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ABSTRACT. Let Fq be a finite field of q elements, where q is a power of an
odd prime number. In this paper, we study the twisted Edwards curves denoted
EEa,d

over the local ring Fq [e], where e2 = 0. In the first time, we study the

arithmetic of the ring Fq [e], e2 = 0. After that we define the twisted Edwards
curves EEa,d

over this ring and we give essential properties and we define the

group EEa,d
, these properties. Precisely, we give a bijection between the groups

EEa,d
and EEa0,d0

× Fq , where EEa0,d0
is the twisted Edwards curves over the

finite field Fq .

1. Introduction

In 2007, Edwards [8] introduced a new normal form of elliptic curves on a
field K with a characteristic other than 2. This model has been shown to be
very promising because it achieves these two objectives are the complete and
faster law of addition. Bernstein et al [1], introduced twisted Edwards curves
with an equation

(aX2 + Y 2)Z2 = Z4 + dX2Y 2.

For Z �= 0 the homogeneous point (X : Y : Z) represents the affine point
(X/Z, Y/Z) identified by (X, Y ), with an equation: aX2 + Y 2 = 1 + dX2Y 2,
and presented explicit formulas for addition and doubling over a finite field K,
where ad(a− d) �= 0. The addition law is defined by:

(X1, Y1) + (X2, Y2) =

(
X1Y2 + Y1X2

1 + dX1X2Y1Y2
,
Y1Y2 − aX1X2

1− dX1X2Y1Y2

)
,
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the group operations on Edwards curves were faster than those of most other
elliptic curve models known at the time. In [6], Boudabra and his co-authors
studied the twisted Edwards curves on the finite field Z/pZ, where p ≥ 5 is a
prime number, and on the rings Z/prZ and Z/prqsZ. In [2], Elhamam et al,
studied the binary Edwards curves on the ring F2n [e], e2 = e. Furthermore, they
studied the twisted Edwards curves over the ring Fq[e], e

2 = e (see [4]).

In this work we study twisted Edwards curves over the ring Fq[e], e
2 = 0.

The motivation for this paper is the search for new groups of points of a twisted
Edwards curve over a finite ring, where the complexity of the discrete logarithm
calculation is good for use in cryptography. For further works in the same di-
rection, we refer the reader to [3,5]. Let Fq be a finite field of q elements, where
q = pc is a power of an odd prime number p and c ∈ N

∗.
We started this article by studying the arithmetic of the ring Fq[e], e

2 = 0.
In Section 3, we will define the twisted Edwards curves EEa,d

(
Fq[e]

)
over this

ring. Moreover, we will define the group extension

EEa,d

(
Fq[e]

)
of EEa0,d0

(Fq)

and give a bijection between the groups EEa,d
and EEa0,d0

× Fq, where EEa0,d0

is the twisted Edwards curves over the finite field Fq. Furthermore, we close
this paper, by giving a link between the group EEa,d

and cryptography. We de-
duce that the discrete logarithm problem in EEa,d

is equivalent to the discrete
logarithm problem in EEa0,d0

× Fq and #(EEa,d
) = pc#(EEa0,d0

).

2. The ring Fq[e], e
2 = 0

Let p be a prime number ≥ 3, we consider the quotient ring A2 =
Fq [X]
X2 ,

where Fq is the finite field of characteristic p and q elements. The ring A2 is
identified to the ring Fq[e], e

2 = 0. So, we have

A2 := Fq[e] = {x0 + x1e/(x0, x1) ∈ (Fq)
2}.

The arithmetic operations in A2 can be decomposed into operations in Fq and
they are computed as follows:

X + Y = (x0 + y0) + (x1 + y1)e,

X · Y = (x0y0) + (x0y1 + x1y0 + x1y1)e.

A. Chillali in [7] has proved the following results:

• A2 is a local ring with maximal ideal is M = (e) = eFq.

• The non-invertible element of A2 are those elements of the form xe, where
x ∈ Fq. Namely,

(x0 + x1e)
−1 = x−1

0 − x1x
−2
0 e, where x0, x1 ∈ Fq and x0 �= 0.

• A2 is a vector space over Fq with basis (1, e).
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Remark 1� We denote by π the canonical projection defined by

π : A2 → Fq,

x0 + x1e �→ x0.

3. Twisted Edwards curves over the ring A2

LetX, Y , a and d be four elements of A2 such thatX = x0+x1e, Y = y0+y1e,
a = a0 + a1e and d = d0 + d1e.

���������� 3.1� A twisted Edwards curve is defined over A2 by the equation
aX2 + Y 2 = 1+ dX2Y 2, such that Δ = ad(a− d) is invertible in A2. We denote
it by EEa,d

,

EEa,d
=

{
(X, Y ) ∈ A2

2 | aX2 + Y 2 = 1 + dX2Y 2
}
.

	�

� 3.2� Let Δ0 = a0d0(a0 − d0), then π(Δ) = Δ0.

P r o o f. Let X, Y ∈ A2, we have

π(X + Y ) = π(X) + π(Y ) and π(XY ) = π(X)π(Y ).

So, π(Δ) = Δ0. �

��
����
� 3.3� Δ is invertible in A2 if and only if Δ0 �= 0.

P r o o f. Since π(Δ) = Δ0, then Δ is invertible in A2 if and only if Δ0 is
invertible in Fq. Which is equivalent to Δ0 �= 0. �

Using Corollary 3.3, if Δ is invertible in A2, then EEπ(a),π(d)
(Fq) is twisted

Edwards curves over the finite field Fq and we notice EEa0,d0
, we write

EEa0,d0
=

{
(x0, y0) ∈ (Fq)

2 | a0x2
0 + y20 = 1 + d0x

2
0y

2
0

}
.

����
�
 3.4� Let a = a0+a1e, d = d0+d1e, X = x0+x1e, and Y = y0+y1e,
are elements of A2, with

aX2 + Y 2 = 1 + dX2Y 2, (1)

then
a0x

2
0 + y20 = 1 + d0x

2
0y

2
0 + (D +Ax1 + By1)e, (2)

where

A = 2d0x0y
2
0 − 2a0x0, B = 2d0x

2
0y0 − 2y0, D = d1x

2
0y

2
0 − a1x

2
0.
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P r o o f. We have

aX2 + Y 2 = (a0 + a1e)(x0 + x1e)
2 + (y0 + y1e)

2

= (a0 + a1e)(x
2
0 + 2x0x1e) + y20 + 2y0y1e

= a0x
2
0 + 2a0x0x1e+ a1x

2
0e+ y20 + 2y0y1e

= a0x
2
0 + y20 + (2a0x0x1 + a1x

2
0 + 2y0y1)e,

1 + dX2Y 2 = 1 + (d0 + d1e)(x0x1e)
2(y0 + y1e)

2

= 1 + (d0 + d1e)(x
2
0 + 2x0x1e)(y

2
0 + 2y0y1e)

= 1 + d0x
2
0y

2
0 + (2d0x

2
0y0y1 + 2d0x0x1y

2
0 + d1x

2
0y

2
0)e.

If aX2 + Y 2 = 1 + dX2Y 2, then

a0x
2
0 + y20 = 1 + d0x

2
0y

2
0 + [D +Ax1 + By1]e,

where
A = 2d0x0y

2
0 − 2a0x0, B = 2d0x

2
0y0 − 2y0, D = d1x

2
0y

2
0 − a1x

2
0. �

��
����
� 3.5� If (X, Y ) ∈ EEa,d
, then (x0, y0) ∈ EEa0,d0

.

P r o o f. If (X, Y ) ∈ EEa,d
, then aX2 + Y 2 = 1 + dX2Y 2. So, by Theorem 3.4

we have
a0x

2
0 + y20 = 1 + d0x

2
0y

2
0 + [D +Ax1 + By1]e.

Or (1, e) is a basis ofA2, then a0x
2
0+y20 = 1+d0x

2
0y

2
0 . Thus (x0, y0) ∈ EEa0,d0

. �

4. The group law over EEa,d

Bernstein et al [1] also presented explicit formulas for addition and doubling
on a twisted Edwards curve, these formulas are complete if a is a square and d
a non-square in the underlying field.

Let (X1, Y1), (X2, Y2) two points on the twisted Edwards curve EEa,d
found

by the equation
aX2 + Y 2 = 1+ dX2Y 2,

the sum of these points on EEa,d
is

(X1, Y1) + (X2, Y2) =

(
X1Y2 + Y1X2

1 + dX1X2Y1Y2
,
Y1Y2 − aX1X2

1− dX1X2Y1Y2

)
, (∗)

the neutral element is (0, 1) and the inverse of (X1, Y1) is (−X1, Y1), these
formulas are complete if a0 is a square and d0 a non-square in the field Fq.

��
����
� 4.1� (EEa,d
,+) is an abelian group with (0, 1) as identity element.
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��
����
� 4.2� The mapping π̃ is well defined, where is given by

π̃ : EEa,d
→ EEa0,d0

,

(X, Y ) �→ (
π(X), π(Y )

)
.

P r o o f. From the previous theorem, we have
(
π(X), π(Y )

) ∈ EEa0,d0

If (X1, Y1) = (X2, Y2), then
π̃(X2, Y2) =

(
π(X2), π(Y2)

)
=

(
π(X1), π(Y1)

)
= π̃(X1, Y1). �

	�

� 4.3� π̃ is a surjective homomorphism of groups.

P r o o f. Let (x0, y0) ∈ EEa0,d0
, then there exists (X, Y ) ∈ EEa,d

, such that

π̃(X, Y ) = (x0, y0).

By Theorem 3.4, we have

a0x
2
0 + y20 = 1 + d0x

2
0y

2
0 + (D +Ax1 + By1)e,

or (1, e) is a basis of A2, then D = −(Ax1 +By1).

Put f(x, y) = a0x
2 + y2 − 1− d0x

2y2, we have

∂f

∂x
(x0, y0) = 2a0x0 − 2d0x0y

2
0 = −A

and
∂f

∂y
(x0, y0) = 2y0 − 2d0x

2
0y0 = −B.

Coefficients −A and −B are partial derivatives of a function f(x, y) at the point
(x0, y0), can not be all null. We can then, finally, conclude that (x1, y1) exists.
Thus, π̃ is a surjective. �

	�

� 4.4� The mapping
θ : Fq → EEa,d

,

x �→ (xe, 1)

is an injective homomorphism.

P r o o f. Evidently, θ is well defined and injective. Let

x1, x2 ∈ Fq, P = (x1e, 1) and Q = (x2e, 1).

By (∗) we have P + Q =
(
(x1 + x2)e, 1

)
, then θ(x1 + x2) = θ(x1) + θ(x2), and

we conclude that θ is injective homomorphism of groups. �

��
����
� 4.5� Let H = θ(Fq), then H = ker(π̃).
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P r o o f. Let (xe, 1) ∈ H, then π̃(xe, 1) = (0, 1). We conclude that (xe, 1) ∈
ker(π̃), thus H ⊂ ker(π̃). Let P = (X, Y ) ∈ ker(π̃), then π̃(X, Y ) = (0, 1). So,

X = xe, Y = 1 + ye,−1ex

according to the equation

aX2 + Y 2 = 1 + dX2Y 2,

we have y = 0, then (X, Y ) = (xe, 1). Thus ker(π̃) ⊂ H. Finally, H = ker(π̃). �

	�

� 4.6� The group H is an elementary abelian p−group.

P r o o f. Let P = (xe, 1) ∈ H, we denote 2P = P + P and (n + 1)P = nP + P
for all n ≥ 2. We have from Lemma 4.4 2P = (2xe, 1) and we claim that
pP = (pxe, 1) = (0, 1) by sum (∗), which completes the proof of the lemma. �

����
�
 4.7� The sequence

0 −→ H −→ EEa,d
−→ EEa0,d0

−→ 0

is a short exact sequence which defines the group extension EEa,d
of EEa0,d0

by H.

P r o o f. π̃ is a surjective homomorphism of groups, H = θ(Fq) = ker(π̃) and θ
is an injective homomorphism. We deduce the sequence

0 −→ H −→ EEa,d
−→ EEa0,d0

−→ 0

is a short exact sequence which defines the group extension EEa,d
of EEa0,d0

by H. �

����
�
 4.8� Let n = #(EEa0,d0
) the cardinality of EEa0,d0

. If p does not
divide n, then the short exact sequence

0 −→ H −→ EEa,d
−→ EEa0,d0

−→ 0

is split.

P r o o f. p doesn’t divide n, then exists an integer b such that nb = 1 (mod p).
So, there is an integer m such that 1 − nb = pm. Let f the homomorphism
defined by

f : EEa,d
→ EEa,d

,

P �→ (1− nb)P .
We have

π̃ : EEa,d
→ EEa0,d0

,

(X, Y ) �→ (
π(X), π(Y )

)
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is a surjective homomorphism of groups using Lemma 4.3. Then, there exists a
unique morphism ϕ, such that the following diagram commutes:

EEa,d

f ��

π̃

���
��

��
��

��
EEa,d

EEa0,d0

ϕ
�����������

Indeed, let P ∈ ker(π̃) = θ(Fq), then ∃x ∈ Fq such that P = (xe, 1). We have
from Lemma 4.6, (1 − nb)P = pmP = (0, 1), then P ∈ ker(f). It follows that
ker(π̃) ⊆ ker(f), this prove the above assertion.

Now we prove that
π̃oϕ = idEEa0,d0

.

Let P ′ ∈ EEa0,d0
, since π̃ is surjective, then there exists a P ∈ EEa,d

such that

π̃(P ) = P ′. We have

ϕ(P ′) = (1− nb)P = P − nbP and nP ′ = (0, 1),

then nπ̃(P ) = (0, 1) and π̃(nP ) = (0, 1) implies that nP ∈ ker(π̃) and so,
nbP ∈ ker(π̃), therefore π̃(nbP ) = (0, 1). On the other hand,

ϕ(P ′) = (1− nb)P = P − nbP,

then

π̃oϕ(P ′) = π̃(P )− (0, 1) = P ′ and so, π̃ ◦ ϕ = idEEa0,d0
.

Hence the sequence is split. �

��
����
� 4.9� If p does not divide #(EEa0,d0
) then, EEa,d

∼= EEa0,d0
× Fq

P r o o f. From the Theorem 4.8 the sequence

0 −→ H −→ EEa,d
−→ EEa0,d0

−→ 0

is split then, EEa,d
∼= EEa0,d0

×H and since H = ker(π̃) = Imθ ∼= Fq, then the
corollary is proved. �

5. Conclusion

In this work, we have proved the bijection between EEa,d
and EEa0,d0

× Fq.
In cryptography applications, we deduce that the discrete logarithm problem
in EEa,d

is equivalent to the discrete logarithm problem in EEa0,d0
× Fq and

#(EEa,d
) = pc#(EEa0,d0

), which is an important and useful factor in cryptog-
raphy since it allows to obtain a huge number of points with a smaller prime p.
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