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TWO DISJOINT AND INFINITE SETS

OF SOLUTIONS FOR AN ELLIPTIC EQUATION

WITH CRITICAL HARDY-SOBOLEV-MAZ’YA TERM

AND CONCAVE-CONVEX NONLINEARITIES

Rachid ECHARGHAOUI — Zakaria ZAIMI
∗

Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Kenitra, MOROCCO

ABSTRACT. In this paper, we consider the following critical Hardy-Sobolev-
Maz’ya problem {

−Δu =
|u|2∗(t)−2u

|y|t + μ|u|q−2u in Ω,

u = 0 on ∂Ω,

where Ω is an open bounded domain in R
N , which contains some points (0, z∗),

μ > 0, 1 < q < 2, 2∗(t) = 2(N−t)
N−2

, 0 ≤ t < 2, x = (y, z) ∈ R
k×R

N−k, 2 ≤ k < N .

We prove that if N > 2 q+1
q−1

+ t, then the above problem has two disjoint and

infinite sets of solutions. Here, we give a positive answer to one open problem
proposed by Ambrosetti, Brezis and Cerami in [1] for the case of the critical
Hardy-Sobolev-Maz’ya problem.

1. Introduction

We are concerned with the problem{
−Δu = |u|2∗(t)−2u

|y|t + μ|u|q−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R
N that contains some points (0, z∗),

μ > 0, 1 < q < 2, 0 ≤ t < 2, x = (y, z) ∈ R
k × R

N−k, 2 ≤ k < N and
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2∗(t) = 2(N−t)
N−2 . The corresponding energy functional to (1.1) is

I(u) :=
1

2

∫
Ω

|∇u|2 dx− 1

2∗(t)

∫
Ω

|u|2∗(t)

|y|t dx−μ

q

∫
Ω

|u|q dx .

When t = 0 and q = 2 the problem (1.1) reduces to the following problem{
−Δu = |u|2∗−2u+ μu in Ω,

u = 0 on ∂Ω,
(1.2)

G. Devillanova and S. Solimini in [7] considered the problem (1.2) and they
established the existence of infinitely many solutions if N ≥ 7. Their crucial idea
is to show the strong convergence of approximating solutions of (1.2). The main
ingredient used to achieve this goal is to obtain some estimates for approximating
solutions of (1.2) in a carefully defined safe region, and then a local Pohozaev
identity is used to obtain the result. P. Han in [8] invested the similar approaches

to show for t = 0 that, if N > 2(q+1)
q−1

, then problem (1.1) admits an infinite sets

of solutions with positive energy, which can be viewed as one of the positive
answer to the above open problem. When q = 2, the method of our paper
was used by Shuangjie Peng and Chunhua Wang in [10] to establish that if
N > 6 + t, then the problem (1.1) has infinitely many solutions. For more
similar results, we refer the reader to [5, 6, 12]. It seems that there is no similar
result concerning (1.1) or the concave case, i.e., 1 < q < 2. The main result
of this paper is the following

������� 1.1� If we assume that N > 2 q+1
q−1 + t, then

i) There exists a sequence of solutions (vk)k of (1.1) such that I(vk) > 0 and
I(vk) → +∞ as k → +∞.

ii) There exists a sequence of solutions (uk)k of (1.1) such that I(uk) < 0 and
I(uk) → 0 as k → +∞.

This paper is organized as follows. Section 2 is devoted to the strong conver-
gence of approximating solutions in H1

0 (Ω) of (1.1). Unlike [10], some technical
difficulties arise in applying the Moser iteration since we do not have an reverse
Hölder inequality when q < 2. To overcome this difficulty we employ an argu-
ment used by Trudinger in [11] and our key result in this way is Proposition 2.4
below. By applying the Fountain theorem and its dual form [3, 13], we prove
Theorem 1.1 in Section 3. To conclude this introduction, we explain some no-
tations used in what follows. Denote the norms of the spaces H1

0 (Ω), L
p(Ω)(1≤

p<∞) by

‖u‖ :=

⎛
⎝∫

Ω

|∇u|2 dx
⎞
⎠

1
2

, |u|Lp
t (Ω) :=

⎛
⎝∫

Ω

|u|p
|y|t dx

⎞
⎠

1
p

,
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respectively. By symbol C we denote a generic constant whose value may change
from line to line.

2. Strong convergence of approximating solutions in H1
0 (Ω)

We consider the following perturbed problem:{
−Δu = |u|2∗(t)−2−εu

|y|t + μ|u|q−2u in Ω,

u = 0 on ∂Ω,
(2.1)

where ε > 0 is a small constant, For brevity of notations, in the sequel we
denote 2∗ε(t) = 2∗(t) − ε. A function u ∈ H1

0 (Ω) is said to be a weak solution
of problem (2.1) if∫

Ω

∇u∇ϕ dx −
∫
Ω

|u|2∗
ε (t)−2

|y|t uϕ dx −
∫
Ω

μ|u|q−2uϕ dx = 0,

for any ϕ ∈ H1
0 (Ω).

The corresponding energy functional to problem (2.1) is defined in H1
0 (Ω) by

Iε(u) : =
1

2

∫
Ω

|∇u|2 dx− 1

2∗ε (t)

∫
Ω

|u|2∗
ε (t)

|y|t dx−1

q

∫
Ω

μ|u|q dx .

We first introduce some notations and terminologies which will be used in the
sequel. Let u be a solution of problem (2.1), set ũ := |u| (extended by zero out
of Ω ). Then ũ ∈ H1

(
R

N
)
, with ϕ ≥ 0∫

RN

∇ũ∇ϕ =

∫
Ω

∇|u| · ∇ϕ dx

=

∫
∂Ω

ϕ
∂|u|
∂n

ds −
∫
Ω

|u|−1u div(∇u)ϕ dx

≤
∫
Ω

u|u|−1

( |u|2∗
ε (t)−2

|y|t u+ μ|u|q−2u

)
ϕ dx

=

∫
RN

(
ũ2∗

ε (t)−1

|y|t + μũq−1

)
ϕ dx,

which implies in the sense of distribution

−Δũ ≤ ũ2∗
ε (t)−1

|y|t + μũq−1.
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An easy computation shows that, for A > 0 a large constant,

−Δũ ≤ 2ũ2∗(t)−1

|y|t +
A

|y|t . (2.2)

So in next section we can only consider the estimates of solutions to (2.2)
in H1

(
R

N
)
, and this also makes us free from caring about the sign of u and the

bounded domain Ω.

��	
�
�
�� 2.1� Let (un)n∈N be a given sequence. We shall say that (un)n∈N

is a controlled sequence if each un is a solution to problem (2.2).

For any λ > 0 and x ∈ R
N , we define

ρx,λ(u) = λ
N−t
2∗(t)u(λ

(· − x)
)
, u ∈ H1

0 (Ω).

We have the following decomposition of approximating solutions.

�����
�
�� 2.2 ( [10] Proposition C.1)� Suppose that N ≥ 3. Let un be a
solution of (2.1) with ε = εn → 0, satisfying ‖un‖ ≤ C for some constant C.
Then, un can be decomposed as

un = u0 +

h∑
j=1

ρxn,j ,λn,j
(Uj) + ωn, (2.3)

where ωn → 0 in H1(Ω), u0 is a solution for (1.1) and Uj is a solution of

−Δu =
|u|2∗(t)−2u

|y|t , u ∈ D1,2
(
R

N
)
.

In order to prove the strong convergence of un in H1
0 (Ω), we only need to

show that the bubbles ρxn,j ,λn,j
(Uj) will not appear in the decomposition of un.

Among all the bubbles ρxn,j ,λn,j
(Uj), we can choose a bubble, such that this

bubble has the slowest concentration rate. That is, the corresponding λ is the
lowest order infinity among all the λ appearing in the bubbles. For simplicity, we
denote λn the slowest concentration rate and xn the corresponding concentration
point. Because the number of the bubbles of un is finite, we may always choose
a constant C̄ > 0 such that the region

A1
n :=

(
B

(C̄+5)λ
− 1

2
n

(xn)
∖
B

C̄λ
− 1

2
n

(xn)

)
∩ Ω,

does not contain any concentration point of un for every n. We call this region
a safe region for un. We consider two thinner subsets as follows

A2
n :=

(
B

(C̄+4)λ
− 1

2
n

(xn)
∖
B

(C̄+1)λ
− 1

2
n

(xn)

)
∩ Ω,

and

A3
n :=

(
B

(C̄+3)λ
− 1

2
n

(xn)
∖
B

(C̄+2)λ
− 1

2
n

(xn)

)
∩ Ω.
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����� 2.3 ( [10] Lemma 3.2)� Let wn be a controlled sequence. Then there is
a constant C > 0 independent of n, such that⎛

⎜⎝rt−N

∫
Br(x̂)∩Ω

wτ
n

|y|t dx

⎞
⎟⎠

1
τ

≤ C, ∀x̂ ∈ R
N ,

for all r ∈
[
C̄λ

− 1
2

n , (C̄ + 5)λ
− 1

2
n

]
, where τ = 2(N−t)

2N−t−2
.

In this section, we will prove the following technical result:

�����
�
�� 2.4� Let (un)n∈N
be a controlled sequence. Then there is a positive

constant C independent of n such that∫
A2

n

|un|2β2

|y|t dx ≤ Cλ
−N−t

2
n , where β :=

2∗(t)
2

.

P r o o f. We set

vn(x) := |un|
(
λ−1/2
n x

)
, x ∈ Ωn, where Ωn :=

{
x : λ−1/2

n x ∈ Ω
}
.

Using the inequality (2.2), it is easy to check that vn (extended by zero out of Ω)
satisfies

−Δvn ≤ λ
t
2−1
n

(
2v

2∗(t)−1
n

|y|t +
A

|y|t
)

in R
N . (2.4)

For a fixed l > 0 we consider the two following functions defined on [0,+∞) by

F (u) :=

{
uβ if u ≤ l,

βlβ−1(u− l) + lβ if u > l,

and

G(u) :=

{
u2β−1 if u ≤ l,

β[2β − 1]l2(β−1)(u− l) + l2β−1 if u > l.

An easy argument shows that

(i) G(u) ≤ uG′(u),

(ii) C [F ′(u)]2 ≤ G′(u),

(iii) uG(u) ≤ C[F (u)]2,

(iv) If u ∈ H1
0 (Ω), then F (u), G(u) ∈ H1

0 (Ω).
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For fixed x̂ ∈ A2
n and 0 < r < R ≤ 1, we set

zn := λ1/2
n x̂ and ξ := η2G (vn) ,

where η ∈ C∞
0 (B (zn, R)) is a non-negative cut-off function such that η = 1

in B (zn, r) and |∇η| ≤ 2
R−r .

Using (2.4), it follows that∫
RN

∇vn∇
(
η2G (vn)

)
dx ≤ λ

t
2−1
n

∫
RN

f (vn) η
2G (vn) dx,

where

f(h) := 2
h2∗(t)−1

|y|t +
A

|y|t , h ≥ 0.

Using (i) and Young’s inequality, to get∫
RN

|∇vn|2 η2G′ (vn) dx =

∫
RN

∇vn∇
(
η2G(vn)

)
dx−2

∫
RN

∇vnG (vn) η∇η dx

≤ 2

∫
RN

|∇vn| η
(
G(vn)

)1/2(
G(vn)

)1/2|∇η| dx+λ
t
2−1
n

∫
RN

f (vn) η
2G (vn) dx

≤ 2

∫
RN

|∇vn|
(
G′ (vn)

)1/2
ηv1/2n

(
G(vn)

)1/2|∇η| dx+λ
t
2−1
n

∫
RN

f (vn) η
2G (vn) dx

≤ 1

2

∫
RN

|∇vn|2 η2G′ (vn) dx+C

∫
RN

|∇η|2vnG (vn) dx+λ
t−2
2

n

∫
RN

f (vn) η
2G (vn) dx .

This implies that∫
RN

|∇vn|2 η2G′ (vn) dx ≤ C

∫
RN

|∇η|2vnG (vn) dx+2λ
t−2
2

n

∫
RN

f (vn) η
2G (vn) dx .

It follows from (iii) that∫
RN

|∇vn|2 η2G′ (vn) dx ≤ C

∫
RN

|∇η|2 [F (vn)]
2 dx

+ Cλ
t−2
2

n

∫
RN

η2
v
2∗(t)−2
n

|y|t [F (vn)]
2
dx +C

∫
RN

η2G (vn)

|y|t dx .
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Combining this with (ii), then we deduce that∫
RN

∣∣∇(
ηF (vn)

)∣∣2 dx ≤ C

∫
RN

|∇η|2 [F (vn)]
2
dx

+ Cλ
t−2
2

n

∫
RN

η2
v
2∗(t)−2
n

|y|t [F (vn)]
2
dx+C

∫
RN

η2G (vn)

|y|t dx .

Applying the Hardy-Sobolev embedding theorem and Hölder’s inequality,
it follows that⎛

⎝∫
RN

η2
∗(t)F (vn)

2∗
(t)

|y|t dx

⎞
⎠
2/2∗(t)

≤ C

∫
RN

|∇η|2 [F (vn)]
2
dx

+ Cλ
t−2
2

n

⎛
⎝∫

RN

η2
∗(t)

|y|t [F (vn)]
2∗(t)

dx

⎞
⎠

2
2∗(t)

⎛
⎜⎝ ∫

B(zn,1)

v
2∗(t)
n

|y|t dx

⎞
⎟⎠

2−t
N−t

+ C

∫
RN

η2G (vn)

|y|t dx .

(2.5)

Since y ∈ A1
n, then it is easy to verify that B

(
y, λ

−1/2
n

)
⊂ A1

n. From A1
n does

not contain any concentration point of un, we can deduce that

λ
t−2
2

n

⎡
⎢⎣ ∫
B(zn,1)

v
2∗(t)
n

|y|t dx

⎤
⎥⎦

2−t
N−t

=

⎡
⎢⎢⎢⎢⎣

∫
B

(
y,λ

− 1
2

n

)
|un|2∗(t)

|y|t dx

⎤
⎥⎥⎥⎥⎦

2−t
N−t

→ 0,

as n → +∞. It follows that⎛
⎝∫

RN

η2
∗(t)F (vn)

2∗(t)

|y|t dx

⎞
⎠

2
2∗(t)

≤ C

∫
RN

|∇η|2 [F (vn)]
2
dx

+
1

2

⎛
⎝∫

RN

η2
∗(t)F (vn)

2∗(t)

|y|t dx

⎞
⎠
2/2∗(t)

+ C

∫
RN

η2G (vn)

|y|t dx .
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Thus⎛
⎝∫

RN

η2
∗(t)F (vn)

2∗(t)

|y|t dx

⎞
⎠

2
2∗(t)

≤ C

∫
RN

|∇η|2 [F (vn)]
2 dx+C

∫
RN

η2G (vn)

|y|t dx

≤ C

(R − r)2

∫
RN

[F (vn)]
2
dx+C

∫
RN

η2G (vn)

|y|t dx .

(2.6)
Letting l → +∞ in (2.6), we obtain⎛

⎜⎝ ∫
B(zn,r)

v
2∗(t)β
n

|y|t dx

⎞
⎟⎠

2
2∗(t)

≤ C

(R− r)2

∫
B(zn,R)

v2βn dx +C

∫
B(zn,R)

v2β−1
n

|y|s dx

≤ CRt

(R− r)2

∫
B(zn,R)

v2βn
|y|t dx +C

∫
B(zn,R)

v2β−1
n

|y|t dx

≤ C

(R− r)2

∫
B(zn,R)

v2βn
|y|t dx +C

∫
B(zn,R)

v2β−1
n

|y|t dx .

Then the above inequality can be written as⎛
⎜⎝ ∫

B(zn,r)

v2β
2

n

|y|t dx

⎞
⎟⎠

1
2β2

≤ C

(R − r)
1
β

⎛
⎜⎝ ∫

B(zn,R)

v
2∗(t)
n

|y|t dx

⎞
⎟⎠
1/2∗(t)

+ C

⎛
⎜⎝ ∫

B(zn,R)

v2β−1
n

|y|t dx

⎞
⎟⎠
1/2∗(t)

.

(2.7)

Since 2β − 1 < 2∗, by Young’s inequality we have that

∫
B(zn,R)

v2β−1
n

|y|t dx ≤ C

∫
B(zn,R)

1

|y|t dx +C

∫
B(zn,R)

v
2∗(t)
n

|y|t dx ≤ C + C

∫
B(zn,R)

v
2∗(t)
n

|y|t dx .

Together with (2.7), this implies that⎛
⎜⎝ ∫

B(zn,r)

v2β
2

n

|y|t dx

⎞
⎟⎠

1
2β2

≤
(

C

(R− r)
1
β

+ C

)⎛
⎜⎝ ∫

B(zn,R)

v
2∗(t)
n

|y|t dx

⎞
⎟⎠
1/2∗(t)

+ C.
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Let k ∈ (0, 1) and τ = 2(N−t)
2N−t−2 , since 0 < τ < 2∗(t) < 2β2 by Hölder’s inequality

and Young’s inequality we obtain

|vn|L2β2

t (B(zn,r))
≤

(
C

(R− r)
1
β

+ C

)
|vn|kLτ

t (B(zn,R)) |vn|1−k

L2β2

t (B(zn,R))
+ C

≤ 1

2
|vn|L2β2

t (B(zn,R))
+

(
C

(R− r)
1
kβ

+ C

)
|vn|Lτ

t (B(zn,R)) + C.

(2.8)
By using iteration argument, we deduce from (2.8) that

|vn|L2β2

t (B(zn, 12 ))
≤ C |vn|Lτ

t (B(zn,1))
+ C. (2.9)

On the other hand, it is easy to see from Lemma 2.3 that for any y ∈ A2
n

|vn|Lτ
t (B(zn,1))

≤ C.

Combining this with (2.9) and using the definition of vn, we obtain then the
desired result. �

As a consequence of the previous proposition we have the following estimates
which play a crucial role in the proof of Proposition 2.7 below.

����� 2.5� Let (un)n∈N
be a controlled sequence. For any γ ≤ 2∗(t) there exists

a positive constant C such that for any n∫
A2

n

|un|γ
|y|t dx ≤ Cλ

−N−t
2

n .

P r o o f. By Hölder’s inequality and Proposition 2.4 we obtain for any γ ≤ 2∗(t),

∫
A2

n

|un|γ
|y|t dx ≤ C

⎛
⎜⎝∫

A2
n

|un|2β2

|y|t

⎞
⎟⎠

γ

2β2

λ
−N−t

2

(
1− γ

2β2

)
n

≤ Cλ
−N−t

2
γ

2β2

n λ
−N−t

2 +
(N−t)γ

4β2

n

≤ Cλ
−N−t

2
n . �

�����
�
�� 2.6� We have,∫
A3

n

|∇un|2 dx ≤ C

∫
A2

n

|un|2∗(t) + 1

|y|t dx +Cλn

∫
A2

n

|un|q
|y|t dx . (2.10)
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Particularly, ∫
A3

n

|∇un|2 dx ≤ Cλ
2−(N−t)

2
n . (2.11)

P r o o f. Let φn ∈ C∞
0

(A2
n

)
be a function with φn = 1 in A3

n, 0 ≤ φn ≤ 1 and

|∇φn| ≤ Cλ
1
2
n From∫
Ω

∇un∇
(
φ2
nun

)
dx ≤ C

∫
Ω

( |un|2∗(t)−1 + 1

|y|t
)
φ2
n|un| dx .

we obtain (2.10). From (2.10) and Lemma 2.5, we have∫
A3

n

|∇un|2 dx ≤ Cλ
−N−t

2
n + Cλnλ

− (N−t)
2

n ≤ Cλ
2−(N−t)

2
n . �

�����
�
�� 2.7� For any un witch is a solution of (2.1) with ε = εn → 0 as
n → +∞, satisfying ‖un‖ ≤ C for some constant independent of n, the sequence
(un)n∈N converges strongly in H1

0 (Ω) .

P r o o f. Take a tn ∈ [C̄ + 2, C̄ + 3], satisfying

∫
∂B

tnλ
−1/2
n (xn)

(
λ
− t

2
n

u
2∗
εn

(t)
n

|y|t + |un|q + λ−1
n |∇un|2

)

≤ Cλ1/2
n

∫
A3

n

(
λ
− t

2
n

u
2∗
εn

(t)
n

|y|t + |un|q + λ−1
n |∇un|2

)
.

(2.12)

Using Lemma 2.5, (2.11) and (2.12), we obtain

∫
∂B

tnλ
−1/2
n (xn)

(
λ
− t

2
n

|un|2∗
εn

(t)

|y|t + |un|q + λ−1
n |∇un|2

)
≤ Cλ

1
2−N−t

2
n . (2.13)

We have two different cases:

(i) B
tnλ

− 1
2

n

(xn) ∩
(
R

N\Ω) �= ∅,
(ii) B

tnλ
− 1

2
n

(xn) ⊂ Ω.
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Recall that 2∗εn(t) = 2∗(t) − εn. We have the following local Pohozaev identity
for un on Bn = B

tnλ
−1/2
n

(xn) ∩ Ω :

(
N − t

2∗εn(t)
−N − 2

2

) ∫
Bn

|un|2∗
εn

(t)

|y|t dx+μ

(
N

q
− N − 2

2

) ∫
Bn

|un|q dx

=
N − 2

2

∫
∂Bn

(∇un · ν)un dσ +
1

2

∫
∂Bn

|∇un|2 (x− x0) · ν dσ

+
1

2∗εn(t)

∫
∂Bn

|un|2∗
εn

(t)

|y|t (x− x0) · ν dσ +
μ

q

∫
∂Bn

|un|q (x− x0) · ν dσ,

(2.14)

where x0 is a point in R
N and where ν is the outward normal to ∂Bn.

The point x0 in (2.14) is chosen as follows

i) we take x0 ∈ R
N\Ω with

|x0 − xn| ≤ 2tnλ
− 1

2
n and (x− x0) · ν ≤ 0 in ∂Ω ∩Bn,

ii) we take a point x0 = xn.

Due that

2∗εn(t) < 2∗(t),
N − t

2∗εn(t)
− N − 2

2
> 0.

Hence, the first term in the left-hand side of (2.14) is nonnegative, and (2.14)
can be rewritten as

μ

(
N

q
− N − 2

2

)∫
Bn

|un|q dx ≤ N − 2

2

∫
∂Bn

(∇un · v) un dσ

+
1

2

∫
∂Bn

|∇un|2 (x− x0) · ν dσ

+
1

2∗εn(t)

∫
∂Bn

|un|2∗
εn

(t)

|y|t (x− x0) · ν dσ

+
μ

q

∫
∂Bn

|un|q (x− x0) · ν dσ.

(2.15)

Now, we decompose ∂Bn into ∂Bn = ∂iBn ∪ ∂eBn, where

∂iBn = ∂Bn ∩ Ω and ∂eBn = ∂Bn ∩ ∂Ω.
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Observing that un = 0 on ∂Ω, we have
N − 2

2

∫
∂eBn

(∇un · ν)un dσ +
1

2

∫
∂eBn

|∇un|2 (x− x0) · ν dσ

+
1

2∗εn(t)

∫
∂eBn

|un|2∗
εn

(t)

|y|t (x− x0) · ν dσ

+
μ

q

∫
∂eBn

|un|q (x− x0) · ν dσ

=
1

2

∫
∂eBn

|∇un|2 (x− x0) · ν dσ ≤ 0.

Hence, we can rewrite (2.15) as

μ

(
N

q
− N − 2

2

)∫
Bn

|un|2 dx ≤ N − 2

2

∫
∂iBn

(∇un · ν)un dσ

+
1

2

∫
∂iBn

|∇un|2 (x− x0) · ν dσ

+
1

2∗εn(t)

∫
∂iBn

|un|2∗
εn

(t)

|y|t (x− x0) · ν dσ

+
μ

q

∫
∂iBn

|un|q (x− x0) · ν dσ.

(2.16)

From (2.13), noting that |x− x0| ≤ Cλ
− 1

2
n for x ∈ ∂iBn, we have RHS of (2.16)

≤ Cλ
− 1

2
n

∫
∂iBn

(
|∇un|2 + |un|2∗

εn
(t)

|y|t + |un|q
)
dσ

+ C

∫
∂iBn

|∇un||un| dσ ≤ Cλ
1−N−t

2
n .

(2.17)

On the other hand, using the same argument as in [8,10], we have∫
Bn

|un|q ≥ Cλ
−q−N+Nq

2
n . (2.18)

Combing (2.17) and (2.18), we obtain

λ
−q−N+Nq

2
n ≤ Cλ

2−(N−t)
2

n . (2.19)

which is a contradiction since N ≥ 2 q+1
q−1

+ t. �
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3. The proof of main results

In this section, we demonstrate our main result, following the ideas in [3,
9, 13]. Since H1

0 (Ω) is a Hilbert space, then there exists an orthonormal basis
{e1, e2, . . . , en, . . .} of H1

0 (Ω). For any i = 1, 2, . . . we denote Xi=Rei.

We have H1
0 (Ω) =

⊕∞
i=1Xi. Following the notations used by Bartsch

(see Theorem 2.5 in [2]), for any k ∈ N, we put

Yk := span {e1, . . . , ek} , and Zk := span {ek, ek+1, . . .}.
Define

Bk := {u ∈ Yk : ‖u‖ ≤ ρk} , Nk := {u ∈ Zk : ‖u‖ = rk} ,
where ρk > rk > 0. Let 2∗εn(t) := 2∗(t)−εn, where (εn)n is a decreasing sequence
with 0 < εn < 2∗(t)− 2 and εn → 0 as n → ∞.

T h e p r o o f o f (i) o f T h e o r e m 1.1. First, we claim that for every k ∈ N,
there exist ρk > τk > 0 such that ρk → +∞ as k → +∞ and

ank := max
u∈Yk

‖u‖=ρk

Iεn(u) ≤ 0, bnk := inf
u∈Zk

‖u‖=rk

Iεn(u) → ∞ as k → +∞.

We can choose pt such that 2 < pt < 2∗εn(t), for all n. It follows from the Hölder
inequality that for any u ∈ Yk,

Iεn(u) ≤
1

2
‖u‖2 − C|u|2

∗
εn

(t)

L
pt
t

− μ

q
|u|qLq .

Since all norms on the finite dimensional space are equivalent, it follows that

Iεn(u) ≤
1

2
‖u‖2 − C‖u‖pt − C‖u‖q, (3.1)

provide that ‖u‖ ≥ 1. On the other hand, using the Hölder inequality and the
Sobolev embedding, we obtain that for any u ∈ Zk

Iεn(u) ≥
1

2
‖u‖2 − C‖u‖2∗(t) − C‖u‖q. (3.2)

From (3.1) and (3.2) we obtain the existence of ρk > rk > 0, independent of n,
such that ank < bnk .

So by [13, Theorem 3.5 (Fountain theorem)], we conclude that Iεn has a
sequence of critical points, denoted by (vnk )n . Moreover, cnk = Iεn (vnk ), where

cnk := inf
γ∈Γk

max
u∈Bk

Iεn
(
γ(u)

)
, and Γk :=

{
γ ∈ C (

Bk, H
1
0 (Ω)

)
: γ|∂Bk

= id
}
.

We claim that for any k ∈ N,

cnk → ck := inf
γ∈Γk

max
u∈Bk

I
(
γ(u)

)
as n → +∞.
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Indeed, for γ ∈ Γk, the functionals Iεn(γ) are equicontinuous on the compact
set Bk, we derive that

lim
n→∞

sup
u∈Bk

Iεn
(
γ(u)

) → sup
u∈Bk

I
(
γ(u)

)
.

Passing to the limit as n → +∞, we deduce that for any k ∈ N

lim
n→∞

cnk ≤ lim
n→∞

lim
u∈Bk

Iεn
(
γ(u)

)
= sup

u∈Bk

I
(
γ(u)

)
.

Since γ is arbitrary, then

lim
n→∞ cnk ≤ ck. (3.3)

On the other hand, for every u ∈ H1
0 (Ω), we have

I(u) = Iεn(u) +

∫
Ω

1

|y|t g(u),

where g(u) := |u|2∗εn (t)

2∗
εn

(t) − |u|2∗(t)

2∗(t) . The function g(r) = r
2∗εn (t)

2∗
εn

(t) − r2
∗(t)

2∗(t) , r > 0,

get it maximum value in r = 1, which implies that

g(r) ≤ 1

2∗εn(t)
− 1

2∗(t)
for all r > 0.

Let γ ∈ Γk,

I
(
γ(u)

) ≤ Iεn
(
γ(u)

)
+

(
1

2∗εn(t)
− 1

2∗(t)

)∫
Ω

1

|y|t

≤ Iεn
(
γ(u)

)
+ C

(
1

2∗εn(t)
− 1

2∗(t)

)
.

It follows from this that

ck ≤ cnk + C

(
1

2∗εn(t)
− 1

2∗(t)

)
.

We get for any k ∈ N
ck ≤ lim

n→∞
cnk . (3.4)

Combining (3.3) with (3.4), we infer that

lim
n→∞ cnk = ck. (3.5)

We have
Iεn (vnk ) = cnk and I

′
εn (vnk ) v

n
k = 0.

From this we obtain(
1

2
− 1

2∗εn(t)

)∫
Ω

|∇vnk |2 dx−μ

(
1

q
− 1

2∗εn(t)

)∫
Ω

|vnk |q dx < cnk .
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Since (cnk)n is bounded, then for all n(
1

2
− 1

2∗εn(t)

)∫
Ω

|∇vnk |2 dx < μ

(
1

q
− 1

2∗εn(t)

)∫
Ω

|vnk |q dx+C.

By Sobolev’s embedding and the fact that q < 2, we get that (vnk )n is bounded
in H1

0 (Ω). Applying Proposition 2.7 we can find a subsequence of (vnk )n,

still denoted by (vnk )n, such that vnk → vk strongly in H1
0 (Ω) , for some

vk ∈ H1
0 (Ω) and I (vk) = ck. Therefore, (vk) is solution of (1.1).

It follows from (3.5) that for every k ∈ N, there exists nk > k such that

|cnk

k − ck| < 1

k
. (3.6)

Let δ ∈ (0, δ0) be a fixed number, where

δ0 := inf
u∈H1

0 (Ω),|u|L2=1

∫
Ω

|∇u|2 dx > 0.

Define

αk := inf
u∈Zk,|u|

L

2∗εnk
(t)

t

=1

∫
Ω

(|∇u|2 − δ|u|q) dx, (3.7)

We will show that, up to a subsequence, αk → +∞ as k → ∞. Since
2∗εnk

(t) < 2∗(t), then the scalar αk can be achieved by a function wk ∈ Zk,

which satisfies

−Δwk = αk
|wk|2

∗
εnk

(t)−2
wk

|y|t + δ|wk|q−2wk.

If αk �→ ∞ as k → ∞, then
∫
Ω
|∇wk|2 dx ≤ C by the choice of δ. From Propo-

sition 2.7, we conclude that (wk)k converges strongly in H1
0 (Ω). Since wk ∈ Zk,

up to a subsequence, we may assume that

wk → 0 in H1
0 (Ω).

By using Hölder’s inequality, we deduce that lim
k→∞

∫
Ω

|wk|2
∗
εnk

(t)
dx = 0, which

is a contradiction due to
∫
Ω
|wk|2

∗
εnk

(t)
dx = 1. Thus

αk → ∞ as k → ∞.

By the Young inequality and Sobolev’s embedding we obtain

Iεnk
(u) ≥ 1

2
‖u‖2 − C [αk]

−
2∗εnk

(t)

2 ‖u‖2
∗
εnk

(t) − 1

4
‖u‖2 − C

=
1

4
‖u‖2 − C [αk]

−
2∗εnk

(t)

2 ‖u‖2
∗
εnk

(t) − C.
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Choosing

rk :=

⎛
⎜⎝ α

2∗εnk
(t)

2

k

2C2∗εnk
(t)

⎞
⎟⎠

1
2∗εnk

(t)−2

.

We obtain that if u ∈ Zk and ‖u‖ = rk,

Iεnk
(u) ≥ 1

4

(
1− 1

2∗εnk
(t)

)⎛
⎜⎝ α

2∗εnk
(t)

2

k

2C2∗εnk
(t)

⎞
⎟⎠

2
2∗εnk

(t)−2

− C.

Since we have that αk → ∞ as k → +∞, then bnk

k → ∞ as k → ∞. By [13,
Theorem 3.5 ], we have that cnk

k ≥ bnk

k and so from (3.6), we get that

lim
k→∞

ck = lim
k→∞

cnk

k = +∞.

The conclusion of (i) of Theorem 1.1 is now obvious. �

T h e p r o o f o f (i i) o f T h e o r e m 1.1. Using the arguments similar to those
of Theorem 3.20 in [13], we will show that for every k ≥ k0, there exist ρk >
rk > 0, independent of n, such that ρk → 0 as k → +∞ and

(a) ank := inf
u∈Zk

‖u‖=ρk

Iεn(u) ≥ 0,

(b) bnk := max
u∈Yk

‖u‖=rk

Iεn(u) < 0,

(c) bk := max
u∈Yk

‖u‖=rk

I(u) < 0,

(d) dnk := inf
u∈Zk

‖u‖≤ρk

Iεn(u) → 0 as k → +∞.

In the interest of keeping this paper self-contained, we sketch here the proof
of the above assertions. First we prove (a). Using Hölder’s inequality and the

Sobolev embedding H1
0 (Ω) ↪→ L

2∗
εn

(t)

t (Ω), there exists 0 < R < 1 such that if
u ∈ H1

0 (Ω) and ‖u‖ ≤ R, then
1

2∗εn(t)
|u|2

∗
εn

(t)

L
2∗εn (t)

t

≤ 1

4
‖u‖2.

For any k ∈ N
∗, we define

βk := sup
u∈Zk

‖u‖=1

|u|q.

It is easy to see that βk → 0 as k → ∞ (for details see [13, Lemma 3.8]).
Then if u ∈ Zk satisfies ‖u‖ ≤ R, we have

Iεnk
(u) ≥ ‖u‖2

4
− μ

q
βq
k‖u‖q. (3.8)
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We choose ρk :=
( 4μβq

k

q

)1/(2−q)
. Since βk → 0 as k → ∞, it follows that ρk → 0

as k → ∞. Let k0 ∈ N
∗ such that ρk ≤ R, for any k ≥ k0. Thus, for k ≥ k0,

u ∈ Zk and ‖u‖ = ρk, we have Iεn(u) ≥ 0 and (a) is proved.

Next we show (b), note that for u ∈ H1
0 (Ω), by the fact that on the finite

dimensional space Yk all norms are equivalent, we have

Iεnk
(u) ≤ 1

2
‖u‖2 − μ

q
‖u‖q. (3.9)

As a consequence of (3.9), for any u∈Yk with ‖u‖=rk, we get that Iεnk
(u)≤0,

provided rk > 0 is small enough, which gives (b). In the same way we obtain
also (c). The proof of (d) follows from the combination of (3.8) and (3.9).
On the other hand, a standard argument shows that the function Iεn satisfies the
(PS)∗c condition with respect to (Yk) (see [13, Theorem 3.20]). So from [13, The-
orem 3.18 (Dual fountain theorem)] that Iεn has a sequence of critical points,
denoted by (un

k )n, moreover
Iεn (un

k) = cnk ∈ [dnk , b
n
k ] .

Since cnk is negatif, we get(
1

2
− 1

2∗εn(t)

)∫
Ω

|∇un
k |2 dx < μ

(
1

q
− 1

2∗εn(t)

)∫
Ω

|un
k |q dx .

By using Sobolev’s embedding, we deduce that (un
k)n is bounded in H1

0 (Ω).
It follows from Proposition 2.7 that we can find a subsequence of (un

k )n, which
strongly converges to a solution uk of (1.1) at level ck, with ck := limn→+∞ cnk .
We claim first that for any k ≥ k0, ck < 0. Indeed, since ∂Bk is compact and
the functionals (Iεn)n are equicontinuous, we derive that

bnk → bk.
It follows that

ck ≤ bk < 0.

Secondly, we claim that lim
k→+∞

ck = 0. In fact, it follows from cnk → ck, for any

every positive integer k ≥ k0, there exists nk > k such that

|cnk

k − ck| < 1

k
. (3.10)

By the Sobolev embedding, we have for any u ∈ Zk and ‖u‖ ≤ ρk

Iεnk
(u) ≥ 1

2
‖u‖2 − C [αk]

−
2∗εnk

(t)

2 ‖u‖2
∗
εnk

(t) − C ‖u‖q

≥ 1

2
ρk

2 − C [αk]
−

2∗εnk
(t)

2 ρk
2∗
εnk

(t) − Cρk
q,

where C is a positive constant. Then for k large enough, we get

cnk

k ≥ dnk

k ≥ 1

2
ρk

2 − C [αk]
−

2∗εnk
(t)

2 ρk
2∗
εnk

(t) − Cρk
q.
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Since ρk → 0 and αk → +∞ as k → ∞, it follows (3.10) that

lim
k→+∞

ck = lim
k→+∞

cnk

k = 0.

As results, we get that I (uk) → 0 as k → ∞ and I (uk) < 0 for any positive
integer k ≥ k0. Finally we conclude that problem (1.1) has infinitely many
solutions (uk)k with negative energy converging to 0 as k → +∞. �
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