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ABSTRACT. Let | | be a discrete non-archimedean absolute value of a field
K with valuation ring O, maximal ideal M and residue field F = O/M. Let L
be a simple finite extension of K generated by a root α of a monic irreducible

polynomial F ∈ O[x]. Assume that F = φ
l
in F[x] for some monic polyno-

mial φ ∈ O[x] whose reduction modulo M is irreducible, the φ-Newton polygon
N−

φ (F ) has a single side of negative slope λ, and the residual polynomialRλ(F )(y)

has no multiple factors in Fφ[y]. In this paper, we describe all absolute values
of L extending | |. The problem is classical but our approach uses new ideas.
Some useful remarks and computational examples are given to highlight some
improvements due to our results.

1. Introduction

Let K = Q(α) be an algebraic number field with α ∈ ZK the ring of al-
gebraic integers of K. Let F be the minimal polynomial of α over the field Q.
The determination of the prime ideal decomposition in ZK of any rational prime
p is one of the most important problems in algebraic number theory and is re-
lated to the factorization of the polynomial F in Fp[x]. Let F =

∏r
i=1 φi

ei

be the factorization of F in Fp[x], where φ1, . . . , φr are distinct irreducible poly-
nomials over Fp and φi ∈ Z[x] monic. In 1878, Dedekind proved that if p does
not divide (ZK : Z[α]), then pZK =

∏r
i=1 p

ei
i , where p1, . . . , pr are distinct

prime ideals of ZK with pi = pZK + φi(α)ZK having residual degree equal
to deg φi (See [2, Theorem 4.8.13 ]). Dedekind also gave a criterion to test
whether p divides the index (ZK : Z[α]) (see [2, Theorem 6.1.4 ], [7]). In 1894,

© 2023 Mathematical Institute, Slovak Academy of Sciences.
2020 Mathemat i c s Sub j e c t C la s s i f i c a t i on: 12E25,12E99, 13A18.
Keywords: extensions of non-archimedean absolute value, Newton polygon, residual
polynomial.

Licensed under the Creative Commons BY-NC-ND4.0 International Public License.

87



M. FARIS— L. EL FADIL

Hensel developed a powerful approach by showing that the prime ideals of ZK

lying over p are in one-to-one correspondence with the monic irreducible factors
of F over the field Qp of p-adic numbers and that the ramification index to-
gether with the residual degree of a prime ideal of ZK lying over p are the same
as those of a simple extension of Qp obtained by adjoining a root of the corre-
sponding irreducible factor of F belonging to Qp[x]. Keeping in view Hensel’s
result in 1928, Ore [13] introduced a new technique which generalizes Dedekind’s
criterion; Namely, Newton polygon techniques which enables us to get the fac-
torization of pZK . By virtue of Hensel’s Lemma, the factorization of F in Fp[x]
leads to a factorization F = F1 · · ·Fr over the ring Zp of p-adic integers with

F i = φ
ei
i in Fp[x]. For this purpose, he considered the φi-Newton polygon of Fi

for each i, having ti sides with negative slope which leads to a factorization of Fi

into ti factors, say Fi = Fi1 · · ·Fiti in Zp[x]. Moreover, to each side S of slope λ
of the φi-Newton polygon of Fi, he associated a polynomial Rλ(Fi)(y) over the

finite field Fφi
:=

Fp[x]

(φi)
in an indeterminate y. The factorization of the associ-

ated polynomial Rλ(Fi)(y) over Fφi
provides a further factorization of the factor

of Fi corresponding to the side S (for more details on Newton polygon see below
and [5]). Finally, Ore showed that if for some i, all these polynomials Rλj

(Fi)(y)
corresponding to various sides Sj , 1 ≤ j ≤ ti, of the φi-Newton polygon of Fi

have no multiple factor, say Rλj
(Fi)(y) splits into nij distinct irreducible factors

over Fφi
, then all the

∑ti
j=1 nij factors of Fi obtained in this way are irreducible

over Qp. Further, the slopes of the sides of the φi-Newton polygon of Fi and the
degrees of the irreducible factors of Rλ(Fi)(y) over Fφi

for S ranging over all the
sides of such a polygon lead to the explicit determination of the residual degrees
and the ramification indices of all those prime ideals of ZK lying over p which
correspond to the irreducible factors of Fi.

Non-archimedean absolute values are useful in non-archimedean analysis,
p-adic differential equations, p-adic series, p-adic analytic number theory, and
p-adic analytic geometry ([8], [9], [10], [14], [11]). Several authors studied the
extensions of any rank one discrete absolute value. In this paper, our aim is
to extend the scope of non-archimedean absolute value when the base field is
an arbitrary field K with a discrete non-archimedean absolute value | |, where
O is the valuation ring of | |, M is its maximal ideal, and F = O/M is its

residue field. Let F ∈ O[x] be a monic irreducible polynomial such that F = φ
l

in F[x] for some monic polynomial φ ∈ O[x] whose reduction modulo M is irre-
ducible, the φ-Newton polygon N−

φ (F ) has a single side of negative slope λ, and

the residual polynomial Rλ(F )(y) has no multiple factors in Fφ[y]. The main
motivation behind this work is the result given in Bourbaki (see [12, No : 7,
page: 149, Proposition: 10]) which shows that a non-archimedean absolute value
extends, to any Galois extension L of finite degree, in a unique way when the
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the base field is complete and non-discrete for | |. This absolute value is given
by

|β|L =
(|NL/K(β)|) 1

n

for every β ∈ L, where n = [L : K] and NL/K is the norm of L overK. The main
goal of this paper is to study the case where K is not necessarily Henselian and
L/K is a simple algebraic extension which is not necessarily Galois. Some illus-
trating examples are also given, too.

2. Preliminaries

Recall that a valued field is the given of a pair (K, | |), where K is a field
and | | is an absolute value of K, that is a mapping | | : K −→ R+ satisfying the
following properties:

(1) |x| = 0 if and only if x = 0,

(2) |xy| = |x||y|,
(3) |x+ y| ≤ |x|+ |y|
for every x, y in K.

If the third property is replaced by an ultrametric one, namely; |x + y| ≤
max{|x|, |y|}, then the absolute value is called non-archimedean.

In this paper, we fix a valued field (K, | |) with | | a non-archimedean absolute
value which we simply call in the rest of the article absolute value. Let L be a
field extension of K, and | |L an absolute value of L extending | |. Consider the
sets Γ = |K∗| = {|x|, x ∈ K∗} and Γ| |L = |L∗|L = {|x|L, x ∈ L∗}. These sets
are abelian totally ordered groups where Γ is a subgroup of Γ| |L . The index of Γ
in Γ| |L , denoted e(| |L/| |) = (Γ| |L : Γ), is called the ramification index of the
extension | |L above | |. In the same context the residue degree of | |L over | | is
the degree [F| |L : F] denoted by f(| |L/| |).

Consider also the following sets: O={x ∈ K, |x| ≤ 1},M={x ∈ K, |x| < 1}.
It is well Known that that O is a ring of valuation called the valuation ring
of (K, | |) and M is its maximal ideal, hence F = O/M is a field, called the
residue field of (K, | |). When M is a principal ideal generated by an element
π, the absolute value | | is called discrete, and if the Krull dimension of O is 1,
we say that | | is of rank one.

Remarks.

(1) Let | | : K −→ R+ be an absolute value and ν : K −→ R the map defined
by

ν(x) = − ln(|x|) for all x ∈ K∗.
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Then ν satisfies the first 2 axioms of a valuation but not necessarily the
third one. We say that ν is a Krull valuation of K if and only if | | is non-
archimedean absolute value. In this case ν is called the Krull valuation
associated to | |. Moreover, if ν of rank one discrete valuation we say also
that | | is of rank one discrete absolute value. In treating non-archimedean
absolute value | |, it is convenient to replace |a| by the related “exponential”
value e−ν(a), for every a ∈ K.

(2) Every absolute value | | on K induces a topology on K. The completion

of (K, | |) will be denoted by (K̂, | |).
(3) Every rank one valued field (K, | |) allows a unique algebraic extension,

up to value-preserving isomorphism, that satisfies Hensel’s Lemma.
This extension is denoted by Kh and called the henselization of the given
valued field. Further, Kh is the separable closure of K in the completion K̂
with respect to | |.

Let ν be the discrete Krull valuation associated to | |, Oν its valuation ring
and Mν its maximal ideal, then Oν = O, Mν = M, and Fν = F. By nor-
malization, we can assume that ν(K∗) = Z, and ν(π) = 1. Hence |K∗| ={
. . . , e−2, e−1, 1, e, e2, . . .

}
.

Let (K̂, ν̂) be the completion of (K, ν), Oν̂ its valuation ring and Mν̂ its
maximal ideal. It is well known that Γν̂ = Γν , Mν̂ is a principal ideal of Oν̂

generated by π, and Fν̂ � Fν . Denote also by ν̂ the Gauss’s extension of ν
to the field K̂(x) defined by

ν̂(P ) = min{ν̂(ai), i = 0, . . . , n}
for every polynomial P =

∑n
i=0 aix

i ∈ K̂[x], and extend ν̂ to K̂(x)∗ by ν̂(A/B) =

ν̂(A)− ν̂(B) for every (A,B) ∈ K̂[x]× K̂[x]∗. The corresponding absolute value
of the Gauss’s valuation is called the infinite absolute value and it is defined by

| |∞ : K̂[x] −→ [0,+∞[,

P =

n∑
i=0

pix
i �→ |P |∞ = max{|pi|, i = 0, . . . , n}

and extend | |∞ to hatK(x)∗ by∣∣∣∣PQ
∣∣∣∣
∞
=

|P |∞
|Q|∞ , for every (P,Q) ∈ K̂[x]× K̂[x]∗.

Let φ ∈ Oν̂ [x] be a monic polynomial whose reduction φ modulo Mν̂ is ir-

reducible. Let Fφ = Oν [x]/(π, φ) ∼= Fν [x]/(φ) be the associated residue field.
For every polynomial P ∈ Oν̂ [x], let P = pnφ

n + pn−1φ
n−1 + · · ·+ p1φ+ p0 be

the φ-expansion of P . This is reached by the Euclidean division of P by suc-
cessive powers of φ. So pi ∈ Oν̂ [x] with deg(pi) < deg(φ) for i = 0, . . . , n.
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If pn 	= 0, then the integer n is called the φ-degree of P . The φ-Newton poly-
gon Nφ(P ) of P with respect to the valuation ν is the polygonal path consist-
ing of the lower edges of positive lengths S1, . . . , St of the convex hull of the
set of points (i, ν(pi)) in the Euclidean plane with ν(ai) < ∞, i = 0, . . . , n,
where the edges Sj are ordered by increasing slopes. We call each edge a side
of Nφ(P ) and write Nφ(P ) = S1 + · · ·+ St. For every j = 1, . . . , t, let lj be the
length of the projection of Sj on the x-axis (which is called the length of Sj),
Hj = H(Sj) the length of the projection of Sj on the y-axis (which we call the
height of Sj), and dj = d(Sj) = gcd(lj, Hj) is called the degree of Sj . Letting

ej =
lj
dj

and hj =
Hj

dj
. It follows that ej and hj are two coprime positive in-

tegers and λj = − hj
ej

is the slope of Sj . The part of Nφ(P ) consisting of the

polygon whose sides are those consecutive sides of Nφ(P ) of negative slopes is

called the principal φ-Newton Polygon of P denote N−
φ (P ). For every λ ∈ Q−,

we call the largest segment of Nφ(P ) of slope λ the λ-component of P . It is
reduced to the end point of St if λ > λj for every j = 1, . . . , t, to the ini-
tial point of S1 if λj > λ for every j = 1, . . . , t, and to the end point of Sj∗
(which coincides with the initial point of Sj∗+1) if λj∗ < λ < λj∗+1, where

j∗ = max{j = 1, . . . , t−1 |λj < λ}. Let λ = − h
e
∈ Q− for some coprime integers

e and h, and S be the λ-component of Nφ(P ). Let (s, u) be the initial point

of S, l its length, and d = l
e
its degree. For every i = 0, . . . , l, define the residue

coefficient ti ∈ Fφ associated to S, by ti = 0 if
(
i, ν(pi)

)
lies strictly above S,

and ti =
(

pi

πν(pi)

)
if
(
i, ν(pi)

)
lies on S. Remark that the only points of integer

coordinates are (s, u), (s + e, u − h), . . . , (s + de, u − dh). We attach to S the

residual polynomial Rλ(P )(y) ∈ Fφ[y] defined by Rλ(P )(y) =
∑d

i=0 ciy
i with

ci = ts+ie, for every i = 0, . . . , d. For more details we refer to [6] for Newton
Polygon over Zp and [5] for rank one discrete valuation.

The following Theorem plays a key role to prove our main results. It es-
tablishes a one-to-one correspondence between extensions of | | to L and the

irreducible factors of F in K̂[x]. In particular, if (K, | |) is a complete field then
there is a unique extension of | | to any algebraic extension of K.

Theorem 2.1 ([3], Theorem 2.1). Let L = K(α) be a simple extension gen-

erated by a root α ∈ K of a monic irreducible polynomial F ∈ K[x], and let

F =
∏t

i=1 F
li
i be the factorization into powers of monic irreducible factors

in Kh[x]. Then li = 1 for every i = 1, . . . , t and there are exactly t distinct

absolute values | |1, . . . , and | |t of L extending | |. Furthermore, for every abso-

lute value | |i of L associated to the irreducible factor Fi, we have

|P (α)|i = |P (αi)|Kh ,

where | |
Kh is the unique absolute value of an algebraic closure Kh of Kh ex-

tending | | and αi ∈ K is a root of Fi.
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3. Main results

Lemma 3.1. Let (K, | |) be a valued field provided by a discrete non-archimedean

absolute value | |. Let F ∈ O[x] be a monic irreducible polynomial. Assume that

F = φ
l ∈ F[x] for some monic polynomial φ ∈ O[x] whose reduction is irre-

ducible in F[x] and for some natural integer l, N−
φ (F ) = S has a single side of a

negative finite slope λ, and Rλ(F )(y) is a power of a monic irreducible polyno-

mial ψ(y) in Fφ[y]. Let γ = φ(α)e

πh , where λ = −h

e
for some coprime integers e

and h. Then the polynomial ψ(y) is the minimal polynomial of the element γ
over Fφ.

Theorem 3.2. Under the hypotheses of Lemma 3.1. Let | |L be an absolute

value of L extending | |, then
|P (α)|L ≤ max{|pi(x)|∞ · eiλ, i = 0, . . . , n} (1)

for any polynomial P =
∑n

i=0 piφ
i ∈ O[x] with deg(pi) < deg(φ) for every

i = 0, . . . , n. The equality holds if and only if ψ(y) does not divide Rλ (P ) (y).

Corollary 3.3. Under the above hypotheses of Theorem 3.2 assume that

Rλ(F )(y) is a monic irreducible polynomial of Fφ[y], then there is a unique

absolute value | |L of L extending | | such that

|P (α)|L = max{|pi(x)|∞ · eiλ, i = 0, . . . , n} (2)

for every polynomial P =
∑n

i=0 piφ
i ∈ K[x] such that deg pi < deg φ and

degP < degF .

Theorem 3.4. Under the hypotheses of the Theorem 3.2, we have the follow-

ing

(1) For every absolute value | |L of L extending | |, e divides the ramification

index e(| |L/| |) and m = degφ divides the residue degree f(| |L/| |).
(2) If Rλ(F )(y) is irreducible over Fφ, then the ramification index and the resid-

ual degree of the absolute value | |L of L extending | | satisfy : e(| |L/| |) = e

and f(| |L/| |) = d ·m where d = l
e
.

Corollary 3.5. Under the assumptions of Theorem 3.2, assume that

Rλ(F )(y) =
∏t

i=1 ψi(y) is the factorization of Rλ(F )(y) into a product of dis-

tinct irreducible polynomials ψi(y) in Fφ[y]. Then there exists exactly t absolute
values | |1, . . . , | |t of L extending | |. Moreover,

(i) For every polynomial P with φ-expansion
∑n

j=0 pjφ
j ∈ K[x] such that ψi(y)

does not divide Rλ

(
P

πν(P )

)
(y), we have

|P (α)|i = max
{|pj(x)|∞ · ejλ, j = 0, . . . , n

}
. (3)

(ii) e(| |i/| |) = e and f(| |i/| |) = degψi · degφ for every i = 1, . . . , t.
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4. Proofs of the main results

P r o o f o f L e mm a 3.1. By [4, Lemma 3.6] the homomorphism O[x] ↪→ F| |L
defined by P �→ P (α) induces the following injective homomorphism Fφ ↪→ F| |L
defined by P �→ P (α). Hence, Fφ is identified with a subfield of F| |L , and so we
can say that any residual polynomial has its residual coefficients in the field F| |L .

Let F =
∑l

i=0 aiφ
i ∈ O[x] be the φ-expansion of the polynomial F , then

l∑
i=0

ai(α)φ(α)
i = 0.

So ∑
(i,ν(ai))∈S

ai(α)φ(α)
i +

∑
(i,ν(ai)) above S

ai(α)φ(α)
i = 0

(see Figure 1).

The unique points with integer coordinates are
(
0, ν(a0)

)
, (e, ν(a0) − h), . . .

. . . , (de = l, 0). Then l∑
i = 0

e divides i

ai(α)φ(α)
i +

l∑
i = 0

e does not divide i

ai(α)φ(α)
i = 0.

As d = l
e
, we get

d∑
i=0

aie(α)(φ(α)
e)i +

l−1∑
i = 1

i /∈ e · N

ai(α)φ(α)
i = 0.

By factoring by πdh, we get
d∑

i=0

aie(α)

π(d−i)h

(
φ(α)e

πh

)i

+

l−1∑
i = 1

i /∈ e · N

ai(α)φ(α)
i

πdh
= 0 (4)

SinceN−
φ (F ) = S is a single side of slope λ = − h

e
, ν

(
aie(x)

) ≥ λ(ie−l) and so

|aie(x)|∞ ≤ eλ(l−ie), thus |aie(α)|L ≤ eλ(l−ie). Hence
∣∣∣ aie(α)
π(d−i)h

(
φ(α)e

πh

)i∣∣∣
L

≤ 1.

Therefore
aie(α)

π(d−i)h

(
φ(α)e

πh

)i

∈ O| |L , (5)

for every i = 0, . . . , d. If e does not divide i, then ν(ai) > λ(i − l) and so

|ai(x)|∞ < eλ(l−i). Thus
∣∣∣ai(α)φ(α)

i

πdh

∣∣∣
L
< 1. Therefore

ai(α)φ(α)
i

πdh
∈M| |L , (6)
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From equations (4), (5), and (6), one deduces that

d∑
i=0

aie(α)

π(d−i)h

(
φ(α)e

πh

)i
= 0 (mod M| |L).

Hence Rλ(F ) (γ) = 0, and so ψ (γ) = 0.

0 i

ν(a0)

de = l

ν

ν(a0)− h
S

e ie

ν(a0)− ih

Figure 1. φ-Newton polygon of F.
�

P r o o f o f T h e o r e m 3.2. As P =
∑n

j=0 pjφ
j ∈ O[x], we have

|P (α)|L ≤ max
{
|pj(α)|L · |φ(α)|jL, j = 0, . . . , n

}
.

By [4, Lemma 3.6] and [4, Theorem 3.10], we have

|P (α)|L ≤ max
{|pj(x)|∞ · ejλ, j = 0, . . . , n

}
. (7)

Now, suppose that |P (α)|L < max
{|pj(x)|∞ · ejλ, j = 0, . . . , n

}
, and show

that Rλ(P )(γ) = 0 where γ = φ(α)e

πh . Let (s, u) be the initial point of the λ-

-component T of the φ-Newton polygon of P , t = l(T ) its length, δ = d(T ) = t
e

its degree, and (s+ δh, u− δh) its end point (see Figure 2). Then the polynomial
P can be written as: P = Q+R such that

Q =
∑

(j,ν(pj))∈T

pjφ
j and R =

∑
(j,ν(pj)) above T

pjφ
j.

It is well-known that the side T is the set of points (a, b) ∈ N−
φ (P ) in the

Euclidean plane such that b − λa is minimal. Since (s, u) lies on T , then
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min{ν(pj) − jλ / j = 0, . . . , n} = u − sλ, and so max{|pj(x)|∞ · ejλ / j =
0, . . . , n} = e−u+sλ.

If
(
j, ν(pj)

)
lies on T , then ν(pj)− jλ = u− sλ, thus

|Q(α)|L ≤ e−u+sλ.

If
(
j, ν(pj)

)
lies strictly above T , then ν(pj)− jλ>u− sλ, thus

|R(α)|L<e−u+sλ.

So ∣∣∣∣∣∣
∑

(j,ν(pj))∈T

pj(α)φ(α)
j

∣∣∣∣∣∣
L

< e−u+sλ. (8)

If
(
j, ν(pj)

)
lies on T , then j = s + ie for some i = 0, . . . , δ, and so ν(ps+ie) =

u− ih. Therefore ∣∣∣∣∣
δ∑

i=0

ps+ie(α)φ(α)
s+ie

∣∣∣∣∣
L

< e−u+sλ.

Hence

|πu · φ(α)s|L ·
∣∣∣∣∣

δ∑
i=0

ps+ie(α)

πu
(φ(α)e)i

∣∣∣∣∣
L

< e−u+sλ.

Since

|πu.φ(α)s|L = e−u+sλ

by [4, Theorem 3.10], we conclude that∣∣∣∣∣
δ∑

i=0

ps+ie(α)

πu−ih
γi

∣∣∣∣∣
L

< 1.

Thus
δ∑

i=0

(
ps+ie

πu−ih

)
(γ)i = 0 (mod M).

So Rλ(P ) (γ) = 0. Hence by Lemma 3.1 ψ(y) divides Rλ(P )(y) in Fφ[y].
Therefore, one deduces that when ψ(y) does not divide Rλ(P )(y) in Fφ[y], then
|P (α)|L = max

{|pj(x)|∞ · ejλ, j = 0, . . . , n
}
. If ψ(y) divides Rλ(P )(y) in Fφ[y],

then Rλ(P ) (γ) = 0. By the same above process we conclude that

|Q(α)|L < e−u+sλ and so |P (α)|L < max
{|pj(x)|∞ · ejλ, j = 0, . . . , n

}
.

From where the equivalence.
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0 s

T

s+ δes+ ie

u− δh

u− ih

i

u

ν

Figure 2. φ-Newton polygon of P.
�

P r o o f o f C o r o l l a r y 3.3. Let | |L be an absolute value of L extending
| |, and let P ∈ K[x] be a polynomial of degree less than the degree of F .
The φ-expansion of F has the following form F = a0 + a1φ + · · · + φl ∈ O[x].
Let P = b0 + · · · + btφ

t ∈ K[x] be the φ-expansion of P with t < l. Let
P0 = P

πν(P) ∈ O[x]. Then degRλ(P0)(y) < degRλ(F )(y) and so Rλ(F )(y)
does not divide Rλ(P0)(y) in Fφ[y]. According to Theorem 3.2, we have

|P0(α)|L = max

{∣∣∣∣ pi(x)πν(P )

∣∣∣∣
∞
· eiλ, i = 0, . . . , n

}
.

So

|P (α)|L = max
{|pi(x)|∞ · eiλ, i = 0, . . . , n

}
. (9)

Let | |1 and | |2 be two absolute values of L extending | |, then | |1 and | |2 have
the same expression (9) on L. Therefore, there is a unique absolute value | |L
of L extending | |. �
P r o o f o f T h e o r e m 3.4.

(1) By [4, Theorem 3.10] we have |φ(α)|L = eλ. Then Γ ⊂ Γ[eλ] ⊂ Γ| |L .
Thus (Γ[eλ] : Γ) divides (Γ| |L : Γ). On the other hand, e is the smallest

integer such that (eλ)e = e−h ∈ Γ. So Γ[e−λ]/Γ is a torsion group of order e.
Therefore e divides e(| |L/| |). In the beginning of the proof of Lemma 3.1,
we showed that Fφ is a subfield of F| |L . Then F ⊂ Fφ ⊂ F| |L . Then [Fφ : F]
divides [F| |L : F]. As [Fφ : F] = degφ = m, m divides f(| |L/| |).
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(2)(a) We show that (Γ| |L : Γ) = e. Let Ne−1 = {0, . . . , e− 1} and consider the

mapping σ : Ne−1 → Γ| |L/Γ defined by i �→
(
eiλ

)
.

Let us show that σ is injective. Let i, j ∈ Ne−1 such that

e−i h
e = e−j h

e (mod Γ).

Then e(j−i) h
e = 1 (mod Γ), thus e divides j − i and so i = j.

Let us show that σ is surjective. Let μ ∈ Γ| |L/Γ. Then there exists
a polynomial P ∈ K[x] with degP < degF such that μ = |P (α)|L · Γ,
then degRλ(P )(y) < degRλ(F )(y) and so ψ(y) does not divideRλ(F )(y).
Let

∑n
i=0 piφ

i be the φ-expansion of P . By Theorem 3.2, there exists an
integer i0 = 0, . . . , n such that

P (α)|L = max{|pi(x)|∞ · eiλ, i = 0, . . . , n}
= e−ui0 ei0λ = e−ui0

−i0
h
e ,

where ui0 = ν(pi0) ∈ Z. By the Euclidean division, there exists a unique
pair (q, j) of integers such that i0 = qe+ j with 0 ≤ j ≤ e− 1, then

|P (α)|L = e−j h
e · e−ui0

−qh ∈ e−j h
e · Γ.

Thus there exists an element j ∈ Ne−1 such that σ(j) = μ and so σ is a
one-to-one correspondence between Ne−1 and Γ| |L/Γ. Therefore

(Γ| |L : Γ) = e.

(b) We show that f(| |L/| |) = md. Since [F| |L : F] = [F| |L : Fφ][Fφ : F], and

Fφ = F[x]

(φ)
, we get [Fφ : F] = deg φ = m.

Then it remains to show that [F| |L : Fφ] = d. Consider the following ring
homomorphism

τ : Fφ[y] → F| |L
defined by

Q(y) �→ Q(γ) with γ =
φ(α)e

πh
∈ O∗

| |L .
Then:
(i) We claim that ker τ = (Rλ(F )(y)). By Lemma 3.1, Rλ(F )(y) is the

minimal polynomial of γ over Fφ. Thus we conclude that ker τ is the
principal ideal of Fφ[y] generated by Rλ(F )(y).

(ii) We show that τ is a surjective. Let ω be an element of F| |L , then
ω = P (α) for some polynomial P ∈ K[x] with degP < degF and
|P (α)|L ≤ 1. If |P (α)|L < 1 (i.e, ω = 0), then by Lemma 3.1,
we have Rλ(F )(γ) = 0. Hence ω = τ

(
Rλ(F )(y)

)
. If |P (α)|L = 1

(i.e; ω 	= 0), then |P (α)|L = 1. Let
∑n

i=0 piφ
i be the φ-expansion

of P, P0 = P
πν(P) ∈ O[x], and N−

φ (P0) the φ-Newton polygon of P0 .
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Let (s, u) be the initial point of T ; the λ-component of N−
φ (P0),

t = l(T ) its x-length, and let δ = d(T ) = t
e

be its degree.
As we have seen in the proof of the Theorem 3.2, we have

P (α) = πu+ν(P )φ(α)s

⎡
⎣ ∑
(j,ν(p0j))∈T

p0j(α)φ(α)
j

πu · φ(α)s +

∑
(j,ν(p0j)) above T

p0j(α)φ(α)
j

πu · φ(α)s

⎤
⎦ in O| |L ,

with p0j =
pj

πν(P ) ∈ O[x], for every j = 0, . . . , n.

If
(
j, ν(p0j)

)
lies above T , then

∣∣∣p0j(α)φ(α)
j

πu·φ(α)s
∣∣∣
L
< 1. Then

p0j(α)φ(α)
j

b · πu · φ(α)s ≡ 0 (mod M| |L),

and so

P (α) ≡ πu+ν(P ) · φ(α)s
⎡
⎣ ∑
(j,ν(p0j))∈T

p0j(α)φ(α)
j

πu · φ(α)s

⎤
⎦ (mod M| |L).

As
(
j, ν(p0j)

)
lies on T , there is a unique i = 0, . . . , δ such that

j = s+ ie and ν(p0s+ie) = u− ih. Thus

P (α) ≡ πu+ν(P ) · φ(α)s
[

δ∑
i=0

(
p0s+ie(α)

πu−ih

)(
φ(α)e

πh

)i]
(mod M| |L).

On the other hand, since the point (s, u) lies on T , by Theorem 3.2 we

have |P (α)|L = e−u−ν(P ) · esλ. Since |P (α)|L = 1, e−ν(P )−u−s h
e = 1.

Then ν(P ) + u + s h
e
= 0, thus e divides s, and s = ea for some

rational integer a. Hence πu+ν(P ) · φ(α)s = πu+ν(P )+ah · γa = c · γa,
where c = πu+ν(P )+ah ∈ F∗ because |c| = e−ν(P )−u−ah = 1. Then

P (α) ≡ c · γa
δ∑

i=0

(
p0s+ie(α)

πu−ih

)
γi (mod M| |L).

Thus, there exists a polynomial Q(y) = cyaRλ(P0)(y) ∈ Fφ[y] such

that P (α) = Q(γ) in F| |L . Therefore, τ is a surjective ring homo-
morphism. As Rλ(F )(y) is the minimal polynomial of γ over Fφ,
we get

F| |L ∼= Fφ[y](
Rλ(F )(y)

) .
Thus

[F| |L : Fφ] = degRλ(F )(y) = d and f(| |L/| |) = md.

�
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P r o o f o f C o r o l l a r y 3.5.

(1) Let F = F1 · · ·Ft be the factorization of the polynomial F in Kh[x].

For every i = 1, . . . , t, we have by [5, Theorem 3.7] that Fi = φ
li ∈ Fφ[x]

for some integer li ≥ 1, N−
φ (Fi) = Si has a single side of slope λ, and

Rλ(Fi)(y) ≡ ψi(y) ∈ Fφ[y], then Fi is irreducible in K
h[x]. Let αi ∈ Kh be

a root of Fi, and Li = Kh(αi). Then there is a unique absolute value | |Li

of Li extending | |. Moreover, by Theorem 3.2,

|P (αi)|Li
= max{|pj(x)|∞ · ejλ, j = 0, . . . , n}

for every polynomial

P =

n∑
j=0

pjφ
j ∈ K[x] with ψi(y)

does not divide

Rλ

(
P

πν(P )

)
(y).

By Theorem 2.1, there are exactly t absolute values | |1, . . . , | |t, of L=K(α)
extending | | such that

|P (α)|i = |P (αi)|Kh = |P (αi)|Li

for every such a polynomial P.

(2) By Theorem 3.4, for every i = 1, . . . , t we have

e(| |i/| |) = e(| |Li
/| |) = e

and

f(| |i/| |) = f(| |Li
/| |) = degψi · deg φ. �

5. Examples

Example 1. Let (Q, | |3) be the non-archimedean valued field with | |3 the 3-adic
absolute value associated to the valuation ν3. Let F = x9 + 54x3 + 45 ∈ Z[x].
Then

F = φ9 ∈ F3[x] with φ = x and N−
φ (F ) = S

has a single side joining the points (0, 2) and (9, 0) of slope λ = −2
9 (see Figure 3).

Also we have Rλ(F )(y) = 1+ y ∈ Fφ[y] is irreducible. Then by [5, Corollary 3.2]
F is an irreducible polynomial over Q3. Let α be a root of F and L = Q(α).
By Corollary 3.3, there exists a unique absolute value of L extending | |3 such that∣∣a0 + a1α+ · · ·+ a8α

8
∣∣
L
= max

{
|a0|3, |a1|3 · e

−2
9 , . . . , |a8|3 · e

−16
9

}
for every a0, . . . , a8 ∈ Q.
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Figure 3. φ-Newton polygon of F.

Example 2. Let K = F3((x)) be the field of formal power series over F3.
Consider the following non-archimedean absolute value defined

|f | = max
{
e−i, xi divides f in F3[[x]]

}
.

For every f ∈ F3[[x]] and extend | | to F3((x)) by
∣∣∣fg ∣∣∣ = |f |

|g| , for every

(f, g) ∈ F3[[x]]× F3[[x]]
∗.

Let
F (y) = y4 + x2y2 + x3y + x3 ∈ O[y],

where O = F3[[x]] is the valuation ring of (K, | |) with maximal ideal
M=x · F3[[x]]. Then F (y) ≡ y4 (mod x). Let φ = y, then N−

φ (F ) = S is a

single side of slope λ = −3
4 , joining the points (0, 3) and (4, 0) (see Figure 4).

Since the side S is of degree gcd(3, 4) = 1 and

Rλ(F )(T ) = 1 + T ∈ Fφ[T ] ∼= F3[T ].

By [5, Corollary 3.2] we conclude that F (y) is irreducible overK. Let α be a root
of the polynomial F (y). By Corollary 3.3, there is a unique absolute value | |L
of L = K(α) extending | | such that∣∣a0(x) + a1(x)α+ a2(x)α

2 + a3(x)α
3
∣∣
L
=

max
{
|a0(x)|, |a1(x)| · e−3/4, |a2(x)| · e−3/2, |a3(x)| · e−9/4

}
for every a0(x), . . . , a3(x) ∈ F3 ((x)). Moreover,

e(| |L/| |) = 4 and f(| |L/| |) = 1.
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Figure 4. φ-Newton polygon of F .
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