

ON THE GEOMETRIC DETERMINATION OF EXTENSIONS OF NON-ARCHIMEDEAN ABSOLUTE VALUES

Mohamed Faris — Lhoussain El Fadil

Sidi Mohamed Ben Abdellah University, Fez, MOROCCO

ABSTRACT. Let $| \ |$ be a discrete non-archimedean absolute value of a field K with valuation ring \mathcal{O} , maximal ideal \mathcal{M} and residue field $\mathbb{F} = \mathcal{O}/\mathcal{M}$. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial $F \in \mathcal{O}[x]$. Assume that $\overline{F} = \overline{\phi}^l$ in $\mathbb{F}[x]$ for some monic polynomial $\phi \in \mathcal{O}[x]$ whose reduction modulo \mathcal{M} is irreducible, the ϕ -Newton polygon $N_{\phi}^-(F)$ has a single side of negative slope λ , and the residual polynomial $R_{\lambda}(F)(y)$ has no multiple factors in $\mathbb{F}_{\phi}[y]$. In this paper, we describe all absolute values of L extending $| \ |$. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.

1. Introduction

Let $K = \mathbb{Q}(\alpha)$ be an algebraic number field with $\alpha \in \mathbb{Z}_K$ the ring of algebraic integers of K. Let F be the minimal polynomial of α over the field \mathbb{Q} . The determination of the prime ideal decomposition in \mathbb{Z}_K of any rational prime p is one of the most important problems in algebraic number theory and is related to the factorization of the polynomial \overline{F} in $\mathbb{F}_p[x]$. Let $\overline{F} = \prod_{i=1}^r \overline{\phi_i}^{e_i}$ be the factorization of \overline{F} in $\mathbb{F}_p[x]$, where $\overline{\phi_1}, \ldots, \overline{\phi_r}$ are distinct irreducible polynomials over \mathbb{F}_p and $\phi_i \in \mathbb{Z}[x]$ monic. In 1878, Dedekind proved that if p does not divide ($\mathbb{Z}_K : \mathbb{Z}[\alpha]$), then $p\mathbb{Z}_K = \prod_{i=1}^r \mathfrak{p}_i^{e_i}$, where $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ are distinct prime ideals of \mathbb{Z}_K with $\mathfrak{p}_i = p\mathbb{Z}_K + \phi_i(\alpha)\mathbb{Z}_K$ having residual degree equal to deg ϕ_i (See [2, Theorem 4.8.13]). Dedekind also gave a criterion to test whether p divides the index ($\mathbb{Z}_K : \mathbb{Z}[\alpha]$) (see [2, Theorem 6.1.4], [7]). In 1894,

^{© 2023} Mathematical Institute, Slovak Academy of Sciences.

²⁰²⁰ Mathematics Subject Classification: 12E25,12E99, 13A18.

Keywords: extensions of non-archimedean absolute value, Newton polygon, residual polynomial.

^{©0©©} Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.

Hensel developed a powerful approach by showing that the prime ideals of \mathbb{Z}_K lying over p are in one-to-one correspondence with the monic irreducible factors of F over the field \mathbb{Q}_p of p-adic numbers and that the ramification index together with the residual degree of a prime ideal of \mathbb{Z}_K lying over p are the same as those of a simple extension of \mathbb{Q}_p obtained by adjoining a root of the corresponding irreducible factor of F belonging to $\mathbb{Q}_p[x]$. Keeping in view Hensel's result in 1928, Ore [13] introduced a new technique which generalizes Dedekind's criterion; Namely, Newton polygon techniques which enables us to get the factorization of $p\mathbb{Z}_K$. By virtue of Hensel's Lemma, the factorization of \overline{F} in $\mathbb{F}_p[x]$ leads to a factorization $F = F_1 \cdots F_r$ over the ring \mathbb{Z}_p of p-adic integers with $\overline{F}_i = \overline{\phi}_i^{e_i}$ in $\mathbb{F}_p[x]$. For this purpose, he considered the ϕ_i -Newton polygon of F_i for each i, having t_i sides with negative slope which leads to a factorization of F_i into t_i factors, say $F_i = F_{i_1} \cdots F_{it_i}$ in $\mathbb{Z}_p[x]$. Moreover, to each side S of slope λ of the ϕ_i -Newton polygon of F_i , he associated a polynomial $R_{\lambda}(F_i)(y)$ over the finite field $\mathbb{F}_{\phi_i} := \frac{\mathbb{F}_p[x]}{(\phi_i)}$ in an indeterminate y. The factorization of the associated polynomial $R_{\lambda}(F_i)(y)$ over \mathbb{F}_{ϕ_i} provides a further factorization of the factor of F_i corresponding to the side S (for more details on Newton polygon see below and [5]). Finally, Ore showed that if for some i, all these polynomials $R_{\lambda_i}(F_i)(y)$ corresponding to various sides S_j , $1 \leq j \leq t_i$, of the ϕ_i -Newton polygon of F_i have no multiple factor, say $R_{\lambda_j}(F_i)(y)$ splits into n_{ij} distinct irreducible factors over \mathbb{F}_{ϕ_i} , then all the $\sum_{j=1}^{t_i} n_{ij}$ factors of F_i obtained in this way are irreducible over \mathbb{Q}_p . Further, the slopes of the sides of the ϕ_i -Newton polygon of F_i and the degrees of the irreducible factors of $R_{\lambda}(F_i)(y)$ over \mathbb{F}_{ϕ_i} for S ranging over all the sides of such a polygon lead to the explicit determination of the residual degrees and the ramification indices of all those prime ideals of \mathbb{Z}_K lying over p which correspond to the irreducible factors of F_i .

Non-archimedean absolute values are useful in non-archimedean analysis, *p*-adic differential equations, *p*-adic series, *p*-adic analytic number theory, and *p*-adic analytic geometry ([8], [9], [10], [14], [11]). Several authors studied the extensions of any rank one discrete absolute value. In this paper, our aim is to extend the scope of non-archimedean absolute value when the base field is an arbitrary field *K* with a discrete non-archimedean absolute value | |, where \mathcal{O} is the valuation ring of | |, \mathcal{M} is its maximal ideal, and $\mathbb{F} = \mathcal{O}/\mathcal{M}$ is its residue field. Let $F \in \mathcal{O}[x]$ be a monic irreducible polynomial such that $\overline{F} = \overline{\phi}^{l}$ in $\mathbb{F}[x]$ for some monic polynomial $\phi \in \mathcal{O}[x]$ whose reduction modulo \mathcal{M} is irreducible, the ϕ -Newton polygon $N_{\phi}^{-}(F)$ has a single side of negative slope λ , and the residual polynomial $R_{\lambda}(F)(y)$ has no multiple factors in $\mathbb{F}_{\phi}[y]$. The main motivation behind this work is the result given in Bourbaki (see [12, $N^{o} : 7$, page: 149, Proposition: 10]) which shows that a non-archimedean absolute value extends, to any Galois extension L of finite degree, in a unique way when the the base field is complete and non-discrete for | |. This absolute value is given by

$$|\beta|_L = \left(|N_{L/K}(\beta)|\right)^{\frac{1}{n}}$$

for every $\beta \in L$, where n = [L : K] and $N_{L/K}$ is the norm of L over K. The main goal of this paper is to study the case where K is not necessarily Henselian and L/K is a simple algebraic extension which is not necessarily Galois. Some illustrating examples are also given, too.

2. Preliminaries

Recall that a valued field is the given of a pair (K, | |), where K is a field and || is an absolute value of K, that is a mapping ||: $K \longrightarrow \mathbb{R}^+$ satisfying the following properties:

- (1) |x| = 0 if and only if x = 0,
- (2) |xy| = |x||y|,
- (3) $|x+y| \le |x|+|y|$

for every x, y in K.

If the third property is replaced by an ultrametric one, namely; $|x + y| \le \max\{|x|, |y|\}$, then the absolute value is called non-archimedean.

In this paper, we fix a valued field (K, | |) with | | a non-archimedean absolute value which we simply call in the rest of the article absolute value. Let L be a field extension of K, and $| |_L$ an absolute value of L extending | |. Consider the sets $\Gamma = |K^*| = \{|x|, x \in K^*\}$ and $\Gamma_{||L} = |L^*|_L = \{|x|_L, x \in L^*\}$. These sets are abelian totally ordered groups where Γ is a subgroup of $\Gamma_{||L}$. The index of Γ in $\Gamma_{||L}$, denoted $\mathfrak{e}(||L/||) = (\Gamma_{||L} : \Gamma)$, is called the ramification index of the extension $||_L$ above ||. In the same context the residue degree of $||_L$ over || is the degree $[\mathbb{F}_{||L} : \mathbb{F}]$ denoted by $\mathfrak{f}(||L/||)$.

Consider also the following sets: $\mathcal{O} = \{x \in K, |x| \leq 1\}, \mathcal{M} = \{x \in K, |x| < 1\}$. It is well Known that that \mathcal{O} is a ring of valuation called the valuation ring of (K, | |) and \mathcal{M} is its maximal ideal, hence $\mathbb{F} = \mathcal{O}/\mathcal{M}$ is a field, called the residue field of (K, | |). When \mathcal{M} is a principal ideal generated by an element π , the absolute value | | is called discrete, and if the Krull dimension of \mathcal{O} is 1, we say that | | is of rank one.

Remarks.

(1) Let $| : K \longrightarrow \mathbb{R}^+$ be an absolute value and $\nu : K \longrightarrow \mathbb{R}$ the map defined by

$$\nu(x) = -\ln(|x|)$$
 for all $x \in K^*$.

Then ν satisfies the first 2 axioms of a valuation but not necessarily the third one. We say that ν is a Krull valuation of K if and only if $| \ |$ is non-archimedean absolute value. In this case ν is called the Krull valuation associated to $| \ |$. Moreover, if ν of rank one discrete valuation we say also that $| \ |$ is of rank one discrete absolute value. In treating non-archimedean absolute value $| \ |$, it is convenient to replace |a| by the related "exponential" value $e^{-\nu(a)}$, for every $a \in K$.

- (2) Every absolute value | | on K induces a topology on K. The completion of (K, | |) will be denoted by $(\hat{K}, | |)$.
- (3) Every rank one valued field (K, | |) allows a unique algebraic extension, up to value-preserving isomorphism, that satisfies Hensel's Lemma. This extension is denoted by K^h and called the henselization of the given valued field. Further, K^h is the separable closure of K in the completion \hat{K} with respect to | |.

Let ν be the discrete Krull valuation associated to $| |, \mathcal{O}_{\nu}$ its valuation ring and M_{ν} its maximal ideal, then $\mathcal{O}_{\nu} = \mathcal{O}, M_{\nu} = \mathcal{M}$, and $\mathbb{F}_{\nu} = \mathbb{F}$. By normalization, we can assume that $\nu(K^*) = \mathbb{Z}$, and $\nu(\pi) = 1$. Hence $|K^*| = \{\dots, e^{-2}, e^{-1}, 1, e, e^2, \dots\}$.

Let $(\hat{K}, \hat{\nu})$ be the completion of (K, ν) , $\mathcal{O}_{\hat{\nu}}$ its valuation ring and $M_{\hat{\nu}}$ its maximal ideal. It is well known that $\Gamma_{\hat{\nu}} = \Gamma_{\nu}$, $M_{\hat{\nu}}$ is a principal ideal of $\mathcal{O}_{\hat{\nu}}$ generated by π , and $\mathbb{F}_{\hat{\nu}} \simeq \mathbb{F}_{\nu}$. Denote also by $\hat{\nu}$ the Gauss's extension of ν to the field $\hat{K}(x)$ defined by

$$\hat{\nu}(P) = \min\{\hat{\nu}(a_i), \ i = 0, \dots, n\}$$

for every polynomial $P = \sum_{i=0}^{n} a_i x^i \in \hat{K}[x]$, and extend $\hat{\nu}$ to $\hat{K}(x)^*$ by $\hat{\nu}(A/B) = \hat{\nu}(A) - \hat{\nu}(B)$ for every $(A, B) \in \hat{K}[x] \times \hat{K}[x]^*$. The corresponding absolute value of the Gauss's valuation is called the infinite absolute value and it is defined by

$$| |_{\infty} : \hat{K}[x] \longrightarrow [0, +\infty[,$$
$$P = \sum_{i=0}^{n} p_i x^i \mapsto |P|_{\infty} = \max\{|p_i|, i = 0, \dots, n\}$$

and extend $| \mid_{\infty}$ to $hat K(x)^*$ by

$$\left|\frac{P}{Q}\right|_{\infty} = \frac{|P|_{\infty}}{|Q|_{\infty}}, \text{ for every } (P,Q) \in \hat{K}[x] \times \hat{K}[x]^*.$$

Let $\phi \in \mathcal{O}_{\hat{\nu}}[x]$ be a monic polynomial whose reduction $\overline{\phi}$ modulo $M_{\hat{\nu}}$ is irreducible. Let $\mathbb{F}_{\phi} = \mathcal{O}_{\nu}[x]/(\pi, \phi) \cong \mathbb{F}_{\nu}[x]/(\overline{\phi})$ be the associated residue field. For every polynomial $P \in \mathcal{O}_{\hat{\nu}}[x]$, let $P = p_n \phi^n + p_{n-1} \phi^{n-1} + \cdots + p_1 \phi + p_0$ be the ϕ -expansion of P. This is reached by the Euclidean division of P by successive powers of ϕ . So $p_i \in \mathcal{O}_{\hat{\nu}}[x]$ with $\deg(p_i) < \deg(\phi)$ for $i = 0, \ldots, n$.

GEOMETRIC DETERMINATION OF EXTENSIONS OF NON-ARCHIMEDEAN VALUES

If $p_n \neq 0$, then the integer n is called the ϕ -degree of P. The ϕ -Newton polygon $N_{\phi}(P)$ of P with respect to the valuation ν is the polygonal path consisting of the lower edges of positive lengths S_1, \ldots, S_t of the convex hull of the set of points $(i, \nu(p_i))$ in the Euclidean plane with $\nu(a_i) < \infty, i = 0, \dots, n$, where the edges S_j are ordered by increasing slopes. We call each edge a side of $N_{\phi}(P)$ and write $N_{\phi}(P) = S_1 + \cdots + S_t$. For every $j = 1, \ldots, t$, let l_j be the length of the projection of S_j on the x-axis (which is called the length of S_j), $H_j = H(S_j)$ the length of the projection of S_j on the y-axis (which we call the height of S_j), and $d_j = d(S_j) = \gcd(l_j, H_j)$ is called the degree of S_j . Letting $\mathbf{e}_j = \frac{l_j}{d_j}$ and $\mathbf{h}_j = \frac{H_j}{d_j}$. It follows that \mathbf{e}_j and \mathbf{h}_j are two coprime positive integers and $\lambda_j = -\frac{\mathbf{h}_j}{\mathbf{e}_j}$ is the slope of S_j . The part of $N_{\phi}(P)$ consisting of the polygon whose sides are those consecutive sides of $N_{\phi}(P)$ of negative slopes is called the principal ϕ -Newton Polygon of P denote $N_{\phi}^{-}(P)$. For every $\lambda \in \mathbb{Q}^{-}$, we call the largest segment of $N_{\phi}(P)$ of slope λ the λ -component of P. It is reduced to the end point of S_t if $\lambda > \lambda_j$ for every $j = 1, \ldots, t$, to the initial point of S_1 if $\lambda_j > \lambda$ for every $j = 1, \ldots, t$, and to the end point of S_{j_*} (which coincides with the initial point of S_{j_*+1}) if $\lambda_{j_*} < \lambda < \lambda_{j_*+1}$, where $j_* = \max\{j = 1, \ldots, t-1 \mid \lambda_j < \lambda\}$. Let $\lambda = -\frac{h}{e} \in \mathbb{Q}^-$ for some coprime integers e and h, and S be the λ -component of $N_{\phi}(P)$. Let (s, u) be the initial point of S, l its length, and $d = \frac{l}{e}$ its degree. For every $i = 0, \ldots, l$, define the residue coefficient $t_i \in \mathbb{F}_{\phi}$ associated to S, by $t_i = 0$ if $(i, \nu(p_i))$ lies strictly above S, and $t_i = \left(\frac{p_i}{\pi^{\nu(p_i)}}\right)$ if $(i, \nu(p_i))$ lies on S. Remark that the only points of integer coordinates are $(s, u), (s + e, u - h), \dots, (s + de, u - dh)$. We attach to S the residual polynomial $R_{\lambda}(P)(y) \in \mathbb{F}_{\phi}[y]$ defined by $R_{\lambda}(P)(y) = \sum_{i=0}^{d} c_{i}y^{i}$ with $c_i = t_{s+ie}$, for every $i = 0, \ldots, d$. For more details we refer to [6] for Newton Polygon over \mathbb{Z}_p and [5] for rank one discrete valuation.

The following Theorem plays a key role to prove our main results. It establishes a one-to-one correspondence between extensions of $| \cdot |$ to L and the irreducible factors of F in $\hat{K}[x]$. In particular, if $(K, | \cdot |)$ is a complete field then there is a unique extension of $| \cdot |$ to any algebraic extension of K.

THEOREM 2.1 ([3], Theorem 2.1). Let $L = K(\alpha)$ be a simple extension generated by a root $\alpha \in \overline{K}$ of a monic irreducible polynomial $F \in K[x]$, and let $F = \prod_{i=1}^{t} F_i^{l_i}$ be the factorization into powers of monic irreducible factors in $K^h[x]$. Then $l_i = 1$ for every $i = 1, \ldots, t$ and there are exactly t distinct absolute values $| l_1, \ldots, and | l_t$ of L extending | l. Furthermore, for every absolute value $| l_i$ of L associated to the irreducible factor F_i , we have

$$|P(\alpha)|_i = |P(\alpha_i)|_{\overline{K^h}},$$

where $| |_{\overline{K^h}}$ is the unique absolute value of an algebraic closure $\overline{K^h}$ of K^h extending | | and $\alpha_i \in \overline{K}$ is a root of F_i .

3. Main results

LEMMA 3.1. Let (K, | |) be a valued field provided by a discrete non-archimedean absolute value | |. Let $F \in \mathcal{O}[x]$ be a monic irreducible polynomial. Assume that $\overline{F} = \overline{\phi}^l \in \mathbb{F}[x]$ for some monic polynomial $\phi \in \mathcal{O}[x]$ whose reduction is irreducible in $\mathbb{F}[x]$ and for some natural integer $l, N_{\phi}^-(F) = S$ has a single side of a negative finite slope λ , and $R_{\lambda}(F)(y)$ is a power of a monic irreducible polynomial $\psi(y)$ in $\mathbb{F}_{\phi}[y]$. Let $\gamma = \frac{\phi(\alpha)^{\mathbf{e}}}{\pi^{\mathbf{h}}}$, where $\lambda = -\frac{\mathbf{h}}{\mathbf{e}}$ for some coprime integers \mathbf{e} and \mathbf{h} . Then the polynomial $\psi(y)$ is the minimal polynomial of the element $\overline{\gamma}$ over \mathbb{F}_{ϕ} .

THEOREM 3.2. Under the hypotheses of Lemma 3.1. Let $| |_L$ be an absolute value of L extending | |, then

$$|P(\alpha)|_{L} \le \max\{|p_{i}(x)|_{\infty} \cdot e^{i\lambda}, \quad i = 0, \dots, n\}$$

$$\tag{1}$$

for any polynomial $P = \sum_{i=0}^{n} p_i \phi^i \in \mathcal{O}[x]$ with $\deg(p_i) < \deg(\phi)$ for every $i = 0, \ldots, n$. The equality holds if and only if $\psi(y)$ does not divide $R_{\lambda}(P)(y)$.

COROLLARY 3.3. Under the above hypotheses of Theorem 3.2 assume that $R_{\lambda}(F)(y)$ is a monic irreducible polynomial of $\mathbb{F}_{\phi}[y]$, then there is a unique absolute value $| \mid_{L}$ of L extending $| \mid$ such that

$$|P(\alpha)|_L = \max\{|p_i(x)|_{\infty} \cdot e^{i\lambda}, \quad i = 0, \dots, n\}$$

$$\tag{2}$$

for every polynomial $P = \sum_{i=0}^{n} p_i \phi^i \in K[x]$ such that $\deg p_i < \deg \phi$ and $\deg P < \deg F$.

THEOREM 3.4. Under the hypotheses of the Theorem 3.2, we have the following

- (1) For every absolute value $| |_L$ of L extending | |, \mathbf{e} divides the ramification index $\mathbf{e}(| |_L/| |)$ and $m = \deg \phi$ divides the residue degree $\mathfrak{f}(| |_L/| |)$.
- (2) If $R_{\lambda}(F)(y)$ is irreducible over \mathbb{F}_{ϕ} , then the ramification index and the residual degree of the absolute value $|\mid_{L}$ of L extending $|\mid$ satisfy : $\mathfrak{e}(\mid |L/\mid |) = \mathfrak{e}$ and $\mathfrak{f}(\mid |L/\mid |) = d \cdot m$ where $d = \frac{l}{\mathfrak{e}}$.

COROLLARY 3.5. Under the assumptions of Theorem 3.2, assume that $R_{\lambda}(F)(y) = \prod_{i=1}^{t} \psi_i(y)$ is the factorization of $R_{\lambda}(F)(y)$ into a product of distinct irreducible polynomials $\psi_i(y)$ in $\mathbb{F}_{\phi}[y]$. Then there exists exactly t absolute values $||_1, \ldots, ||_t$ of L extending ||. Moreover,

(i) For every polynomial P with ϕ -expansion $\sum_{j=0}^{n} p_j \phi^j \in K[x]$ such that $\psi_i(y)$ does not divide $R_\lambda\left(\frac{P}{\pi^{\nu(P)}}\right)(y)$, we have

$$P(\alpha)|_{i} = \max\left\{|p_{j}(x)|_{\infty} \cdot e^{j\lambda}, \quad j = 0, \dots, n\right\}.$$
(3)

(ii) $\mathfrak{e}(||i/||) = \mathfrak{e}$ and $\mathfrak{f}(||i/||) = \deg \psi_i \cdot \deg \phi$ for every $i = 1, \ldots, t$.

4. Proofs of the main results

Proof of Lemma 3.1. By [4, Lemma 3.6] the homomorphism $\mathcal{O}[x] \hookrightarrow \mathbb{F}_{||_L}$ defined by $P \mapsto \overline{P(\alpha)}$ induces the following injective homomorphism $\mathbb{F}_{\phi} \hookrightarrow \mathbb{F}_{||_{L}}$ defined by $\overline{P} \mapsto \overline{P(\alpha)}$. Hence, \mathbb{F}_{ϕ} is identified with a subfield of $\mathbb{F}_{||_{L}}$, and so we can say that any residual polynomial has its residual coefficients in the field $\mathbb{F}_{||_L}$.

Let $F = \sum_{i=0}^{l} a_i \phi^i \in \mathcal{O}[x]$ be the ϕ -expansion of the polynomial F, then

So

$$\sum_{i=0}^{l} a_i(\alpha)\phi(\alpha)^i = 0.$$

$$\sum_{(i,\nu(a_i))\in S} a_i(\alpha)\phi(\alpha)^i + \sum_{(i,\nu(a_i)) \text{ above } S} a_i(\alpha)\phi(\alpha)^i = 0.$$

(see Figure 1).

The unique points with integer coordinates are $(0, \nu(a_0)), (\mathbf{e}, \nu(a_0) - \mathbf{h}), \ldots$ $\dots, (de = l, 0)$. Then 1

$$\sum_{i=0}^{i} a_{i}(\alpha)\phi(\alpha)^{i} + \sum_{i=0}^{i} a_{i}(\alpha)\phi(\alpha)^{i} = 0.$$

e divides i e does not divide i

0

As $d = \frac{l}{e}$, we get

$$\sum_{i=0}^{d} a_{i\mathbf{e}}(\alpha) (\phi(\alpha)^{\mathbf{e}})^{i} + \sum_{\substack{i=1\\i \notin \mathbf{e} \cdot \mathbb{N}}}^{l-1} a_{i}(\alpha) \phi(\alpha)^{i} = 0$$

By factoring by $\pi^{d\mathbf{h}}$, we get

$$\sum_{i=0}^{d} \frac{a_{i\mathbf{e}}(\alpha)}{\pi^{(d-i)\mathbf{h}}} \left(\frac{\phi(\alpha)^{\mathbf{e}}}{\pi^{\mathbf{h}}}\right)^{i} + \sum_{\substack{i=1\\i \notin \mathbf{e} \cdot \mathbb{N}}}^{l-1} \frac{a_{i}(\alpha)\phi(\alpha)^{i}}{\pi^{d\mathbf{h}}} = 0$$
(4)

Since $N_{\phi}^{-}(F) = S$ is a single side of slope $\lambda = -\frac{\mathbf{h}}{\mathbf{e}}, \nu(a_{ie}(x)) \geq \lambda(i\mathbf{e}-l)$ and so $|a_{ie}(x)|_{\infty} \leq e^{\lambda(l-ie)}$, thus $|a_{ie}(\alpha)|_{L} \leq e^{\lambda(l-ie)}$. Hence $\left|\frac{a_{ie}(\alpha)}{\pi^{(d-i)h}} \left(\frac{\phi(\alpha)^{e}}{\pi^{h}}\right)^{i}\right|_{L} \leq 1$. Therefore $a_{i}(\alpha) (\phi(\alpha)^{e})^{i}$

$$\frac{d_{ie}(\alpha)}{\pi^{(d-i)h}} \left(\frac{\phi(\alpha)}{\pi^{h}}\right) \in \mathcal{O}_{||_{L}}, \tag{5}$$

for every i = 0, ..., d. If **e** does not divide i, then $\nu(a_i) > \lambda(i - l)$ and so $|a_i(x)|_{\infty} < e^{\lambda(l-i)}$. Thus $\left|\frac{a_i(\alpha)\phi(\alpha)^i}{\pi^{dh}}\right|_L < 1$. Therefore

$$\frac{a_i(\alpha)\phi(\alpha)^i}{\pi^{d\mathbf{h}}} \in M_{||_L},\tag{6}$$

From equations (4), (5), and (6), one deduces that

$$\sum_{i=0}^{d} \frac{a_{i\mathbf{e}}(\alpha)}{\pi^{(d-i)\mathbf{h}}} \left(\frac{\phi(\alpha)^{\mathbf{e}}}{\pi^{\mathbf{h}}}\right)^{i} = 0 \pmod{M_{||_{L}}}.$$

Hence $R_{\lambda}(F)(\overline{\gamma}) = 0$, and so $\psi(\overline{\gamma}) = 0$.

FIGURE 1. ϕ -Newton polygon of F.

Proof of Theorem 3.2. As $P = \sum_{j=0}^{n} p_j \phi^j \in \mathcal{O}[x]$, we have

$$\begin{split} |P(\alpha)|_L &\leq \max\left\{ |p_j(\alpha)|_L \cdot |\phi(\alpha)|_L^j, \ j = 0, \dots, n \right\}.\\ \text{a 3.6] and [4, Theorem 3.10], we have} \\ |P(\alpha)|_L &\leq \max\left\{ |p_j(x)|_\infty \cdot e^{j\lambda}, \ j = 0, \dots, n \right\}. \end{split}$$
(7)

Now, suppose that $|P(\alpha)|_L < \max\{|p_j(x)|_\infty \cdot e^{j\lambda}, j = 0, \ldots, n\}$, and show that $R_{\lambda}(P)(\overline{\gamma}) = 0$ where $\gamma = \frac{\phi(\alpha)^{\circ}}{\pi^{h}}$. Let (s, u) be the initial point of the λ --component T of the ϕ -Newton polygon of P, t = l(T) its length, $\delta = d(T) = \frac{t}{e}$ its degree, and $(s + \delta \mathbf{h}, u - \delta \mathbf{h})$ its end point (see Figure 2). Then the polynomial P can be written as: P = Q + R such that

$$Q = \sum_{(j,\nu(p_j))\in T} p_j \phi^j \quad \text{and} \quad R = \sum_{(j,\nu(p_j)) \text{ above } T} p_j \phi^j.$$

It is well-known that the side T is the set of points $(a,b) \in N_{\phi}^{-}(P)$ in the Euclidean plane such that $b - \lambda a$ is minimal. Since (s, u) lies on T, then

 $\min\{\nu(p_j) - j\lambda / j = 0, \dots, n\} = u - s\lambda, \text{ and so } \max\{|p_j(x)|_{\infty} \cdot e^{j\lambda} / j = 0, \dots, n\} = e^{-u+s\lambda}.$

If $(j, \nu(p_j))$ lies on T, then $\nu(p_j) - j\lambda = u - s\lambda$, thus

$$|Q(\alpha)|_L \le e^{-u+s\lambda}.$$

If $(j, \nu(p_j))$ lies strictly above T, then $\nu(p_j) - j\lambda > u - s\lambda$, thus

$$|R(\alpha)|_L < e^{-u+s\lambda}.$$

So

$$\left| \sum_{(j,\nu(p_j))\in T} p_j(\alpha)\phi(\alpha)^j \right|_L < e^{-u+s\lambda}.$$
(8)

If $(j, \nu(p_j))$ lies on T, then $j = s + i\mathbf{e}$ for some $i = 0, \ldots, \delta$, and so $\nu(p_{s+i\mathbf{e}}) = u - i\mathbf{h}$. Therefore

$$\left|\sum_{i=0}^{\delta} p_{s+i\mathbf{e}}(\alpha)\phi(\alpha)^{s+i\mathbf{e}}\right|_{L} < e^{-u+s\lambda}.$$

Hence

$$|\pi^{u} \cdot \phi(\alpha)^{s}|_{L} \cdot \left| \sum_{i=0}^{\delta} \frac{p_{s+i\mathbf{e}}(\alpha)}{\pi^{u}} (\phi(\alpha)^{\mathbf{e}})^{i} \right|_{L} < e^{-u+s\lambda}.$$

Since

$$|\pi^u.\phi(\alpha)^s|_L = e^{-u+s\lambda}$$

by [4, Theorem 3.10], we conclude that

$$\left|\sum_{i=0}^{\delta} \frac{p_{s+i\mathbf{e}}(\alpha)}{\pi^{u-i\mathbf{h}}} \gamma^{i}\right|_{L} < 1.$$

Thus

$$\sum_{i=0}^{\delta} \left(\frac{\overline{p_{s+i\mathbf{e}}}}{\pi^{u-i\mathbf{h}}} \right) (\overline{\gamma})^i = 0 \pmod{\mathcal{M}}.$$

So $R_{\lambda}(P)(\overline{\gamma}) = 0$. Hence by Lemma 3.1 $\psi(y)$ divides $R_{\lambda}(P)(y)$ in $\mathbb{F}_{\phi}[y]$. Therefore, one deduces that when $\psi(y)$ does not divide $R_{\lambda}(P)(y)$ in $\mathbb{F}_{\phi}[y]$, then $|P(\alpha)|_{L} = \max\{|p_{j}(x)|_{\infty} \cdot e^{j\lambda}, j = 0, \dots, n\}$. If $\psi(y)$ divides $R_{\lambda}(P)(y)$ in $\mathbb{F}_{\phi}[y]$, then $R_{\lambda}(P)(\overline{\gamma}) = 0$. By the same above process we conclude that

$$|Q(\alpha)|_L < e^{-u+s\lambda}$$
 and so $|P(\alpha)|_L < \max\left\{|p_j(x)|_\infty \cdot e^{j\lambda}, \ j=0,\dots,n\right\}$.

From where the equivalence.

FIGURE 2. ϕ -Newton polygon of P.

Proof of Corollary 3.3. Let $| |_L$ be an absolute value of L extending | |, and let $P \in K[x]$ be a polynomial of degree less than the degree of F. The ϕ -expansion of F has the following form $F = a_0 + a_1\phi + \cdots + \phi^l \in \mathcal{O}[x]$. Let $P = b_0 + \cdots + b_t\phi^t \in K[x]$ be the ϕ -expansion of P with t < l. Let $P_0 = \frac{P}{\pi^{\nu(P)}} \in \mathcal{O}[x]$. Then deg $R_{\lambda}(P_0)(y) < \deg R_{\lambda}(F)(y)$ and so $R_{\lambda}(F)(y)$ does not divide $R_{\lambda}(P_0)(y)$ in $\mathbb{F}_{\phi}[y]$. According to Theorem 3.2, we have

$$|P_0(\alpha)|_L = \max\left\{ \left| \frac{p_i(x)}{\pi^{\nu(P)}} \right|_{\infty} e^{i\lambda}, \ i = 0, \dots, n \right\}.$$

 So

$$|P(\alpha)|_L = \max\{|p_i(x)|_{\infty} \cdot e^{i\lambda}, \ i = 0, \dots, n\}.$$
 (9)

Let $||_1$ and $||_2$ be two absolute values of L extending ||, then $||_1$ and $||_2$ have the same expression (9) on L. Therefore, there is a unique absolute value $||_L$ of L extending ||.

Proof of Theorem 3.4.

(1) By [4, Theorem 3.10] we have $|\phi(\alpha)|_L = e^{\lambda}$. Then $\Gamma \subset \Gamma[e^{\lambda}] \subset \Gamma_{||_L}$. Thus $(\Gamma[e^{\lambda}] : \Gamma)$ divides $(\Gamma_{||_L} : \Gamma)$. On the other hand, **e** is the smallest integer such that $(e^{\lambda})^{\mathbf{e}} = e^{-h} \in \Gamma$. So $\Gamma[e^{-\lambda}]/\Gamma$ is a torsion group of order **e**. Therefore **e** divides $\mathbf{e}(||_L/||)$. In the beginning of the proof of Lemma 3.1, we showed that \mathbb{F}_{ϕ} is a subfield of $\mathbb{F}_{||_L}$. Then $\mathbb{F} \subset \mathbb{F}_{\phi} \subset \mathbb{F}_{||_L}$. Then $[\mathbb{F}_{\phi} : \mathbb{F}]$ divides $[\mathbb{F}_{||_L} : \mathbb{F}]$. As $[\mathbb{F}_{\phi} : \mathbb{F}] = \deg \phi = m, m$ divides $\mathfrak{f}(||_L/||)$. (2)(a) We show that $(\Gamma_{||_L} : \Gamma) = \mathbf{e}$. Let $\mathbb{N}_{\mathbf{e}-1} = \{0, \dots, \mathbf{e}-1\}$ and consider the mapping $\sigma : \mathbb{N}_{\mathbf{e}-1} \to \Gamma_{||_L}/\Gamma$ defined by $i \mapsto \left(\overline{e^{i\lambda}}\right)$. Let us show that σ is injective. Let $i, j \in \mathbb{N}_{\mathbf{e}-1}$ such that

$$e^{-i\frac{\mathtt{h}}{\mathtt{e}}}=e^{-j\frac{\mathtt{h}}{\mathtt{e}}} \pmod{\Gamma}.$$

Then $\overline{e^{(j-i)\frac{\mathbf{h}}{\mathbf{e}}}} = 1 \pmod{\Gamma}$, thus **e** divides j-i and so i = j. Let us show that σ is surjective. Let $\mu \in \Gamma_{||L}/\Gamma$. Then there exists a polynomial $P \in K[x]$ with deg $P < \deg F$ such that $\mu = |P(\alpha)|_L \cdot \Gamma$, then deg $R_{\lambda}(P)(y) < \deg R_{\lambda}(F)(y)$ and so $\psi(y)$ does not divide $R_{\lambda}(F)(y)$. Let $\sum_{i=0}^{n} p_i \phi^i$ be the ϕ -expansion of P. By Theorem 3.2, there exists an integer $i_0 = 0, \ldots, n$ such that

$$P(\alpha)|_{L} = \max\{|p_{i}(x)|_{\infty} \cdot e^{i\lambda}, \ i = 0, \dots, n\}$$
$$= e^{-u_{i_{0}}} e^{i_{0}\lambda} = e^{-u_{i_{0}} - i_{0}\frac{\mathbf{h}}{\mathbf{e}}},$$

where $u_{i_0} = \nu(p_{i_0}) \in \mathbb{Z}$. By the Euclidean division, there exists a unique pair (q, j) of integers such that $i_0 = q\mathbf{e} + j$ with $0 \le j \le \mathbf{e} - 1$, then

$$|P(\alpha)|_L = e^{-j\frac{\mathbf{h}}{\mathbf{e}}} \cdot e^{-u_{i_0}-qh} \in e^{-j\frac{\mathbf{h}}{\mathbf{e}}} \cdot \Gamma.$$

Thus there exists an element $j \in \mathbb{N}_{e-1}$ such that $\sigma(j) = \mu$ and so σ is a one-to-one correspondence between \mathbb{N}_{e-1} and $\Gamma_{||L|}/\Gamma$. Therefore

$$(\Gamma_{| \ |_L} : \Gamma) = \mathsf{e}$$

(b) We show that $\mathfrak{f}(||_L/||) = md$. Since $[\mathbb{F}_{||_L} : \mathbb{F}] = [\mathbb{F}_{||_L} : \mathbb{F}_{\phi}][\mathbb{F}_{\phi} : \mathbb{F}]$, and $\mathbb{F}_{\phi} = \frac{\mathbb{F}[x]}{(\overline{\phi})}$, we get $[\mathbb{F}_{\phi} : \mathbb{F}] = \deg \phi = m$.

Then it remains to show that $[\mathbb{F}_{| \ |_{L}} : \mathbb{F}_{\phi}] = d$. Consider the following ring homomorphism $\tau : \mathbb{F}_{\phi}[y] \to \mathbb{F}_{| \ |_{L}}$

defined by

$$Q(y) \mapsto Q(\overline{\gamma}) \quad \text{with} \quad \gamma = \frac{\phi(\alpha)^{\mathsf{e}}}{\pi^{\mathsf{h}}} \in \mathcal{O}^*_{|\ |_L}.$$

Then:

- (i) We claim that ker $\tau = (R_{\lambda}(F)(y))$. By Lemma 3.1, $R_{\lambda}(F)(y)$ is the minimal polynomial of $\overline{\gamma}$ over \mathbb{F}_{ϕ} . Thus we conclude that ker τ is the principal ideal of $\mathbb{F}_{\phi}[y]$ generated by $R_{\lambda}(F)(y)$.
- (ii) We show that τ is a surjective. Let ω be an element of $\mathbb{F}_{||_L}$, then $\omega = \overline{P(\alpha)}$ for some polynomial $P \in K[x]$ with deg $P < \deg F$ and $|P(\alpha)|_L \leq 1$. If $|P(\alpha)|_L < 1$ (i.e. $\omega = 0$), then by Lemma 3.1, we have $R_{\lambda}(F)(\overline{\gamma}) = 0$. Hence $\omega = \tau(R_{\lambda}(F)(y))$. If $|P(\alpha)|_L = 1$ (i.e. $\omega \neq \overline{0}$), then $|P(\alpha)|_L = 1$. Let $\sum_{i=0}^n p_i \phi^i$ be the ϕ -expansion of $P, P_0 = \frac{P}{\pi^{\nu(P)}} \in \mathcal{O}[x]$, and $N_{\phi}^-(P_0)$ the ϕ -Newton polygon of P_0 .

Let (s, u) be the initial point of T; the λ -component of $N_{\phi}^{-}(P_0)$, t = l(T) its x-length, and let $\delta = d(T) = \frac{t}{e}$ be its degree. As we have seen in the proof of the Theorem 3.2, we have

$$P(\alpha) = \pi^{u+\nu(P)} \phi(\alpha)^{s} \left[\sum_{\substack{(j,\nu(p_{0j}))\in T}} \frac{p_{0j}(\alpha)\phi(\alpha)^{j}}{\pi^{u} \cdot \phi(\alpha)^{s}} + \sum_{\substack{(j,\nu(p_{0j})) \text{ above } T}} \frac{p_{0j}(\alpha)\phi(\alpha)^{j}}{\pi^{u} \cdot \phi(\alpha)^{s}} \right] \text{ in } \mathcal{O}_{||_{L}},$$

with $p_{0j} = \frac{p_j}{\pi^{\nu(P)}} \in \mathcal{O}[x]$, for every $j = 0, \dots, n$. If $(j, \nu(p_{0j}))$ lies above T, then $\left| \frac{p_{0j}(\alpha)\phi(\alpha)^j}{\pi^u \cdot \phi(\alpha)^s} \right|_L < 1$. Then

$$\frac{p_{0j}(\alpha)\phi(\alpha)^{j}}{b\cdot\pi^{u}\cdot\phi(\alpha)^{s}}\equiv 0 \pmod{M_{||_{L}}},$$

and so

$$P(\alpha) \equiv \pi^{u+\nu(P)} \cdot \phi(\alpha)^s \left[\sum_{(j,\nu(p_{0j})) \in T} \frac{p_{0j}(\alpha)\phi(\alpha)^j}{\pi^u \cdot \phi(\alpha)^s} \right] \pmod{M_{||_L}}$$

As $(j, \nu(p_{0j}))$ lies on T, there is a unique $i = 0, \ldots, \delta$ such that $j = s + i\mathbf{e}$ and $\nu(p_{0s+i\mathbf{e}}) = u - i\mathbf{h}$. Thus

$$P(\alpha) \equiv \pi^{u+\nu(P)} \cdot \phi(\alpha)^s \left[\sum_{i=0}^{\delta} \left(\frac{p_{0s+i\mathbf{e}}(\alpha)}{\pi^{u-i\mathbf{h}}} \right) \left(\frac{\phi(\alpha)^{\mathbf{e}}}{\pi^{\mathbf{h}}} \right)^i \right] \pmod{M_{||_L}}.$$

On the other hand, since the point (s, u) lies on T, by Theorem 3.2 we have $|P(\alpha)|_L = e^{-u-\nu(P)} \cdot e^{s\lambda}$. Since $|P(\alpha)|_L = 1$, $e^{-\nu(P)-u-s\frac{\hbar}{\bullet}} = 1$. Then $\nu(P) + u + s\frac{\hbar}{\bullet} = 0$, thus **e** divides s, and $s = \mathbf{e}a$ for some rational integer a. Hence $\pi^{u+\nu(P)} \cdot \phi(\alpha)^s = \pi^{u+\nu(P)+a\hbar} \cdot \gamma^a = c \cdot \gamma^a$, where $c = \pi^{u+\nu(P)+a\hbar} \in \mathbb{F}^*$ because $|c| = e^{-\nu(P)-u-a\hbar} = 1$. Then

$$P(\alpha) \equiv c \cdot \gamma^a \sum_{i=0}^{\delta} \left(\frac{p_{0s+i\mathbf{e}}(\alpha)}{\pi^{u-i\mathbf{h}}} \right) \gamma^i \pmod{M_{||_L}}.$$

Thus, there exists a polynomial $Q(y) = cy^a R_\lambda(P_0)(y) \in \mathbb{F}_{\phi}[y]$ such that $\overline{P(\alpha)} = Q(\overline{\gamma})$ in $\mathbb{F}_{||_L}$. Therefore, τ is a surjective ring homomorphism. As $R_\lambda(F)(y)$ is the minimal polynomial of $\overline{\gamma}$ over \mathbb{F}_{ϕ} , we get $\mathbb{F}_{+}[y]$

$$\mathbb{F}_{||_{L}} \cong \frac{\mathbb{F}_{\phi}[y]}{\left(R_{\lambda}(F)(y)\right)}.$$

Thus

$$[\mathbb{F}_{\mid \mid_{L}} : \mathbb{F}_{\phi}] = \deg R_{\lambda}(F)(y) = d \text{ and } \mathfrak{f}(\mid \mid_{L} / \mid \mid) = md.$$

Proof of Corollary 3.5.

(1) Let $F = F_1 \cdots F_t$ be the factorization of the polynomial F in $K^h[x]$. For every $i = 1, \ldots, t$, we have by [5, Theorem 3.7] that $\overline{F_i} = \overline{\phi}^{l_i} \in \mathbb{F}_{\phi}[x]$ for some integer $l_i \geq 1$, $N_{\phi}^-(F_i) = S_i$ has a single side of slope λ , and $R_{\lambda}(F_i)(y) \equiv \psi_i(y) \in \mathbb{F}_{\phi}[y]$, then F_i is irreducible in $K^h[x]$. Let $\alpha_i \in \overline{K^h}$ be a root of F_i , and $L_i = K^h(\alpha_i)$. Then there is a unique absolute value $| |_{L_i}$ of L_i extending | |. Moreover, by Theorem 3.2,

$$|P(\alpha_i)|_{L_i} = \max\{|p_j(x)|_{\infty} \cdot e^{j\lambda}, \ j = 0, \dots, n\}$$

for every polynomial

$$P = \sum_{j=0} p_j \phi^j \in K[x] \quad \text{with} \quad \psi_i(y)$$

does not divide

$$R_{\lambda}\left(\frac{P}{\pi^{\nu(P)}}\right)(y).$$

By Theorem 2.1, there are exactly t absolute values $||_1, \ldots, ||_t$, of $L = K(\alpha)$ extending || such that

$$|P(\alpha)|_i = |P(\alpha_i)|_{\overline{K^h}} = |P(\alpha_i)|_{L_i}$$

for every such a polynomial P.

(2) By Theorem 3.4, for every $i = 1, \ldots, t$ we have

$$\mathfrak{e}(\mid |_i/\mid \mid) = \mathfrak{e}(\mid |_{L_i}/\mid \mid) = \mathsf{e}$$

and

$$\mathfrak{f}(\mid |i/\mid |) = \mathfrak{f}(\mid |L_i/\mid |) = \deg \psi_i \cdot \deg \phi.$$

5. Examples

EXAMPLE 1. Let $(\mathbb{Q}, | |_3)$ be the non-archimedean valued field with $| |_3$ the 3-adic absolute value associated to the valuation ν_3 . Let $F = x^9 + 54x^3 + 45 \in \mathbb{Z}[x]$. Then $\overline{\mathbb{Z}} = \sqrt{2} \in \mathbb{Z}$ [u] with μ_3 to μ_3 and $\mathbb{Z}[x] = 0$

 $\overline{F} = \phi^9 \in \mathbb{F}_3[x] \quad \text{with} \quad \phi = x \quad \text{and} \quad N_\phi^-(F) = S$

has a single side joining the points (0, 2) and (9, 0) of slope $\lambda = -\frac{2}{9}$ (see Figure 3). Also we have $R_{\lambda}(F)(y) = 1 + y \in \mathbb{F}_{\phi}[y]$ is irreducible. Then by [5, Corollary 3.2] F is an irreducible polynomial over \mathbb{Q}_3 . Let α be a root of F and $L = \mathbb{Q}(\alpha)$. By Corollary 3.3, there exists a unique absolute value of L extending $| |_3$ such that

$$\left|a_{0} + a_{1}\alpha + \dots + a_{8}\alpha^{8}\right|_{L} = \max\left\{\left|a_{0}\right|_{3}, \left|a_{1}\right|_{3} \cdot e^{\frac{-2}{9}}, \dots, \left|a_{8}\right|_{3} \cdot e^{\frac{-16}{9}}\right\}\right\}$$

for every $a_0, \ldots, a_8 \in \mathbb{Q}$.

FIGURE 3. ϕ -Newton polygon of F.

EXAMPLE 2. Let $K = \mathbb{F}_3((x))$ be the field of formal power series over \mathbb{F}_3 . Consider the following non-archimedean absolute value defined

 $|f| = \max \left\{ e^{-i}, x^i \text{ divides } f \text{ in } \mathbb{F}_3[[x]] \right\}.$

For every $f \in \mathbb{F}_3[[x]]$ and extend || to $\mathbb{F}_3((x))$ by $\left|\frac{f}{g}\right| = \frac{|f|}{|g|}$, for every $(f,g) \in \mathbb{F}_3[[x]] \times \mathbb{F}_3[[x]]^*.$

Let

$$F(y) = y^4 + x^2 y^2 + x^3 y + x^3 \in \mathcal{O}[y],$$

where $\mathcal{O} = \mathbb{F}_3[[x]]$ is the valuation ring of $(K, | \cdot |)$ with maximal ideal $\mathcal{M} = x \cdot \mathbb{F}_3[[x]]$. Then $F(y) \equiv y^4 \pmod{x}$. Let $\phi = y$, then $N_{\phi}^{-}(F) = S$ is a single side of slope $\lambda = \frac{-3}{4}$, joining the points (0,3) and (4,0) (see Figure 4). Since the side S is of degree gcd(3, 4) = 1 and

$$R_{\lambda}(F)(T) = 1 + T \in \mathbb{F}_{\phi}[T] \cong \mathbb{F}_{3}[T].$$

By [5, Corollary 3.2] we conclude that F(y) is irreducible over K. Let α be a root of the polynomial F(y). By Corollary 3.3, there is a unique absolute value $||_L$ of $L = K(\alpha)$ extending | | such that

$$\begin{aligned} \left| a_0(x) + a_1(x)\alpha + a_2(x)\alpha^2 + a_3(x)\alpha^3 \right|_L = \\ \max\left\{ \left| a_0(x) \right|, \left| a_1(x) \right| \cdot e^{-3/4}, \left| a_2(x) \right| \cdot e^{-3/2}, \left| a_3(x) \right| \cdot e^{-9/4} \right\} \end{aligned}$$

for every $a_0(x), \ldots, a_3(x) \in \mathbb{F}_3((x))$. Moreover,

 $\mathfrak{e}(||_L/||) = 4$ and $\mathfrak{f}(||_L/||) = 1$.

FIGURE 4. ϕ -Newton polygon of F.

Acknowledgement.

The authors are very grateful to Professor Abdulaziz Deajim for his valuable comments and suggestions, which have considerably improved the quality of this paper.

REFERENCES

- BROWN, R.: Roots of generalized Schönemann polynomials in henselian extension fields, Indian J. Pure Appl. Math. 39 (2008), 403–410.
- [2] COHEN, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.
- [3] DEAJIM, A.—EL FADIL, L.—NAJIM, A.: On a theorem of Dedekind (submitted).
- [4] EL FADIL, L.—FARIS, M.: On the Irreducible Factors of a Polynomial and Applications to Extensions of Absolute Values, IntechOpen, https://www.intechopen.com/online-first/on-the-irreducible-factors-of-a-poly nomial-and-applications-to-extensions-of-absolute-values
- [5] EL FADIL, L.: On Newton polygon echniques and factorization of polynomials over Henselian fields, J. Algebra Appl. 19 (2020), no. 10, doi: 10.1142/S0219498820501881.
- [6] GUÀRDIA, J.— MONTES, J.—NART, E.: Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416.
- [7] KHANDUJA, S. K.—KUMAR, M.: A generalization of Dedekind criterion, Comm. Algebra 35 (2007), 1479–1486.
- [8] MANJRA, S.: A note on non-Robba p-adic differential equations, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 3, 40-43.
- MANJRA, S.—REMMAL, S. E.: Equations différentielles p-adiques et Séries Gevrey arithmétiques, Math. Ann. 334 (2006), 37-64.

- MANJRA, S.: Arithmetic differential equations and E-functions, Illinois J. Math. 49 (Winter 2005), no. 4, 1061-1092. DOI: 10.1215/ijm/1258138127.
- [11] KEDLAYA, K. S.: p-adic Differential Equations, Cambridge University Press, New York, 2010.
- [12] BOURBAKI, N.: Algébre Commutative, Chapitres 5 à 7. Springer-Verlag, Berlin, Heidelberg, 2006.
- [13] ORE, O.: Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84–117.
- [14] MURTY, M. RAM: Introduction to p-adic Analytic Number Theory. AMS/IP Stud. Adv. Math. Vol. 27. American Mathematical Society (AMS), Providence, RI: International Press, Cambridge, MA, 2002. https://doi.org/10.1090/amsip/027

Received Novembeer 11, 2022

Mohamed Faris Lhoussain El Fadil Department of Mathematics Faculty of Sciences Sidi Mohamed Ben Abdellah University Fez, MOROCCO

E-mail: mohamedfaris9293@gmail.com lhouelfadil2@gmail.com