
�

�
Mathematical Publications

DOI: 10.2478/tmmp-2023-0002
Tatra Mt. Math. Publ. 83 (2023), 11–24

AUTOMATED FINITE ELEMENT SOLUTION
OF DIFFUSION MODELS FOR IMAGE DENOISING

ABDERRAZZAK BOUFALA1 — EL MOSTAFA KALMOUN2

1Ibn Zohr University, Agadir, MOROCCO

2Al Akhawayn University in Ifrane, MOROCCO

ABSTRACT. We present in this paper a numerical solution of a generalized diffusion-based
image denoising model, using the finite element computing platform FEniCS. The generalized
model contains as special cases three classical denoising techniques: linear isotropic diffu-
sion, total variation, and Perona-Malik method. The numerical simulation using four classical
grayscale images demonstrates the superior performance of the finite element method over the
finite difference method in terms of both the denoising quality and the computational work.

1. Introduction

We consider in this paper the problem of denoising a gray-scale noisy image
u0 : Ω ⊂ R

2 −→ R, which is defined within a rectangular domain Ω. We focus on the
standard degradation model

u0 = u+η, η ∼ N(0,σ2), (1)

where we assume that an original but unknown image u is corrupted by an additive
Gaussian noise η. A denoising process has to remove noise from the observed image
u0 provided by (1) while preserving important features such as edges at best. To solve
this inverse problem, partial differential diffusion equations obtained from regularized
energy-minimization are extensively used. There is a vast amount of literature employ-
ing this approach but the discussion basically depends on one of the two early seminal
models of anisotropic diffusion by Perona and Malik [13], and total variation of Rudin,
Osher and Fatemi [14].

© 2023 Mathematical Institute, Slovak Academy of Sciences.
2020 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: 68U10, 65D18.
K e y w o r d s: image denoising, finite element method, partial differential equations, FEniCs; diffusivity
function; total variation, Perona-Malik method.

Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.

11

A. BOUFALA—E.M. KALMOUN

In this paper, we take up the following nonlinear diffusion as a denoising model

u−u0 =
1

2λ
div

(
1

(ε2 + |∇uσ|2)1−p/2 ∇u

)
in Ω, (2)

∂u
∂n

= 0 on ∂Ω. (3)

Here, uσ = Gσ ∗ u is a smoothed version of the original image u obtained by convo-
lution with a zero mean Gaussian kernel Gσ of variance σ2, and ∂u

∂n = ∇u.n denotes
the normal derivative of u on the image boundary ∂Ω in the outward direction n.
The operators div and ∇ are, respectively, the divergence and gradient operators.
The small positive perturbation ε is included in order to ensure differentiability when
|∇uσ|=0, the parameter λ>0 controls the amount of regularization, and 0≤ p≤2 spec-
ifies the type of the image diffusion process. By imposing the homogeneous Neumann
condition (3), we assume that the image intensity does not change normal to the four
sides of the rectangular domain of the image (zero flux across the boundary).

We let γ : [0,+∞)−→ (0,+∞) defined by

γ(r) =
1

(ε2 + r2)1−p/2

to stand for the diffusivity (edge-stopping) function in (2). When p= 2, we get γ(r)= 1,
and therefore the model reduces to a standard linear isotropic diffusion. On the other
hand, the diffusion coefficient γ(|∇uσ|), for any p �= 2, makes the boundary value
problem (BVP) (2)–(3) non-linear and plays a crucial role in the anisotropic diffusion
process. Because this term is inversely proportional to the norm of the image gradient,
it must help maximizing noise removal within uniform regions of the image while pre-
serving and enhancing image edges. Two classical models are examples of this case
when σ = 0; namely, the Perona-Malik model [13] if p = 0, and the Charbonnier total
variation [5] which corresponds to p = 1.

Equations (2)–(3) are traditionally discretized and solved using the finite difference
method (FDM). For instance, when using an explicit scheme, the iterations can take the
following form

un+1 = un +
1

2λ
div(γ(|∇(un)σ|)∇un) ,

where in this setting both div and ∇ denote now discrete versions of the divergence and
gradient operators. These iterations are equivalent to iterated regularization in which
a series of Tikhonov functionals are iteratively minimized [15]. Recently, there has
been considerable effort to apply the finite element method (FEM) in solving the two
particular cases p= 0 and p= 1 of (2)–(3), see for instance [7,9] for p= 0 and [1,3,4,8]
for p = 1.

12

FINITE ELEMENT FOR IMAGE DENOISING

The purpose of this work is to numerically solve the generalized diffusion model
(2)–(3) by employing the finite element analysis framework provided by the FEniCS
project. It is woth mentioning that FEniCS [6] is a popular open-source computing
platform for automated solution of partial differential equations. FEniCS is available
with high-level Python and C++ interfaces and enables users to easy get started and
quickly convert scientific models into efficient finite element codes. Moreover, FEniCS
provides experienced users as well with powerful capabilities to write advanced codes
with external libaries to have detailed control over the solution process with minimal
programming effort. Our principal aim here is to illustrate the ease of implementation
in numerically solving the image denoising problem (2)–(3) with FEniCS.

The paper consists of four additional sections. In Section 2, we present the varia-
tional formulation and discretization by FEM of the boundary value problem (2)-(3).
In Section 3, we describe the main steps used to implement the discrete variational
formulation of equations (2)–(3) in FEniCS. We provide and discuss the numerical ex-
periments in Section 3, and conclude our work in Section 4. The main steps used to
implement the discrete variational formulation of equations (2)–(3) in FeniCS are de-
scribed in the appendix.

2. Finite element variational formulation and discretization

FEM is a numerical method that involves discretising and solving problems which
are described by partial differential equations (PDEs) or can be formulated as functional
minimization problems using finite dimensional function spaces. These discrete func-
tion spaces are defined by designating the discrete domain (mesh) and the type of basis
functions for the space [16].

Solving the boundary value problem (2)–(3) by the finite element method requires
turning the equation (2) into a variational form [11]. Indeed, in multiplying the equa-
tion (2) by a test function v ∈ V̂ and integrating over Ω, we get

∫

Ω

(u−u0) v dx =
1

2λ

∫

Ω

div [γ (|∇uσ|)∇u]v dx. (4)

We need here to approximate the trial function u ∈ V for some suitable trial and test
spaces V and V̂ .

The technique of integration by parts permits to transform the second-order differen-
tial of u in (4) to a first derivative and take care of the Neumann boundary condition (3):

∫

Ω

div [γ (|∇uσ|)∇u]v dx =
∫

Ω

γ (|∇uσ|)∇2u v dx

=−
∫

Ω

γ (|∇uσ|)∇u.∇v dx+
∫

∂Ω

γ (|∇uσ|) ∂u
∂n

v ds.

13

A. BOUFALA—E.M. KALMOUN

Employing the zero Neumann boundary condition (3), the boundary integral arising
from integration by parts vanishes, and we are led to the following weak form

∫

Ω

(u−u0) v dx =− 1
2λ

∫

Ω

γ (|∇uσ|)∇u ·∇v dx. (5)

The regularity requirement on the trial function u has gone down and that on the test
function v has increased. The Neumann boundary condition (3) enters into (5) and it
would not be required to encode it as part of the trial space. Thus the trial function u
will be in the same function space as the test function v. Now, the variational problem
consists in finding u ∈V such that for all v ∈ V̂

∫

Ω

uv dx+
1

2λ

∫

Ω

γ (|∇uσ|)∇u ·∇v dx =

∫

Ω

u0 v dx. (6)

In order to develop a discrete form of the continuous variational problem (6), we first
divide the image domain Ω into triangles (Lagrange finite elements) and then consider a
discrete function space Vh defined over the created mesh. Finally, the following discrete
variational problem defines our estimate solution u to the boundary value problem (2)-
-(3): find u ∈Vh such that for all v ∈ V̂h

∫

Ω

uv dx+
1

2λ

∫

Ω

γ (|∇uσ|)∇u ·∇v dx =

∫

Ω

u0 v dx. (7)

Given a basis {φ j}N
j=1 for the discrete function space Vh, the approximate solution

has the form u(x,y) = ∑N
j=1 u jφ j(x,y), where the u j represent N unknown coefficients

(degrees of freedom) that must be computed.
We use Picard’s iteration method as an alternative way to handle the nonlinear term

in (7). After the completion of the kth iteration, we compute a new approximation uk+1

in the next iteration such that uk+1 solves the linear variational problem
∫

Ω

uk+1 v dx+
1

2λ

∫

Ω

γ
(
|∇uk

σ|
)

∇uk+1 ·∇v dx =

∫

Ω

u0 v dx, ∀v ∈Vh. (8)

Since (8) is a linear problem in uk+1, we collect all terms on the left-hand side of (8)
in a bilinear form a(u,v), and the right-hand side in a linear form L(v). Henceforth,
we introduce the canonical notation of (8): given an initial guess u0, find uk+1 ∈ Vh
which solves

a(uk+1,v) = L(v), ∀v ∈Vh, (9)
with

a(u,v) =
∫

Ω

uv dx+
1

2λ

∫

Ω

γ
(
|∇uk

σ|
)

∇u ·∇v dx, (10)

14

FINITE ELEMENT FOR IMAGE DENOISING

and
L(v) =

∫

Ω

u0 v dx. (11)

The automated implementation of the discretization and discrete solution of the
equation (9) using FEniCS solver is presented in the appendix.

3. Numerical results

To assess the denoising performance and convergence behaviour of FEM over FDM,
some numerical results are presented in this section. We have considered the Contin-
uous Galerking (CG) method for the finite element discretizations. We denote by CG1
and CG2 the finite element solutions in the spaces of Lagrange functions of degrees 1
and 2, respectively. For CG2 representation, the test images are first interpolated onto
the CG1 space and then projected onto CG2. Our implementation was done in Jupyter
Notebook environment, including the FEniCS part which is achieved using the inverse
problem python library hIPPYlib [17]

A set of four grayscale images are processed: Lena, House, Baboon and Double Gra-
dient images. These images have a resolution of 256×256 and data in the range [0,1]. In
all tests, the images are corrupted by the same Gaussian noise of standard deviation 0.1
and zero mean. Note that the double gradient image is a synthetic image obtained by fill-
ing two concentric squares with opposite linear gradients, and is particularly well suited
to show the weakest and the strongest points of different noise removal algorithms.

FIGURE 1. Original and noisy versions of Lena, House, Baboon, and Double Gradient
images (left to right).

To compare the finite element and finite difference solutions properly, the same nu-
merical and physical parameters are chosen. For image smoothing, a zero mean Gauss-
ian kernel Gσ with standard deviation σ = 0.03 is applied.

15

A. BOUFALA—E.M. KALMOUN

As measurements for the performance of the denoising process we use the peak
signal-to-noise ratio (PSNR) and the normalized mean square error (NMSE) defined by

PSNR(u,uref) = 10 log10

(
Nx ×Ny

||u−uref||2L2(Ω)

)
,

NMSE(u,uref) =
||u−ure f ||2L2(Ω)

||uref||2L2(Ω)

,

where u is the recovered image, uref is the reference image, and Nx×Ny is the area of the
image.

In Figure 1, the noisy images to be tested are shown in the second row. Their PSNR
values are Lena (19.555 dB), House (19.528 dB), Baboon (19.448 dB), and Double
Gradient (20.633 dB). Their original (reference) images are shown in the first row.

FIGURE 2. Denoising results of Lena, using the finite difference method, and
the finite element method in CG1, and in CG2, for Perona-Malik model (p = 0),
Charbonnier total variation (p = 1), and linear isotropic diffusion (p = 2).

In Figures 2-5, we show the denoising results of FDM and FEM approximations using
three models that correspond to three choices of the value of p; namely, Perona-Malik
diffusion model for p = 0, Charbonnier total variation for p = 1, and linear isotropic
diffusion for p = 2. As can be seen, the visual results confirm what we already know
about the three models; in particular, an oversmoothing in case of isotropic diffusion and
edge and texture preservation for the total variation as well as the Perona-Malik model.

16

FINITE ELEMENT FOR IMAGE DENOISING

FIGURE 3. Denoising results of House, using the finite difference method, and
the finite element method in CG1, and in CG2, for Perona-Malik model (p = 0),
Charbonnier total variation (p = 1), and linear isotropic diffusion (p = 2).

Table 1 and Table 2 display the performance comparison between FEM and FDM
in terms of the quality of the denoising process measured by PSNR and NMSE as well as
the computational work given by the number of iterations and more importantly by the
CPU time. By looking at Table 2, there are aspects to be highlighted. On a total of twelve
experiments (four images and three models), FEM has provided a better reconstruction
in all examples except one in the case of the Perona-Malik model (p = 0) when applied
to the Double Gradient image. In this unique case, FDM has performed slightly better
than both CG1 and CG2 only in terms of the denoising quality. When considering the
performance in terms of the computational work, FEM has been always superior than
FDM. The convergence behaviour of FDM and both discretizations of FEM for each
model among the three that are considered in this paper is depicted in Figure 6 and
Figure 7. For the case of linear isotropic diffusion (p= 2), the three algorithms exhibited
similar convergence behaviour regardless of the tested image. The same is also true in
the case of p = 0,1 for the three images Lena, House and Baboon. The convergence
beahviour of CG1 and CG2 was nearly identical for the Double Gradient image; and
although FDM performed slightly better in the case of p = 0, it reached the desired
accuracy after 15 iterations. On the other hand, both CG1 and CG2 needed only three
iterations to reach a similar accuracy.

17

A. BOUFALA—E.M. KALMOUN

FIGURE 4. Denoising results of Baboon, using the finite difference method and
the finite element method in CG1, and in CG2, for Perona-Malik model (p = 0),
Charbonnier total variation (p = 1), and linear isotropic diffusion (p = 2).

Furthermore, if we examine the effect of the polynomial order in the CG element, we
can see that CG2 provided more accurate reconstructions than CG1 in all experiments
but obviously requires a supplementary computational work. As depicted in Table 1,
the overall computational time of CG2 is identical to that of FDM when applying the
linear isotropic model but it is less by a factor of 20 than the time needed for CG1.
For the other two models, the computational performance of CG1 is better than CG2
by a factor of nearly 10.

TABLE 1. Overall performance of Perona-Malik (p = 0), Charbonnier total variation
(p = 1), and linear isotropic diffusion (p = 2) models for the four tested images in
finite difference (FDM) and finite element (CG1 and CG2) discretizations.

FDM CG1 CG2
p PSNR NMSE Time Iter PSNR NMSE Time Iter PSNR NMSE Time Iter
0 28.471 0.080 39.7 27.3 29.539 0.068 1.6 11.5 30.163 0.061 15.0 11.0
1 28.053 0.081 48.2 32.5 29.595 0.066 1.5 8.8 30.317 0.059 16.9 8.3
2 26.695 0.086 6.2 4.3 27.319 0.080 0.3 2.0 28.249 0.071 6.2 2.0

18

FINITE ELEMENT FOR IMAGE DENOISING

FIGURE 5. Denoising results of Double Gradient, using the finite difference method,
and the finite element method in CG1, and in CG2, for Perona-Malik model (p = 0),
Charbonnier total variation (p = 1), and linear isotropic diffusion (p = 2).

TABLE 2. PSNR (dB), NMSE, runtime (s), and number of iterations (iter) for Perona-
Malik model (p = 0), Charbonnier total variation (p = 1), and linear isotropic diffusion
(p = 2), using finite difference (FDM) and finite element (CG1 and CG2) discretiza-
tions. Results for Lena (L), House (H), Baboon (B), and Double Gradient (D) images
(top to bottom).

FDM CG1 CG2
p PSNR NMSE Time Iter PSNR NMSE Time Iter PSNR NMSE Time Iter

L
0 26.221 0.094 43.5 29 28.152 0.075 2.0 14 28.875 0.069 16.7 13
1 26.042 0.096 31.5 21 28.555 0.072 1.7 10 29.243 0.066 15.9 9
2 26.767 0.088 5.9 4 27.416 0.082 0.3 2 28.230 0.075 6.2 2

H
0 28.748 0.064 63.0 44 29.806 0.057 1.5 11 30.488 0.052 14.8 11
1 29.163 0.061 50.2 34 30.552 0.052 1.5 9 31.305 0.048 18.5 9
2 27.647 0.073 5.8 4 28.402 0.067 0.3 2 29.102 0.062 6.3 2

B
0 23.020 0.133 28.9 20 24.567 0.111 2.2 16 25.986 0.095 16.1 14
1 23.019 0.133 19.0 13 24.915 0.107 1.4 9 26.248 0.092 13.4 8
2 24.117 0.117 5.8 4 24.844 0.108 0.3 2 26.284 0.092 6.1 2

D
0 35.894 0.027 23.4 16 35.629 0.028 0.8 5 35.302 0.029 12.4 6
1 33.988 0.034 92.0 62 34.359 0.032 1.3 7 34.470 0.032 19.8 7
2 28.249 0.065 7.4 5 28.613 0.063 0.3 2 29.380 0.058 6.2 2

19

A. BOUFALA—E.M. KALMOUN

FIGURE 6. PSNR convergence curves. Finite difference (FDM) versus finite element
(in CG1 and CG2 representations), for Perona-Malik model (p = 0), Charbonnier total
variation (p = 1), and linear isotropic diffusion (p = 2) (left to right). Results for Lena,
House, Baboon, and Double Gradient images (top to bottom).

FIGURE 7. NMSE convergence curves. Finite difference (FDM) versus finite element
(in CG1 and CG2 representations), for Perona-Malik model (p = 0), Charbonnier total
variation (p = 1), and linear isotropic diffusion (p = 2) (left to right). Results for Lena,
House, Baboon, and Double Gradient images (top to bottom).

4. Conclusion

In this paper, we have treated the automated numerical solution of three diffusion-
based image denoising models; namely, linear isotropic diffusion, total variation and
Perona-Malik method. The partial differential equations in these models have been
solved by using the finite-element software FEniCS. The continuous Galerkin method
has been employed in the finite element discretization with first- and second-order poly-
nomial interpolation, and the two algorithms have been compared to the finite difference

20

FINITE ELEMENT FOR IMAGE DENOISING

FIGURE 8. PSNR convergence curves comparing the perfermance of Perona-Malik
model (p = 0), Charbonnier total variation (p = 1), and linear isotropic diffusion
(p= 2), in CG1 (left), and CG2 (right) finite element representations. Results for Lena,
House, Baboon, and Double Gradient images (top to bottom).

FIGURE 9. NMSE convergence curves. Comparison of Perona-Malik model (p = 0),
Charbonnier total variation (p = 1), and linear isotropic diffusion (p = 2), in CG1
(left), and CG2 (right) finite element representations. Results for Lena, House, Baboon,
and Double Gradient images (top to bottom).

method by processing a set of four classical grayscale images: Lena, House, Baboon,
and Double Gradient. The experiments have shown the superior performance of the
finite element method in terms of both denoising performance and the computational
work. In particular, the quadratic finite element solution has performed better than the
linear one in terms of the denoising quality; however, the latter has been considerably
faster than the former. The evidence from this work confirms the idea that the FEniCS
environment will be highly attractive for implementing image-processing algorithms
and testing their different aspects with minimal effort.

21

A. BOUFALA—E.M. KALMOUN

REFERENCES

[1] ALKÄMPER, M.—LANGER, A.: Using DUNE-ACFem for non-smooth minimization of bounded vari-
ation functions, Archive of Numerical Software 5 (2017), 3–19.

[2] ALNÆS, M.—BLECHTA, J.—HAKE, J.—JOHANSSON, A.— KEHLET, B.—LOGG, A.—
RICHARDSON, C.—RING, J.—ROGNES, M. E. —WELLS, G. N.: The FEniCS project version 1.5,
Archive of Numerical Software 3 (2015).

[3] BARTELS, S.: Total variation minimization with finite elements: convergence and iterative solution,
SIAM Journal on Numerical Analysis 50 (2012), 1162–1180.

[4] CHAMBOLLE, A.—POCK, T.: Approximating the total variation with finite differences or finite ele-
ments, In: Handbook of Numerical Analysis, Vol. 22, Elsevier, 2021. pp. 383–417.

[5] CHARBONNIER, P.—BLANC-FERAUD, L.—AUBERT, G.—BARLAUD, M.: Two deterministic
half-quadratic regularization algorithms for computed imaging, In: Proceedings of 1st International
Conference on Image Processing, IEEE, Vol. 2, 1994, pp. 168–172.

[6] FENICS PROJECT: . FEniCS project 2019.1.0. 2019 [Online; accessed on 05-Mai-2021],
https://fenicsproject.org/

[7] HANDLOVIČOVÁ, A.—MIKULA, K.—SGALLARI, F.: Variational numerical methods for solving
nonlinear diffusion equations arising in image processing, Journal of Visual Communication and Image
Representation 13 (2002), 217–237.

[8] HINTERMÜLLER, M.—RINCON-CAMACHO, M.: An adaptive finite element method in L2-TV-
-based image denoising, Inverse Problems & Imaging 8 (2014), no. 3, 685—711.

[9] HJOUJI, A.—EL-MEKKAOUI, J.—JOURHMANE, M.: Mixed finite element method for nonlinear
diffusion equation in image processing, Pattern Recognition and Image Analysis 29 (2019), 296–308.

[10] LANGTANGEN, H. P.—LOGG, A.: Solving PDEs in Python: the FEniCS Tutorial I. Springer Nature,
2017.

[11] LANGTANGEN, H. P.—MARDAL, K.-A.: Introduction to Numerical Methods for Variational Prob-
lems. Springer International Publishing, Cham, 2019.

[12] LOGG, A.—MARDAL, K.-A.—WELLS, G.: Automated Solution of ifferential Equations by the Finite
Element Method: The FEniCS Book Vol. 84. Springer Science & Business Media, 2012.

[13] PERONA, P.—MALIK, J.: Scale-space and edge detection using anisotropic diffusion, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 12 (1990), 629–639.

[14] RUDIN, L. I.—OSHER, S.—FATEMI, E.: Nonlinear total variation based noise removal algorithms,
Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991).
Phys. D: 60 (1992), no. 1, 259–268.

[15] SCHERZER, O.—WEICKERT, J.: Relations between regularization and diffusion filtering, J. Math.
Imaging and Vision 12 (2000), no. 1, 43–63.

[16] THE DEFELEMENT CONTRIBUTORS: . DefElement: an encyclopedia of finite element definitions.
[Online; accessed 09-March-2021]. https://defelement.com, 2021.

[17] VILLA, U.—PETRA, N.—GHATTAS, O.: hIPPYlib: An Extensible Software Framework for Large-
Scale Inverse Problems Governed by PDEs: Part I: Deterministic Inversion and Linearized Bayesian
Inference, ACM Transactions on Mathematical Software (TOMS) 47 (2021), 1–34.

22

https://fenicsproject.org/
https://defelement.com

FINITE ELEMENT FOR IMAGE DENOISING

Appendix A. Automated implementation in FEniCS

We describe the main steps used to implement the discrete variational problem (9)
in FEniCS [2, 10–12]. This description contains the definitions of the finite element
mesh and the discrete function spaces Vh and V̂h, the generation of two finite element
functions ure f and u0 that represent the true image and the noisy image respectively,
and the definitions of the bilinear form (10) and the linear form (11). Thereafter, the
finite element solution u is computed.

The FEniCS program normally starts with this line of Python code

from dolfin import *

This statement imports the key classes that we need to define and solve the problem
(9); namely, RectangleMesh, FunctionSpace, TrialFunction, TestFunction, Function, in-
terpolate, etc, from the DOLFIN library, which is a Python package that includes C++
classes for the finite element method.

Given the image size Nx×Ny, the line

mesh = RectangleMesh(Point(0,0), Point(Nx-1, Ny-1), Nx-1, Ny-1)

defines a uniform triangular mesh over the 2D rectangular image domain Ω, where
Nx×Ny is the total number of vertices.

Once the mesh has been given, we have opted to employ the discrete function space
Vh of Lagrange functions of degree r:

Vh = FunctionSpace(mesh, “Lagrange”, r)

The degree r = 1 corresponds to linear Lagrange elements, which are triangles such
their three vertices determine the nodes, while with degree r = 2, we get quadratic La-
grange elements, which are triangles with nodes at the three vertices and the midpoints
of the edges.

The following lines define the trial and test functions:

u = TrialFunction(V)
v = TestFunction(V)

Given a dof-ordred (see [10]) noisy image, we turn it into a finite element function
u0 by simple interpolation:

23

A. BOUFALA—E.M. KALMOUN

u0 = interpolate(NoisyImage, Vh)

In the code, the solutions uk and uk+1 are called u k and u. We can now define the
problem (9) by specifying the bilinear and linear forms:

a = u*v*dx+alpha*dot(gamma k*grad(u), grad(v))*dx
L = u0*v*dx

where alpha is equal to 2/λ and gamma k is given by γ(|∇uσ|).
Given an approximation u k from iteration k, the following lines serve to solve the

variational problem (8) and hence obtain a new approximation u at iteration k+1:

u = Function(V)
Pb = LinearVariationalProblem(a, L, u)
sol = LinearVariationalSolver(Pb)
sol.parameters[“linear solver”] = “gmres”
sol.parameters[“preconditioner”] = “ilu”
sol.solve()

To start the iterations we choose u 0 = u0 as initial guess. The parameters can be ad-
justed to control the solution process. gmres and ilu refer to Generalized minimal resid-
ual method and Incomplete LU factorization.

Received November 1, 2022 Abderrazzak Boufala
LISTI lab, ENSA, FSJES AM
Ibn Zohr University
Agadir 80000
MOROCCO
E-mail: a.boufala@uiz.ac.ma

El Mostafa Kalmoun
School of Science and Engineering
Al Akhawayn University in Ifrane
PO Box 104
Ifrane 53000
MOROCCO
E-mail: E.Kalmoun@aui.ma

24

	1. Introduction
	2. Finite element variational formulation and discretization
	3. Numerical results
	4. Conclusion
	REFERENCES
	Appendix A. Automated implementation in FEniCS

