on A such that L =
∫
(.) dp.

������� 4.8� Let A and B be fields of subsets of Ω and Ξ, respectively. Let h be
a sequentially continuous A-homomorphism of A into M(B). Then there exists
a unique sequentially continuous A-homomorphism hm of M(A) into M(B)
extending h over M(A).

P r o o f. Let [0, 1]Ξ be the categorical power of [0, 1] = M(T), let prξ, ξ ∈ Ξ,
be the projection of [0, 1]Ξ to its ξth factor, let e be the embedding of M(B)
into [0, 1]Ξ, and let id be the embedding of A into M(A). Then the composition
pξ = prξ ◦ e ◦ h is a probability measure on A and, according to Theorem 4.6,
pξ can be uniquely extended to a sequentially continuous A-homomorphism pξ
over M(A), see Fig. 1. Since [0, 1]Ξ is the categorical power of [0,1], there exists
a unique sequentially continuous A-homomorphism hΞ of M(A) into [0, 1]Ξ such
that (for each ξ ∈ Ξ) the diagram in Fig. 2 commutes. Now, it suffices to prove

11
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A M(B) [0, 1]Ξ [0, 1]

A [0, 1]

M(A) ∀ξ ∈ Ξ

h e prξ

pξ=prξ◦e◦h

id ∃! pξ

#

Figure 1

that for each u ∈ M(A) we have hΞ(u) ∈ M(B). This yields the desired unique
extension hm : M(A) −→ M(B), see Fig. 3.

Let A ∈ A. From Fig. 1 it follows that for all ξ ∈ Ξ we have pξ(χA) =
prξ

(
h(χA)

)
= prξ

(
hΞ(χA)

)
and hence h(χA) = hΞ(χA). Thus hm(χA) = h(χA)

and hm is a sequentially continuous A-homomorphism of M(A) into [0, 1]Ξ such
that hm(χA) ∈ M(B). Let u =

∑n
i=1 ciχAi

∈ s(A), where all ci are rational

numbers in [0,1]. Then hm(u) =
∑n

i=1 cih(χAi
) ∈ M(B) and hence hm(u) ∈

M(B) for all u ∈ M(A). Finally, it follows from Lemma 4.3 that hm is uniquely
determined. �

[0, 1]
Ξ

[0, 1]

M(A) ∀ξ ∈ Ξ

prξ

∃! hΞ pξ

#

Figure 2

A M(B) [0, 1]
Ξ

M(A)

h e

id

#

?hm
hΞ

#

A M(B)

M(A) hm(.) = hΞ(.)

h

id ∃!hm

#

Figure 3.
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	���

��� 4.9� Let A and B be fields of subsets of Ω and Ξ, respectively. Let
h be a sequentially continuous A-homomorphism of A into B. Then there exists
a unique sequentially continuous A-homomorphism hm of M(A) into M(B)
such that h(A) = hm(A) for all A ∈ A.

������� 4.10� FELIA is an epireflective subcategory of the category ELIA,
where M(A) is the epireflection of A.

P r o o f. Let O be an object of ELIA, let M(B) be an object of FELIA, and let
h : O −→ M(B) be a morphism. Then O is either of the form A or M(A) for
some σ-field of sets A. Since (cf. (iii) in Lemma 4.3) the embedding of O into
M(A) is an epimorphism, we have to prove that h can be uniquely extended
over M(A). In the first case the assertion follows by Theorem 4.8 and in the
second case the assertion is trivial. �
	���
������

• Observables are morphisms in ELIA. To each classical observable
h :A−→B there corresponds a unique observable
hm : M(A) −→ M(B) which extends h.

• Probability measures and probability integrals are exactly observables into
M(T).

• M(A) is the epireflection of A and M(A) carries the initial A-poset struc-
ture with respect to probability integrals.

• Probability integrals are exactly additive linearizations.
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