Mathematical Publications
DOI: 10.2478/tmmp-2023-0004
Tatra Mt. Math. Publ. 83 (2023), 43-50

TWISTED EDWARDS CURVE OVER THE RING $\mathbb{F}_{q}[e], e^{2}=0$

Moha Ben Taleb El Hamam ${ }^{1}$ - Abdelhakim Chillali ${ }^{2}$ - Lhoussain El Fadil ${ }^{1}$
${ }^{1}$ Sidi Mohamed Ben Abdellah University, Fez, MOROCCO
${ }^{2}$ Sidi Mohamed Ben Abdellah University, Taza, MOROCCO

Abstract

Let \mathbb{F}_{q} be a finite field of q elements, where q is a power of an odd prime number. In this paper, we study the twisted Edwards curves denoted $E_{E_{a, d}}$ over the local ring $\mathbb{F}_{q}[e]$, where $e^{2}=0$. In the first time, we study the arithmetic of the ring $\mathbb{F}_{q}[e], e^{2}=0$. After that we define the twisted Edwards curves $E_{E_{a, d}}$ over this ring and we give essential properties and we define the group $E_{E_{a, d}}$, these properties. Precisely, we give a bijection between the groups $E_{E_{a, d}}$ and $E_{E_{a_{0}, d_{0}}} \times \mathbb{F}_{q}$, where $E_{E_{a_{0}, d_{0}}}$ is the twisted Edwards curves over the finite field \mathbb{F}_{q}.

1. Introduction

In 2007, Edwards [8] introduced a new normal form of elliptic curves on a field K with a characteristic other than 2 . This model has been shown to be very promising because it achieves these two objectives are the complete and faster law of addition. Bernstein et al [1], introduced twisted Edwards curves with an equation

$$
\left(a X^{2}+Y^{2}\right) Z^{2}=Z^{4}+d X^{2} Y^{2}
$$

For $Z \neq 0$ the homogeneous point $(X: Y: Z)$ represents the affine point $(X / Z, Y / Z)$ identified by (X, Y), with an equation: $a X^{2}+Y^{2}=1+d X^{2} Y^{2}$, and presented explicit formulas for addition and doubling over a finite field K, where $a d(a-d) \neq 0$. The addition law is defined by:

$$
\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right)=\left(\frac{X_{1} Y_{2}+Y_{1} X_{2}}{1+d X_{1} X_{2} Y_{1} Y_{2}}, \frac{Y_{1} Y_{2}-a X_{1} X_{2}}{1-d X_{1} X_{2} Y_{1} Y_{2}}\right)
$$

[^0]©(1)®@ Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.
the group operations on Edwards curves were faster than those of most other elliptic curve models known at the time. In [6, Boudabra and his co-authors studied the twisted Edwards curves on the finite field $\mathbb{Z} / p \mathbb{Z}$, where $p \geq 5$ is a prime number, and on the rings $\mathbb{Z} / p^{r} \mathbb{Z}$ and $\mathbb{Z} / p^{r} q^{s} \mathbb{Z}$. In [2], Elhamam et al, studied the binary Edwards curves on the ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$. Furthermore, they studied the twisted Edwards curves over the ring $\mathbb{F}_{q}[e], e^{2}=e($ see [4]).

In this work we study twisted Edwards curves over the ring $\mathbb{F}_{q}[e], e^{2}=0$. The motivation for this paper is the search for new groups of points of a twisted Edwards curve over a finite ring, where the complexity of the discrete logarithm calculation is good for use in cryptography. For further works in the same direction, we refer the reader to [3, 5]. Let \mathbb{F}_{q} be a finite field of q elements, where $q=p^{c}$ is a power of an odd prime number p and $c \in \mathbb{N}^{*}$.

We started this article by studying the arithmetic of the ring $\mathbb{F}_{q}[e], e^{2}=0$. In Section 3, we will define the twisted Edwards curves $E_{E_{a, d}}\left(\mathbb{F}_{q}[e]\right)$ over this ring. Moreover, we will define the group extension

$$
E_{E_{a, d}}\left(\mathbb{F}_{q}[e]\right) \text { of } E_{E_{a_{0}, d_{0}}}\left(\mathbb{F}_{q}\right)
$$

and give a bijection between the groups $E_{E_{a, d}}$ and $E_{E_{a_{0}, d_{0}}} \times \mathbb{F}_{q}$, where $E_{E_{a_{0}, d_{0}}}$ is the twisted Edwards curves over the finite field \mathbb{F}_{q}. Furthermore, we close this paper, by giving a link between the group $E_{E_{a, d}}$ and cryptography. We deduce that the discrete logarithm problem in $E_{E_{a, d}}$ is equivalent to the discrete logarithm problem in $E_{E_{a_{0}, d_{0}}} \times \mathbb{F}_{q}$ and $\#\left(E_{E_{a, d}}\right)=p^{c} \#\left(E_{E_{a_{0}, d_{0}}}\right)$.

2. The ring $\mathbb{F}_{q}[e], e^{2}=0$

Let p be a prime number ≥ 3, we consider the quotient ring $A_{2}=\frac{\mathbb{F}_{q}[X]}{X^{2}}$, where \mathbb{F}_{q} is the finite field of characteristic p and q elements. The ring A_{2} is identified to the ring $\mathbb{F}_{q}[e], e^{2}=0$. So, we have

$$
A_{2}:=\mathbb{F}_{q}[e]=\left\{x_{0}+x_{1} e /\left(x_{0}, x_{1}\right) \in\left(\mathbb{F}_{q}\right)^{2}\right\} .
$$

The arithmetic operations in A_{2} can be decomposed into operations in \mathbb{F}_{q} and they are computed as follows:

$$
\begin{gathered}
X+Y=\left(x_{0}+y_{0}\right)+\left(x_{1}+y_{1}\right) e \\
X \cdot Y=\left(x_{0} y_{0}\right)+\left(x_{0} y_{1}+x_{1} y_{0}+x_{1} y_{1}\right) e
\end{gathered}
$$

A. Chillali in [7] has proved the following results:

- A_{2} is a local ring with maximal ideal is $M=(e)=e \mathbb{F}_{q}$.
- The non-invertible element of A_{2} are those elements of the form $x e$, where $x \in \mathbb{F}_{q}$. Namely,

$$
\left(x_{0}+x_{1} e\right)^{-1}=x_{0}^{-1}-x_{1} x_{0}^{-2} e, \quad \text { where } \quad x_{0}, x_{1} \in \mathbb{F}_{q} \quad \text { and } \quad x_{0} \neq 0
$$

- A_{2} is a vector space over \mathbb{F}_{q} with basis $(1, e)$.

Remark 1. We denote by π the canonical projection defined by

$$
\begin{aligned}
\pi: & A_{2} & \rightarrow \mathbb{F}_{q}, \\
& x_{0}+x_{1} e & \mapsto x_{0} .
\end{aligned}
$$

3. Twisted Edwards curves over the ring A_{2}

Let X, Y, a and d be four elements of A_{2} such that $X=x_{0}+x_{1} e, Y=y_{0}+y_{1} e$, $a=a_{0}+a_{1} e$ and $d=d_{0}+d_{1} e$.

Definition 3.1. A twisted Edwards curve is defined over A_{2} by the equation $a X^{2}+Y^{2}=1+d X^{2} Y^{2}$, such that $\Delta=a d(a-d)$ is invertible in A_{2}. We denote it by $E_{E_{a, d}}$,

$$
E_{E_{a, d}}=\left\{(X, Y) \in A_{2}^{2} \mid a X^{2}+Y^{2}=1+d X^{2} Y^{2}\right\} .
$$

Lemma 3.2. Let $\Delta_{0}=a_{0} d_{0}\left(a_{0}-d_{0}\right)$, then $\pi(\Delta)=\Delta_{0}$.
Proof. Let $X, Y \in A_{2}$, we have

$$
\pi(X+Y)=\pi(X)+\pi(Y) \quad \text { and } \quad \pi(X Y)=\pi(X) \pi(Y)
$$

So, $\pi(\Delta)=\Delta_{0}$.
Corollary 3.3. Δ is invertible in A_{2} if and only if $\Delta_{0} \neq 0$.
Proof. Since $\pi(\Delta)=\Delta_{0}$, then Δ is invertible in A_{2} if and only if Δ_{0} is invertible in \mathbb{F}_{q}. Which is equivalent to $\Delta_{0} \neq 0$.

Using Corollary 3.3, if Δ is invertible in A_{2}, then $E_{E_{\pi(a), \pi(d)}}\left(\mathbb{F}_{q}\right)$ is twisted Edwards curves over the finite field \mathbb{F}_{q} and we notice $E_{E_{a_{0}, d_{0}}}$, we write

$$
E_{E_{a_{0}, d_{0}}}=\left\{\left(x_{0}, y_{0}\right) \in\left(\mathbb{F}_{q}\right)^{2} \mid a_{0} x_{0}^{2}+y_{0}^{2}=1+d_{0} x_{0}^{2} y_{0}^{2}\right\} .
$$

Theorem 3.4. Let $a=a_{0}+a_{1} e, d=d_{0}+d_{1} e, X=x_{0}+x_{1} e$, and $Y=y_{0}+y_{1} e$, are elements of A_{2}, with

$$
\begin{equation*}
a X^{2}+Y^{2}=1+d X^{2} Y^{2} \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{0} x_{0}^{2}+y_{0}^{2}=1+d_{0} x_{0}^{2} y_{0}^{2}+\left(D+A x_{1}+B y_{1}\right) e \tag{2}
\end{equation*}
$$

where

$$
A=2 d_{0} x_{0} y_{0}^{2}-2 a_{0} x_{0}, \quad B=2 d_{0} x_{0}^{2} y_{0}-2 y_{0}, \quad D=d_{1} x_{0}^{2} y_{0}^{2}-a_{1} x_{0}^{2}
$$

M.B.T. EL HAMAM - A. CHILLALI- L. EL FADIL

Proof. We have

$$
\begin{aligned}
a X^{2}+Y^{2} & =\left(a_{0}+a_{1} e\right)\left(x_{0}+x_{1} e\right)^{2}+\left(y_{0}+y_{1} e\right)^{2} \\
& =\left(a_{0}+a_{1} e\right)\left(x_{0}^{2}+2 x_{0} x_{1} e\right)+y_{0}^{2}+2 y_{0} y_{1} e \\
& =a_{0} x_{0}^{2}+2 a_{0} x_{0} x_{1} e+a_{1} x_{0}^{2} e+y_{0}^{2}+2 y_{0} y_{1} e \\
& =a_{0} x_{0}^{2}+y_{0}^{2}+\left(2 a_{0} x_{0} x_{1}+a_{1} x_{0}^{2}+2 y_{0} y_{1}\right) e \\
1+d X^{2} Y^{2} & =1+\left(d_{0}+d_{1} e\right)\left(x_{0} x_{1} e\right)^{2}\left(y_{0}+y_{1} e\right)^{2} \\
& =1+\left(d_{0}+d_{1} e\right)\left(x_{0}^{2}+2 x_{0} x_{1} e\right)\left(y_{0}^{2}+2 y_{0} y_{1} e\right) \\
& =1+d_{0} x_{0}^{2} y_{0}^{2}+\left(2 d_{0} x_{0}^{2} y_{0} y_{1}+2 d_{0} x_{0} x_{1} y_{0}^{2}+d_{1} x_{0}^{2} y_{0}^{2}\right) e
\end{aligned}
$$

If $a X^{2}+Y^{2}=1+d X^{2} Y^{2}$, then

$$
a_{0} x_{0}^{2}+y_{0}^{2}=1+d_{0} x_{0}^{2} y_{0}^{2}+\left[D+A x_{1}+B y_{1}\right] e
$$

where

$$
A=2 d_{0} x_{0} y_{0}^{2}-2 a_{0} x_{0}, \quad B=2 d_{0} x_{0}^{2} y_{0}-2 y_{0}, \quad D=d_{1} x_{0}^{2} y_{0}^{2}-a_{1} x_{0}^{2}
$$

Corollary 3.5. If $(X, Y) \in E_{E_{a, d}}$, then $\left(x_{0}, y_{0}\right) \in E_{E_{a_{0}, d_{0}}}$.
Proof. If $(X, Y) \in E_{E_{a, d}}$, then $a X^{2}+Y^{2}=1+d X^{2} Y^{2}$. So, by Theorem 3.4 we have

$$
a_{0} x_{0}^{2}+y_{0}^{2}=1+d_{0} x_{0}^{2} y_{0}^{2}+\left[D+A x_{1}+B y_{1}\right] e
$$

Or $(1, e)$ is a basis of A_{2}, then $a_{0} x_{0}^{2}+y_{0}^{2}=1+d_{0} x_{0}^{2} y_{0}^{2}$. Thus $\left(x_{0}, y_{0}\right) \in E_{E_{a_{0}, d_{0}}}$.

4. The group law over $E_{E_{a, d}}$

Bernstein et al [1] also presented explicit formulas for addition and doubling on a twisted Edwards curve, these formulas are complete if a is a square and d a non-square in the underlying field.

Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)$ two points on the twisted Edwards curve $E_{E_{a, d}}$ found by the equation

$$
a X^{2}+Y^{2}=1+d X^{2} Y^{2}
$$

the sum of these points on $E_{E_{a, d}}$ is

$$
\begin{equation*}
\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right)=\left(\frac{X_{1} Y_{2}+Y_{1} X_{2}}{1+d X_{1} X_{2} Y_{1} Y_{2}}, \frac{Y_{1} Y_{2}-a X_{1} X_{2}}{1-d X_{1} X_{2} Y_{1} Y_{2}}\right) \tag{*}
\end{equation*}
$$

the neutral element is $(0,1)$ and the inverse of $\left(X_{1}, Y_{1}\right)$ is $\left(-X_{1}, Y_{1}\right)$, these formulas are complete if a_{0} is a square and d_{0} a non-square in the field \mathbb{F}_{q}.

Corollary 4.1. $\left(E_{E_{a, d}},+\right)$ is an abelian group with $(0,1)$ as identity element.

tWisted edwards curve over the ring

Corollary 4.2. The mapping $\tilde{\pi}$ is well defined, where is given by

$$
\begin{array}{rlcc}
\tilde{\pi}: E_{E_{a, d}} & \rightarrow & E_{E_{a_{0}, d_{0}}} \\
(X, Y) & \mapsto & (\pi(X), \pi(Y)) .
\end{array}
$$

Proof. From the previous theorem, we have $(\pi(X), \pi(Y)) \in E_{E_{a_{0}, d_{0}}}$ If $\left(X_{1}, Y_{1}\right)=\left(X_{2}, Y_{2}\right)$, then

$$
\begin{aligned}
\tilde{\pi}\left(X_{2}, Y_{2}\right) & =\left(\pi\left(X_{2}\right), \pi\left(Y_{2}\right)\right) \\
& =\left(\pi\left(X_{1}\right), \pi\left(Y_{1}\right)\right) \\
& =\tilde{\pi}\left(X_{1}, Y_{1}\right) .
\end{aligned}
$$

Lemma 4.3. $\tilde{\pi}$ is a surjective homomorphism of groups.
Proof. Let $\left(x_{0}, y_{0}\right) \in E_{E_{a_{0}, d_{0}}}$, then there exists $(X, Y) \in E_{E_{a, d}}$, such that

$$
\tilde{\pi}(X, Y)=\left(x_{0}, y_{0}\right)
$$

By Theorem 3.4. we have

$$
a_{0} x_{0}^{2}+y_{0}^{2}=1+d_{0} x_{0}^{2} y_{0}^{2}+\left(D+A x_{1}+B y_{1}\right) e
$$

or $(1, e)$ is a basis of A_{2}, then $D=-\left(A x_{1}+B y_{1}\right)$.
Put $f(x, y)=a_{0} x^{2}+y^{2}-1-d_{0} x^{2} y^{2}$, we have

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=2 a_{0} x_{0}-2 d_{0} x_{0} y_{0}^{2}=-A
$$

and

$$
\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=2 y_{0}-2 d_{0} x_{0}^{2} y_{0}=-B
$$

Coefficients $-A$ and $-B$ are partial derivatives of a function $f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$, can not be all null. We can then, finally, conclude that $\left(x_{1}, y_{1}\right)$ exists. Thus, $\tilde{\pi}$ is a surjective.

Lemma 4.4. The mapping

$$
\begin{aligned}
\theta: \mathbb{F}_{q} & \rightarrow E_{E_{a, d}}, \\
x & \mapsto(x e, 1)
\end{aligned}
$$

is an injective homomorphism.
Proof. Evidently, θ is well defined and injective. Let

$$
x_{1}, x_{2} \in \mathbb{F}_{q}, P=\left(x_{1} e, 1\right) \quad \text { and } \quad Q=\left(x_{2} e, 1\right)
$$

By (*) we have $P+Q=\left(\left(x_{1}+x_{2}\right) e, 1\right)$, then $\theta\left(x_{1}+x_{2}\right)=\theta\left(x_{1}\right)+\theta\left(x_{2}\right)$, and we conclude that θ is injective homomorphism of groups.
Corollary 4.5. Let $H=\theta\left(\mathbb{F}_{q}\right)$, then $H=\operatorname{ker}(\tilde{\pi})$.

M.B.T. EL HAMAM - A. CHILLALI- L. EL FADIL

Proof. Let $(x e, 1) \in H$, then $\tilde{\pi}(x e, 1)=(0,1)$. We conclude that $(x e, 1) \in$ $\operatorname{ker}(\tilde{\pi})$, thus $H \subset \operatorname{ker}(\tilde{\pi})$. Let $P=(X, Y) \in \operatorname{ker}(\tilde{\pi})$, then $\tilde{\pi}(X, Y)=(0,1)$. So,

$$
X=x e, \quad Y=1+y e,-1 e x
$$

according to the equation

$$
a X^{2}+Y^{2}=1+d X^{2} Y^{2}
$$

we have $y=0$, then $(X, Y)=(x e, 1)$. Thus $\operatorname{ker}(\tilde{\pi}) \subset H$. Finally, $H=\operatorname{ker}(\tilde{\pi})$.
Lemma 4.6. The group H is an elementary abelian p-group.
Proof. Let $P=(x e, 1) \in H$, we denote $2 P=P+P$ and $(n+1) P=n P+P$ for all $n \geq 2$. We have from Lemma $4.42 P=(2 x e, 1)$ and we claim that $p P=(p x e, 1)=(0,1)$ by sum $(*)$, which completes the proof of the lemma.

Theorem 4.7. The sequence

$$
0 \longrightarrow H \longrightarrow E_{E_{a, d}} \longrightarrow E_{E_{a_{0}, d_{0}}} \longrightarrow 0
$$

is a short exact sequence which defines the group extension $E_{E_{a, d}}$ of $E_{E_{a_{0}, d_{0}}}$ by H.

Proof. $\tilde{\pi}$ is a surjective homomorphism of groups, $H=\theta\left(\mathbb{F}_{q}\right)=\operatorname{ker}(\tilde{\pi})$ and θ is an injective homomorphism. We deduce the sequence

$$
0 \longrightarrow H \longrightarrow E_{E_{a, d}} \longrightarrow E_{E_{a_{0}, d_{0}}} \longrightarrow 0
$$

is a short exact sequence which defines the group extension $E_{E_{a, d}}$ of $E_{E_{a_{0}, d_{0}}}$ by H.

Theorem 4.8. Let $n=\#\left(E_{E_{a_{0}, d_{0}}}\right)$ the cardinality of $E_{E_{a_{0}, d_{0}}}$. If p does not divide n, then the short exact sequence

$$
0 \longrightarrow H \longrightarrow E_{E_{a, d}} \longrightarrow E_{E_{a_{0}, d_{0}}} \longrightarrow 0
$$

is split.
Proof. p doesn't divide n, then exists an integer b such that $n b=1(\bmod p)$. So, there is an integer m such that $1-n b=p m$. Let f the homomorphism defined by

$$
\begin{aligned}
f: E_{E_{a, d}} & \rightarrow E_{E_{a, d}} \\
P & \mapsto(1-n b) P .
\end{aligned}
$$

We have

$$
\begin{aligned}
\tilde{\pi}: E_{E_{a, d}} & \rightarrow E_{E_{a_{0}, d_{0}}} \\
(X, Y) & \mapsto(\pi(X), \pi(Y))
\end{aligned}
$$

TWISTED EDWARDS CURVE OVER THE RING

is a surjective homomorphism of groups using Lemma 4.3. Then, there exists a unique morphism φ, such that the following diagram commutes:

Indeed, let $P \in \operatorname{ker}(\tilde{\pi})=\theta\left(\mathbb{F}_{q}\right)$, then $\exists x \in \mathbb{F}_{q}$ such that $P=(x e, 1)$. We have from Lemma 4.6, $(1-n b) P=p m P=(0,1)$, then $P \in \operatorname{ker}(f)$. It follows that $\operatorname{ker}(\tilde{\pi}) \subseteq \operatorname{ker}(f)$, this prove the above assertion.

Now we prove that

$$
\tilde{\pi} o \varphi=i d_{E_{E_{a_{0}}, d_{0}}}
$$

Let $P^{\prime} \in E_{E_{a_{0}, d_{0}}}$, since $\tilde{\pi}$ is surjective, then there exists a $P \in E_{E_{a, d}}$ such that $\tilde{\pi}(P)=P^{\prime}$. We have

$$
\varphi\left(P^{\prime}\right)=(1-n b) P=P-n b P \quad \text { and } \quad n P^{\prime}=(0,1),
$$

then $n \tilde{\pi}(P)=(0,1)$ and $\tilde{\pi}(n P)=(0,1)$ implies that $n P \in \operatorname{ker}(\tilde{\pi})$ and so, $n b P \in \operatorname{ker}(\tilde{\pi})$, therefore $\tilde{\pi}(n b P)=(0,1)$. On the other hand,

$$
\varphi\left(P^{\prime}\right)=(1-n b) P=P-n b P
$$

then

$$
\tilde{\pi} o \varphi\left(P^{\prime}\right)=\tilde{\pi}(P)-(0,1)=P^{\prime} \quad \text { and so, } \quad \tilde{\pi} \circ \varphi=i d_{E_{E_{a_{0}}, d_{0}}} .
$$

Hence the sequence is split.
Corollary 4.9. If p does not divide $\#\left(E_{E_{a_{0}, d_{0}}}\right)$ then, $E_{E_{a, d}} \cong E_{E_{a_{0}, d_{0}}} \times \mathbb{F}_{q}$
Proof. From the Theorem 4.8 the sequence

$$
0 \longrightarrow H \longrightarrow E_{E_{a, d}} \longrightarrow E_{E_{a_{0}, d_{0}}} \longrightarrow 0
$$

is split then, $E_{E_{a, d}} \cong E_{E_{a_{0}, d_{0}}} \times H$ and since $H=\operatorname{ker}(\tilde{\pi})=\operatorname{Im} \theta \cong \mathbb{F}_{q}$, then the corollary is proved.

5. Conclusion

In this work, we have proved the bijection between $E_{E_{a, d}}$ and $E_{E_{a_{0}, d_{0}}} \times \mathbb{F}_{q}$. In cryptography applications, we deduce that the discrete logarithm problem in $E_{E_{a, d}}$ is equivalent to the discrete logarithm problem in $E_{E_{a_{0}, d_{0}}} \times \mathbb{F}_{q}$ and $\#\left(E_{E_{a, d}}\right)=p^{c} \#\left(E_{E_{a_{0}, d_{0}}}\right)$, which is an important and useful factor in cryptography since it allows to obtain a huge number of points with a smaller prime p.

M.B.T. EL HAMAM— A. CHILLALI- L. EL FADIL

REFERENCES

[1] BERNSTEIN, D. J.-BIRKNER, P.—JOYE, M.—LANGE, T.-PETERS, C.: Twisted Edwards curves. In: First International Conference on Cryptology in Africa, Casablanca, Morocco, Progress in Cryptology - AFRICACRYPT, Lecture Notes in Comput. Sci. Vol. 5023, Springer-Verlag, Berlin, 2008, pp. 389-405,
[2] ELHAMAM, M. B. T.- CHILLALI, A.-EL FADIL, L.: Public key cryptosystem and binary Edwards curves on the ring $\mathbb{F}_{2^{n}}[e], e^{2}=e$ for data management. In: 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2022, pp. 1-4, DOI: 10.1109/IRASET52964.2022.9738249.
[3] ELHAMAM, M.B.T.- CHILLALI, A.-EL FADIL, L.: Twisted Hessian curves over the ring $\mathbb{F}_{q}[e], e^{2}=e$, Bol. Soc. Paran. Mat. (3s.) 40 (2022), 1-6, DOI: https://doi.org/10.5269/bspm. 51867
[4] ELHAMAM, M.B.T.- CHILLALI, A.-EL FADIL, L.: A New Addition Law in Twisted Edwards Curves on Non Local Ring. In: Nitaj, A., Zkik, K. (eds) Cryptography, Codes and Cyber Security. I4CS 2022. Communications in Computer and Information Science, vol 1747. Springer, Cham. https://doi.org/10.1007/978-3-031-23201-5_3
[5] ELHAMAM, M.B.T.-GRINI, A.-CHILLALI, A.-EL FADIL, L.: El Gamal cryptosystem on a Montgomery curves over non local ring, WSEAS Trans. Math. 21 (2022), 85-89.
[6] BOUDABRA, M.-NITAJ, A.: A new public key cryptosystem based on Edwards curves. J. Appl. Math. Comput. 61 (2019), no. 1-2, 431-450.
[7] CHILLALI, A.: Elliptic curves of the $\operatorname{ring} F_{q}[\epsilon], \epsilon^{n}=0$, Int. Math. Forum, 6, (2011) no. 29-31, 1501-1505.
[8] EDWARDS, H.: Normal form for elliptic curves, Bull. Amer. Math. Soc. (N.S.) 44 (2007) no. 03, 393-423,

Received November 1, 2022
M.B.T. EL HAMAM
L. EL FADIL

Department of Mathematics
Faculty of Sciences
Sidi Mohamed Ben Abdellah University Fez, MOROCCO
E-mail: mohaelhomam@gmail.com lhouelfadil2@gmail.com
A. Chillali

Department of Mathematics
Faculty of Polydisciplimary
Sidi Mohamed Ben Abdellah University Taza, MOROCCO
E-mail: abdelhakim.chillali@usmba.ac.ma

[^0]: (C) 2023 Mathematical Institute, Slovak Academy of Sciences. 2020 Mathematics Subject Classification: 11T71, 14G50, 94A60. Keywords: elliptic curves, twisted Edwards curves, cryptography.

