ON THE GEOMETRIC DETERMINATION OF EXTENSIONS OF NON-ARCHIMEDEAN ABSOLUTE VALUES

Mohamed Faris - Lhoussain El Fadil

Sidi Mohamed Ben Abdellah University, Fez, MOROCCO

Abstract

Let || be a discrete non-archimedean absolute value of a field K with valuation ring \mathcal{O}, maximal ideal \mathcal{M} and residue field $\mathbb{F}=\mathcal{O} / \mathcal{M}$. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial $F \in \mathcal{O}[x]$. Assume that $\bar{F}=\bar{\phi}^{l}$ in $\mathbb{F}[x]$ for some monic polynomial $\phi \in \mathcal{O}[x]$ whose reduction modulo \mathcal{M} is irreducible, the ϕ-Newton polygon $N_{\phi}^{-}(F)$ has a single side of negative slope λ, and the residual polynomial $R_{\lambda}(F)(y)$ has no multiple factors in $\mathbb{F}_{\phi}[y]$. In this paper, we describe all absolute values of L extending ||. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.

1. Introduction

Let $K=\mathbb{Q}(\alpha)$ be an algebraic number field with $\alpha \in \mathbb{Z}_{K}$ the ring of algebraic integers of K. Let F be the minimal polynomial of α over the field \mathbb{Q}. The determination of the prime ideal decomposition in \mathbb{Z}_{K} of any rational prime p is one of the most important problems in algebraic number theory and is related to the factorization of the polynomial \bar{F} in $\mathbb{F}_{p}[x]$. Let $\bar{F}=\prod_{i=1}^{r} \bar{\phi}_{i}{ }^{e_{i}}$ be the factorization of \bar{F} in $\mathbb{F}_{p}[x]$, where $\bar{\phi}_{1}, \ldots, \bar{\phi}_{r}$ are distinct irreducible polynomials over \mathbb{F}_{p} and $\phi_{i} \in \mathbb{Z}[x]$ monic. In 1878, Dedekind proved that if p does not divide $\left(\mathbb{Z}_{K}: \mathbb{Z}[\alpha]\right)$, then $p \mathbb{Z}_{K}=\prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}}$, where $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ are distinct prime ideals of \mathbb{Z}_{K} with $\mathfrak{p}_{i}=p \mathbb{Z}_{K}+\phi_{i}(\alpha) \mathbb{Z}_{K}$ having residual degree equal to $\operatorname{deg} \phi_{i}$ (See [2, Theorem 4.8.13]). Dedekind also gave a criterion to test whether p divides the index $\left(\mathbb{Z}_{K}: \mathbb{Z}[\alpha]\right)$ (see [2, Theorem 6.1.4], [7]). In 1894,

[^0](c)(®)ఆ Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.

Hensel developed a powerful approach by showing that the prime ideals of \mathbb{Z}_{K} lying over p are in one-to-one correspondence with the monic irreducible factors of F over the field \mathbb{Q}_{p} of p-adic numbers and that the ramification index together with the residual degree of a prime ideal of \mathbb{Z}_{K} lying over p are the same as those of a simple extension of \mathbb{Q}_{p} obtained by adjoining a root of the corresponding irreducible factor of F belonging to $\mathbb{Q}_{p}[x]$. Keeping in view Hensel's result in 1928, Ore [13] introduced a new technique which generalizes Dedekind's criterion; Namely, Newton polygon techniques which enables us to get the factorization of $p \mathbb{Z}_{K}$. By virtue of Hensel's Lemma, the factorization of \bar{F} in $\mathbb{F}_{p}[x]$ leads to a factorization $F=F_{1} \cdots F_{r}$ over the ring \mathbb{Z}_{p} of p-adic integers with $\bar{F}_{i}=\bar{\phi}_{i}^{e_{i}}$ in $\mathbb{F}_{p}[x]$. For this purpose, he considered the ϕ_{i}-Newton polygon of F_{i} for each i, having t_{i} sides with negative slope which leads to a factorization of F_{i} into t_{i} factors, say $F_{i}=F_{i_{1}} \cdots F_{i t_{i}}$ in $\mathbb{Z}_{p}[x]$. Moreover, to each side S of slope λ of the ϕ_{i}-Newton polygon of F_{i}, he associated a polynomial $R_{\lambda}\left(F_{i}\right)(y)$ over the finite field $\mathbb{F}_{\phi_{i}}:=\frac{\mathbb{F}_{p}[x]}{\left(\bar{\phi}_{i}\right)}$ in an indeterminate y. The factorization of the associated polynomial $R_{\lambda}\left(F_{i}\right)(y)$ over $\mathbb{F}_{\phi_{i}}$ provides a further factorization of the factor of F_{i} corresponding to the side S (for more details on Newton polygon see below and [5]). Finally, Ore showed that if for some i, all these polynomials $R_{\lambda_{j}}\left(F_{i}\right)(y)$ corresponding to various sides $S_{j}, 1 \leq j \leq t_{i}$, of the ϕ_{i}-Newton polygon of F_{i} have no multiple factor, say $R_{\lambda_{j}}\left(F_{i}\right)(y)$ splits into $n_{i j}$ distinct irreducible factors over $\mathbb{F}_{\phi_{i}}$, then all the $\sum_{j=1}^{t_{i}} n_{i j}$ factors of F_{i} obtained in this way are irreducible over \mathbb{Q}_{p}. Further, the slopes of the sides of the ϕ_{i}-Newton polygon of F_{i} and the degrees of the irreducible factors of $R_{\lambda}\left(F_{i}\right)(y)$ over $\mathbb{F}_{\phi_{i}}$ for S ranging over all the sides of such a polygon lead to the explicit determination of the residual degrees and the ramification indices of all those prime ideals of \mathbb{Z}_{K} lying over p which correspond to the irreducible factors of F_{i}.

Non-archimedean absolute values are useful in non-archimedean analysis, p-adic differential equations, p-adic series, p-adic analytic number theory, and p-adic analytic geometry ([8], [9], [10], [14], [11]). Several authors studied the extensions of any rank one discrete absolute value. In this paper, our aim is to extend the scope of non-archimedean absolute value when the base field is an arbitrary field K with a discrete non-archimedean absolute value ||, where \mathcal{O} is the valuation ring of $\|, \mathcal{M}$ is its maximal ideal, and $\mathbb{F}=\mathcal{O} / \mathcal{M}$ is its residue field. Let $F \in \mathcal{O}[x]$ be a monic irreducible polynomial such that $\bar{F}=\bar{\phi}^{l}$ in $\mathbb{F}[x]$ for some monic polynomial $\phi \in \mathcal{O}[x]$ whose reduction modulo \mathcal{M} is irreducible, the ϕ-Newton polygon $N_{\phi}^{-}(F)$ has a single side of negative slope λ, and the residual polynomial $R_{\lambda}(F)(y)$ has no multiple factors in $\mathbb{F}_{\phi}[y]$. The main motivation behind this work is the result given in Bourbaki (see [12, $N^{o}: 7$, page: 149, Proposition: 10]) which shows that a non-archimedean absolute value extends, to any Galois extension L of finite degree, in a unique way when the
the base field is complete and non-discrete for $|\mid$. This absolute value is given by

$$
|\beta|_{L}=\left(\left|N_{L / K}(\beta)\right|\right)^{\frac{1}{n}}
$$

for every $\beta \in L$, where $n=[L: K]$ and $N_{L / K}$ is the norm of L over K. The main goal of this paper is to study the case where K is not necessarily Henselian and L / K is a simple algebraic extension which is not necessarily Galois. Some illustrating examples are also given, too.

2. Preliminaries

Recall that a valued field is the given of a pair $(K,| |)$, where K is a field and $\|$ is an absolute value of K, that is a mapping $\left|\mid: K \longrightarrow \mathbb{R}^{+}\right.$satisfying the following properties:
(1) $|x|=0$ if and only if $x=0$,
(2) $|x y|=|x||y|$,
(3) $|x+y| \leq|x|+|y|$
for every x, y in K.
If the third property is replaced by an ultrametric one, namely; $|x+y| \leq$ $\max \{|x|,|y|\}$, then the absolute value is called non-archimedean.

In this paper, we fix a valued field $(K,| |)$ with $|\mid$ a non-archimedean absolute value which we simply call in the rest of the article absolute value. Let L be a field extension of K, and $\left|\left.\right|_{L}\right.$ an absolute value of L extending $| \mid$. Consider the sets $\Gamma=\left|K^{*}\right|=\left\{|x|, x \in K^{*}\right\}$ and $\Gamma_{| |_{L}}=\left|L^{*}\right|_{L}=\left\{|x|_{L}, x \in L^{*}\right\}$. These sets are abelian totally ordered groups where Γ is a subgroup of $\Gamma_{| |_{L}}$. The index of Γ in $\Gamma_{| |_{L}}$, denoted $\mathfrak{e}\left(\left|\left.\right|_{L} /| |\right)=\left(\Gamma_{| |_{L}}: \Gamma\right)\right.$, is called the ramification index of the extension $\left|\left.\right|_{L}\right.$ above $| \mid$. In the same context the residue degree of $\left|\left.\right|_{L}\right.$ over $\|$ is the degree $\left[\mathbb{F}_{| |_{L}}: \mathbb{F}\right]$ denoted by $\mathfrak{f}\left(\left|\left.\right|_{L} /| |\right)\right.$.

Consider also the following sets: $\mathcal{O}=\{x \in K,|x| \leq 1\}, \mathcal{M}=\{x \in K,|x|<1\}$. It is well Known that that \mathcal{O} is a ring of valuation called the valuation ring of $(K,| |)$ and \mathcal{M} is its maximal ideal, hence $\mathbb{F}=\mathcal{O} / \mathcal{M}$ is a field, called the residue field of $(K,| |)$. When \mathcal{M} is a principal ideal generated by an element π, the absolute value $\|$ is called discrete, and if the Krull dimension of \mathcal{O} is 1 , we say that || is of rank one.

Remarks.

(1) Let $\left|\mid: K \longrightarrow \mathbb{R}^{+}\right.$be an absolute value and $\nu: K \longrightarrow \mathbb{R}$ the map defined by

$$
\nu(x)=-\ln (|x|) \quad \text { for all } x \in K^{*}
$$

Then ν satisfies the first 2 axioms of a valuation but not necessarily the third one. We say that ν is a Krull valuation of K if and only if $|\mid$ is nonarchimedean absolute value. In this case ν is called the Krull valuation associated to ||. Moreover, if ν of rank one discrete valuation we say also that || is of rank one discrete absolute value. In treating non-archimedean absolute value $|\mid$, it is convenient to replace $| a \mid$ by the related "exponential" value $e^{-\nu(a)}$, for every $a \in K$.
(2) Every absolute value $|\mid$ on K induces a topology on K. The completion of $(K,| |)$ will be denoted by $(\hat{K},| |)$.
(3) Every rank one valued field $(K,| |)$ allows a unique algebraic extension, up to value-preserving isomorphism, that satisfies Hensel's Lemma. This extension is denoted by K^{h} and called the henselization of the given valued field. Further, K^{h} is the separable closure of K in the completion \hat{K} with respect to | |.

Let ν be the discrete Krull valuation associated to $\left|\mid, \mathcal{O}_{\nu}\right.$ its valuation ring and M_{ν} its maximal ideal, then $\mathcal{O}_{\nu}=\mathcal{O}, M_{\nu}=\mathcal{M}$, and $\mathbb{F}_{\nu}=\mathbb{F}$. By normalization, we can assume that $\nu\left(K^{*}\right)=\mathbb{Z}$, and $\nu(\pi)=1$. Hence $\left|K^{*}\right|=$ $\left\{\ldots, e^{-2}, e^{-1}, 1, e, e^{2}, \ldots\right\}$.

Let $(\hat{K}, \hat{\nu})$ be the completion of $(K, \nu), \mathcal{O}_{\hat{\nu}}$ its valuation ring and $M_{\hat{\nu}}$ its maximal ideal. It is well known that $\Gamma_{\hat{\nu}}=\Gamma_{\nu}, M_{\hat{\nu}}$ is a principal ideal of $\mathcal{O}_{\hat{\nu}}$ generated by π, and $\mathbb{F}_{\hat{\nu}} \simeq \mathbb{F}_{\nu}$. Denote also by $\hat{\nu}$ the Gauss's extension of ν to the field $\hat{K}(x)$ defined by

$$
\hat{\nu}(P)=\min \left\{\hat{\nu}\left(a_{i}\right), i=0, \ldots, n\right\}
$$

for every polynomial $P=\sum_{i=0}^{n} a_{i} x^{i} \in \hat{K}[x]$, and extend $\hat{\nu}$ to $\hat{K}(x)^{*}$ by $\hat{\nu}(A / B)=$ $\hat{\nu}(A)-\hat{\nu}(B)$ for every $(A, B) \in \hat{K}[x] \times \hat{K}[x]^{*}$. The corresponding absolute value of the Gauss's valuation is called the infinite absolute value and it is defined by

$$
\begin{aligned}
& \left|\left.\right|_{\infty}: \hat{K}[x] \longrightarrow[0,+\infty[\right. \\
P= & \sum_{i=0}^{n} p_{i} x^{i} \mapsto|P|_{\infty}=\max \left\{\left|p_{i}\right|, i=0, \ldots, n\right\}
\end{aligned}
$$

and extend $\left|\left.\right|_{\infty}\right.$ to $\operatorname{hat} K(x)^{*}$ by

$$
\left|\frac{P}{Q}\right|_{\infty}=\frac{|P|_{\infty}}{|Q|_{\infty}}, \quad \text { for every } \quad(P, Q) \in \hat{K}[x] \times \hat{K}[x]^{*} .
$$

Let $\phi \in \mathcal{O}_{\hat{\nu}}[x]$ be a monic polynomial whose reduction $\bar{\phi}$ modulo $M_{\hat{\nu}}$ is irreducible. Let $\mathbb{F}_{\phi}=\mathcal{O}_{\nu}[x] /(\pi, \phi) \cong \mathbb{F}_{\nu}[x] /(\bar{\phi})$ be the associated residue field. For every polynomial $P \in \mathcal{O}_{\hat{\nu}}[x]$, let $P=p_{n} \phi^{n}+p_{n-1} \phi^{n-1}+\cdots+p_{1} \phi+p_{0}$ be the ϕ-expansion of P. This is reached by the Euclidean division of P by successive powers of ϕ. So $p_{i} \in \mathcal{O}_{\hat{\nu}}[x]$ with $\operatorname{deg}\left(p_{i}\right)<\operatorname{deg}(\phi)$ for $i=0, \ldots, n$.

If $p_{n} \neq 0$, then the integer n is called the ϕ-degree of P. The ϕ-Newton polygon $N_{\phi}(P)$ of P with respect to the valuation ν is the polygonal path consisting of the lower edges of positive lengths S_{1}, \ldots, S_{t} of the convex hull of the set of points $\left(i, \nu\left(p_{i}\right)\right)$ in the Euclidean plane with $\nu\left(a_{i}\right)<\infty, i=0, \ldots, n$, where the edges S_{j} are ordered by increasing slopes. We call each edge a side of $N_{\phi}(P)$ and write $N_{\phi}(P)=S_{1}+\cdots+S_{t}$. For every $j=1, \ldots, t$, let l_{j} be the length of the projection of S_{j} on the x-axis (which is called the length of S_{j}), $H_{j}=H\left(S_{j}\right)$ the length of the projection of S_{j} on the y-axis (which we call the height of $\left.S_{j}\right)$, and $d_{j}=d\left(S_{j}\right)=\operatorname{gcd}\left(l_{j}, H_{j}\right)$ is called the degree of S_{j}. Letting $\mathrm{e}_{j}=\frac{l_{j}}{d_{j}}$ and $\mathrm{h}_{j}=\frac{H_{j}}{d_{j}}$. It follows that e_{j} and h_{j} are two coprime positive integers and $\lambda_{j}=-\frac{\mathrm{h}_{j}}{\mathrm{e}_{j}}$ is the slope of S_{j}. The part of $N_{\phi}(P)$ consisting of the polygon whose sides are those consecutive sides of $N_{\phi}(P)$ of negative slopes is called the principal ϕ-Newton Polygon of P denote $N_{\phi}^{-}(P)$. For every $\lambda \in \mathbb{Q}^{-}$, we call the largest segment of $N_{\phi}(P)$ of slope λ the λ-component of P. It is reduced to the end point of S_{t} if $\lambda>\lambda_{j}$ for every $j=1, \ldots, t$, to the initial point of S_{1} if $\lambda_{j}>\lambda$ for every $j=1, \ldots, t$, and to the end point of $S_{j_{*}}$ (which coincides with the initial point of $S_{j_{*}+1}$) if $\lambda_{j_{*}}<\lambda<\lambda_{j_{*}+1}$, where $j_{*}=\max \left\{j=1, \ldots, t-1 \mid \lambda_{j}<\lambda\right\}$. Let $\lambda=-\frac{h}{\mathrm{e}} \in \mathbb{Q}^{-}$for some coprime integers e and h, and S be the λ-component of $N_{\phi}(P)$. Let (s, u) be the initial point of S, l its length, and $d=\frac{l}{e}$ its degree. For every $i=0, \ldots, l$, define the residue coefficient $t_{i} \in \mathbb{F}_{\phi}$ associated to S, by $t_{i}=0$ if $\left(i, \nu\left(p_{i}\right)\right)$ lies strictly above S, and $t_{i}=\left(\frac{p_{i}}{\pi^{\nu\left(p_{i}\right)}}\right)$ if $\left(i, \nu\left(p_{i}\right)\right)$ lies on S. Remark that the only points of integer coordinates are $(s, u),(s+\mathrm{e}, u-\mathrm{h}), \ldots,(s+d \mathrm{e}, u-d \mathrm{~h})$. We attach to S the residual polynomial $R_{\lambda}(P)(y) \in \mathbb{F}_{\phi}[y]$ defined by $R_{\lambda}(P)(y)=\sum_{i=0}^{d} c_{i} y^{i}$ with $c_{i}=t_{s+i e}$, for every $i=0, \ldots, d$. For more details we refer to [6] for Newton Polygon over \mathbb{Z}_{p} and [5] for rank one discrete valuation.

The following Theorem plays a key role to prove our main results. It establishes a one-to-one correspondence between extensions of || to L and the irreducible factors of F in $\hat{K}[x]$. In particular, if $(K,| |)$ is a complete field then there is a unique extension of $\|$ to any algebraic extension of K.

Theorem 2.1 ([3], Theorem 2.1). Let $L=K(\alpha)$ be a simple extension generated by a root $\alpha \in \bar{K}$ of a monic irreducible polynomial $F \in K[x]$, and let $F=\prod_{i=1}^{t} F_{i}^{l_{i}}$ be the factorization into powers of monic irreducible factors in $K^{h}[x]$. Then $l_{i}=1$ for every $i=1, \ldots, t$ and there are exactly t distinct absolute values $\left.\left|\left.\right|_{1}, \ldots\right.$, and $|\right|_{t}$ of L extending $|\mid$. Furthermore, for every absolute value $\left.\right|_{i}$ of L associated to the irreducible factor F_{i}, we have

$$
|P(\alpha)|_{i}=\left|P\left(\alpha_{i}\right)\right|_{\overline{K^{h}}},
$$

where $\left|\left.\right|_{\overline{K^{h}}}\right.$ is the unique absolute value of an algebraic closure $\overline{K^{h}}$ of K^{h} extending $\left|\mid\right.$ and $\alpha_{i} \in \bar{K}$ is a root of F_{i}.

3. Main results

Lemma 3.1. Let $(K,| |)$ be a valued field provided by a discrete non-archimedean absolute value $|\mid$. Let $F \in \mathcal{O}[x]$ be a monic irreducible polynomial. Assume that $\bar{F}=\bar{\phi}^{l} \in \mathbb{F}[x]$ for some monic polynomial $\phi \in \mathcal{O}[x]$ whose reduction is irreducible in $\mathbb{F}[x]$ and for some natural integer $l, N_{\phi}^{-}(F)=S$ has a single side of a negative finite slope λ, and $R_{\lambda}(F)(y)$ is a power of a monic irreducible polynomial $\psi(y)$ in $\mathbb{F}_{\phi}[y]$. Let $\gamma=\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}}$, where $\lambda=-\frac{\mathrm{h}}{\mathrm{e}}$ for some coprime integers e and h . Then the polynomial $\psi(y)$ is the minimal polynomial of the element $\bar{\gamma}$ over \mathbb{F}_{ϕ}.

Theorem 3.2. Under the hypotheses of Lemma 3.1, Let $\left|\left.\right|_{L}\right.$ be an absolute value of L extending $|\mid$, then

$$
\begin{equation*}
|P(\alpha)|_{L} \leq \max \left\{\left|p_{i}(x)\right|_{\infty} \cdot e^{i \lambda}, \quad i=0, \ldots, n\right\} \tag{1}
\end{equation*}
$$

for any polynomial $P=\sum_{i=0}^{n} p_{i} \phi^{i} \in \mathcal{O}[x]$ with $\operatorname{deg}\left(p_{i}\right)<\operatorname{deg}(\phi)$ for every $i=0, \ldots, n$. The equality holds if and only if $\psi(y)$ does not divide $R_{\lambda}(P)(y)$.
Corollary 3.3. Under the above hypotheses of Theorem 3.2 assume that $R_{\lambda}(F)(y)$ is a monic irreducible polynomial of $\mathbb{F}_{\phi}[y]$, then there is a unique absolute value $\left|\left.\right|_{L}\right.$ of L extending $| \mid$ such that

$$
\begin{equation*}
|P(\alpha)|_{L}=\max \left\{\left|p_{i}(x)\right|_{\infty} \cdot e^{i \lambda}, \quad i=0, \ldots, n\right\} \tag{2}
\end{equation*}
$$

for every polynomial $P=\sum_{i=0}^{n} p_{i} \phi^{i} \in K[x]$ such that $\operatorname{deg} p_{i}<\operatorname{deg} \phi$ and $\operatorname{deg} P<\operatorname{deg} F$.
Theorem 3.4. Under the hypotheses of the Theorem 3.2, we have the following
(1) For every absolute value $\left|\left.\right|_{L}\right.$ of L extending $| \mid$, e divides the ramification index $\mathfrak{e}\left(\left|\left.\right|_{L} /| |\right)\right.$ and $m=\operatorname{deg} \phi$ divides the residue degree $\mathfrak{f}\left(\left|\left.\right|_{L} /| |\right)\right.$.
(2) If $R_{\lambda}(F)(y)$ is irreducible over \mathbb{F}_{ϕ}, then the ramification index and the residual degree of the absolute value $\left|\left.\right|_{L}\right.$ of L extending $| \mid$ satisfy $: \mathfrak{e}\left(| |_{L} /| |\right)=\mathrm{e}$ and $\mathfrak{f}\left(\left|\left.\right|_{L} /| |\right)=d \cdot m\right.$ where $d=\frac{l}{\mathrm{e}}$.
Corollary 3.5. Under the assumptions of Theorem 3.2, assume that $R_{\lambda}(F)(y)=\prod_{i=1}^{t} \psi_{i}(y)$ is the factorization of $R_{\lambda}(F)(y)$ into a product of distinct irreducible polynomials $\psi_{i}(y)$ in $\mathbb{F}_{\phi}[y]$. Then there exists exactly t absolute values $\left|\left.\right|_{1}, \ldots,| |_{t}\right.$ of L extending $| \mid$. Moreover,
(i) For every polynomial P with ϕ-expansion $\sum_{j=0}^{n} p_{j} \phi^{j} \in K[x]$ such that $\psi_{i}(y)$ does not divide $R_{\lambda}\left(\frac{P}{\pi^{\nu(P)}}\right)(y)$, we have

$$
\begin{equation*}
|P(\alpha)|_{i}=\max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda}, \quad j=0, \ldots, n\right\} \tag{3}
\end{equation*}
$$

(ii) $\mathfrak{e}\left(\left|\left.\right|_{i} /| |\right)=\mathrm{e} \quad\right.$ and $\quad \mathfrak{f}\left(\left|\left.\right|_{i}\right||\mid)=\operatorname{deg} \psi_{i} \cdot \operatorname{deg} \phi \quad\right.$ for every $\quad i=1, \ldots, t$.

4. Proofs of the main results

Proof of Lemma 3.1. By [4, Lemma 3.6] the homomorphism $\mathcal{O}[x] \hookrightarrow \mathbb{F}_{| |_{L}}$ defined by $P \mapsto \overline{P(\alpha)}$ induces the following injective homomorphism $\mathbb{F}_{\phi} \hookrightarrow \mathbb{F}_{| |_{L}}$ defined by $\bar{P} \mapsto \overline{P(\alpha)}$. Hence, \mathbb{F}_{ϕ} is identified with a subfield of $\mathbb{F}_{| |_{L}}$, and so we can say that any residual polynomial has its residual coefficients in the field $\mathbb{F}_{| |_{L}}$.

Let $F=\sum_{i=0}^{l} a_{i} \phi^{i} \in \mathcal{O}[x]$ be the ϕ-expansion of the polynomial F, then

$$
\sum_{i=0}^{l} a_{i}(\alpha) \phi(\alpha)^{i}=0
$$

So

$$
\sum_{\left(i, \nu\left(a_{i}\right)\right) \in S} a_{i}(\alpha) \phi(\alpha)^{i}+\sum_{\left(i, \nu\left(a_{i}\right)\right) \text { above } S} a_{i}(\alpha) \phi(\alpha)^{i}=0
$$

(see Figure 1).
The unique points with integer coordinates are $\left(0, \nu\left(a_{0}\right)\right),\left(\mathrm{e}, \nu\left(a_{0}\right)-\mathrm{h}\right), \ldots$ $\ldots,(d \mathrm{e}=l, 0)$. Then

$$
\sum_{i=0}^{l} a_{i}(\alpha) \phi(\alpha)^{i}+\sum_{i=0}^{l} a_{i}(\alpha) \phi(\alpha)^{i}=0
$$

e divides $i \quad$ e does not divide i
As $d=\frac{l}{e}$, we get

$$
\sum_{i=0}^{d} a_{i \mathrm{e}}(\alpha)\left(\phi(\alpha)^{\mathrm{e}}\right)^{i}+\sum_{i=1}^{l-1} a_{i}(\alpha) \phi(\alpha)^{i}=0
$$

$$
i \notin \mathrm{e} \cdot \mathbb{N}
$$

By factoring by $\pi^{d \mathrm{~h}}$, we get

$$
\begin{equation*}
\sum_{i=0}^{d} \frac{a_{i \mathrm{e}}(\alpha)}{\pi^{(d-i) \mathrm{h}}}\left(\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}}\right)^{i}+\sum_{\substack{i=1 \\ i \neq \mathrm{e} \cdot \mathbb{N}}}^{l-1} \frac{a_{i}(\alpha) \phi(\alpha)^{i}}{\pi^{d \mathrm{~h}}}=0 \tag{4}
\end{equation*}
$$

Since $N_{\phi}^{-}(F)=S$ is a single side of slope $\lambda=-\frac{\mathrm{h}}{\mathrm{e}}, \nu\left(a_{i e}(x)\right) \geq \lambda(i \mathrm{e}-l)$ and so
 Therefore

$$
\begin{equation*}
\frac{a_{i \mathrm{e}}(\alpha)}{\pi^{(d-i) \mathrm{h}}}\left(\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}}\right)^{i} \in \mathcal{O}_{| |_{L}} \tag{5}
\end{equation*}
$$

for every $i=0, \ldots, d$. If e does not divide i, then $\nu\left(a_{i}\right)>\lambda(i-l)$ and so $\left|a_{i}(x)\right|_{\infty}<e^{\lambda(l-i)}$. Thus $\left|\frac{a_{i}(\alpha) \phi(\alpha)^{i}}{\pi^{d h}}\right|_{L}<1$. Therefore

$$
\begin{equation*}
\frac{a_{i}(\alpha) \phi(\alpha)^{i}}{\pi^{d \mathrm{~h}}} \in M_{| |_{L}} \tag{6}
\end{equation*}
$$

From equations (4), (5), and (6), one deduces that

$$
\sum_{i=0}^{d} \frac{a_{i \mathrm{e}}(\alpha)}{\pi^{(d-i) \mathrm{h}}}\left(\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}}\right)^{i}=0 \quad\left(\bmod M_{| |_{L}}\right)
$$

Hence $R_{\lambda}(F)(\bar{\gamma})=0$, and so $\psi(\bar{\gamma})=0$.

Figure 1. ϕ-Newton polygon of F.

Proof of Theorem 3.2. As $P=\sum_{j=0}^{n} p_{j} \phi^{j} \in \mathcal{O}[x]$, we have

$$
|P(\alpha)|_{L} \leq \max \left\{\left|p_{j}(\alpha)\right|_{L} \cdot|\phi(\alpha)|_{L}^{j}, j=0, \ldots, n\right\}
$$

By [4, Lemma 3.6] and [4, Theorem 3.10], we have

$$
\begin{equation*}
|P(\alpha)|_{L} \leq \max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda}, \quad j=0, \ldots, n\right\} \tag{7}
\end{equation*}
$$

Now, suppose that $|P(\alpha)|_{L}<\max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda}, j=0, \ldots, n\right\}$, and show that $R_{\lambda}(P)(\bar{\gamma})=0$ where $\gamma=\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}}$. Let (s, u) be the initial point of the λ --component T of the ϕ-Newton polygon of $P, t=l(T)$ its length, $\delta=d(T)=\frac{t}{e}$ its degree, and ($s+\delta \mathrm{h}, u-\delta \mathrm{h}$) its end point (see Figure (2)). Then the polynomial P can be written as: $P=Q+R$ such that

$$
Q \underset{\left(j, \nu\left(p_{j}\right)\right) \in T}{ } p_{j} \phi^{j} \quad \text { and } \quad R=\sum_{\left(j, \nu\left(p_{j}\right)\right) \text { above } T} p_{j} \phi^{j}
$$

It is well-known that the side T is the set of points $(a, b) \in N_{\phi}^{-}(P)$ in the Euclidean plane such that $b-\lambda a$ is minimal. Since (s, u) lies on T, then
$\min \left\{\nu\left(p_{j}\right)-j \lambda / j=0, \ldots, n\right\}=u-s \lambda$, and so $\max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda} / j=\right.$ $0, \ldots, n\}=e^{-u+s \lambda}$.

If $\left(j, \nu\left(p_{j}\right)\right)$ lies on T, then $\nu\left(p_{j}\right)-j \lambda=u-s \lambda$, thus

$$
|Q(\alpha)|_{L} \leq e^{-u+s \lambda}
$$

If $\left(j, \nu\left(p_{j}\right)\right)$ lies strictly above T, then $\nu\left(p_{j}\right)-j \lambda>u-s \lambda$, thus

$$
|R(\alpha)|_{L}<e^{-u+s \lambda}
$$

So

$$
\begin{equation*}
\left|\sum_{\left(j, \nu\left(p_{j}\right)\right) \in T} p_{j}(\alpha) \phi(\alpha)^{j}\right|_{L}<e^{-u+s \lambda} . \tag{8}
\end{equation*}
$$

If $\left(j, \nu\left(p_{j}\right)\right)$ lies on T, then $j=s+i$ for some $i=0, \ldots, \delta$, and so $\nu\left(p_{s+i \mathrm{e}}\right)=$ $u-i$ h. Therefore

$$
\left|\sum_{i=0}^{\delta} p_{s+i \mathrm{e}}(\alpha) \phi(\alpha)^{s+i \mathrm{e}}\right|_{L}<e^{-u+s \lambda}
$$

Hence

$$
\left|\pi^{u} \cdot \phi(\alpha)^{s}\right|_{L} \cdot\left|\sum_{i=0}^{\delta} \frac{p_{s+i \mathrm{e}}(\alpha)}{\pi^{u}}\left(\phi(\alpha)^{\mathrm{e}}\right)^{i}\right|_{L}<e^{-u+s \lambda}
$$

Since

$$
\left|\pi^{u} \cdot \phi(\alpha)^{s}\right|_{L}=e^{-u+s \lambda}
$$

by [4 Theorem 3.10], we conclude that

$$
\left|\sum_{i=0}^{\delta} \frac{p_{s+i \mathrm{e}}(\alpha)}{\pi^{u-i \mathrm{~h}}} \gamma^{i}\right|_{L}<1
$$

Thus

$$
\sum_{i=0}^{\delta}\left(\frac{\overline{p_{s+i \mathrm{e}}}}{\pi^{u-i \mathrm{~h}}}\right)(\bar{\gamma})^{i}=0(\bmod \mathcal{M})
$$

So $R_{\lambda}(P)(\bar{\gamma})=0$. Hence by Lemma $3.1 \psi(y)$ divides $R_{\lambda}(P)(y)$ in $\mathbb{F}_{\phi}[y]$. Therefore, one deduces that when $\psi(y)$ does not divide $R_{\lambda}(P)(y)$ in $\mathbb{F}_{\phi}[y]$, then $|P(\alpha)|_{L}=\max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda}, j=0, \ldots, n\right\}$. If $\psi(y)$ divides $R_{\lambda}(P)(y)$ in $\mathbb{F}_{\phi}[y]$, then $R_{\lambda}(P)(\bar{\gamma})=0$. By the same above process we conclude that

$$
|Q(\alpha)|_{L}<e^{-u+s \lambda} \quad \text { and so } \quad|P(\alpha)|_{L}<\max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda}, j=0, \ldots, n\right\}
$$

From where the equivalence.

Figure 2. ϕ-Newton polygon of P.

Proof of Corollary 3.3, Let $\left|\left.\right|_{L}\right.$ be an absolute value of L extending $|\mid$, and let $P \in K[x]$ be a polynomial of degree less than the degree of F. The ϕ-expansion of F has the following form $F=a_{0}+a_{1} \phi+\cdots+\phi^{l} \in \mathcal{O}[x]$. Let $P=b_{0}+\cdots+b_{t} \phi^{t} \in K[x]$ be the ϕ-expansion of P with $t<l$. Let $P_{0}=\frac{P}{\pi^{\nu(P)}} \in \mathcal{O}[x]$. Then $\operatorname{deg} R_{\lambda}\left(P_{0}\right)(y)<\operatorname{deg} R_{\lambda}(F)(y)$ and so $R_{\lambda}(F)(y)$ does not divide $R_{\lambda}\left(P_{0}\right)(y)$ in $\mathbb{F}_{\phi}[y]$. According to Theorem 3.2 we have

$$
\left|P_{0}(\alpha)\right|_{L}=\max \left\{\left|\frac{p_{i}(x)}{\pi^{\nu(P)}}\right|_{\infty} \cdot e^{i \lambda}, i=0, \ldots, n\right\}
$$

So

$$
\begin{equation*}
|P(\alpha)|_{L}=\max \left\{\left|p_{i}(x)\right|_{\infty} \cdot e^{i \lambda}, i=0, \ldots, n\right\} \tag{9}
\end{equation*}
$$

Let $\left.\left|\left.\right|_{1}\right.$ and $|\right|_{2}$ be two absolute values of L extending $\left.|\mid$, then $|\right|_{1}$ and $\left|\left.\right|_{2}\right.$ have the same expression (9) on L. Therefore, there is a unique absolute value $\left|\left.\right|_{L}\right.$ of L extending ||.
Proof of Theorem 3.4,
(1) By [4, Theorem 3.10] we have $|\phi(\alpha)|_{L}=e^{\lambda}$. Then $\Gamma \subset \Gamma\left[e^{\lambda}\right] \subset \Gamma_{| |_{L}}$. Thus $\left(\Gamma\left[e^{\lambda}\right]: \Gamma\right)$ divides $\left(\Gamma_{| |_{L}}: \Gamma\right)$. On the other hand, e is the smallest integer such that $\left(e^{\lambda}\right)^{\mathrm{e}}=e^{-h} \in \Gamma$. So $\Gamma\left[e^{-\lambda}\right] / \Gamma$ is a torsion group of order e. Therefore e divides $\mathfrak{e}\left(\left|\left.\right|_{L} /| |\right)\right.$. In the beginning of the proof of Lemma 3.1 we showed that \mathbb{F}_{ϕ} is a subfield of $\mathbb{F}_{\left.\right|_{L}}$. Then $\mathbb{F} \subset \mathbb{F}_{\phi} \subset \mathbb{F}_{\left.\right|_{\left.\right|_{L}}}$. Then $\left[\mathbb{F}_{\phi}: \mathbb{F}\right]$ divides $\left[\mathbb{F}_{\left.\right|_{L}}: \mathbb{F}\right]$. As $\left[\mathbb{F}_{\phi}: \mathbb{F}\right]=\operatorname{deg} \phi=m$, m divides $\mathfrak{f}\left(\left|\left.\right|_{L} /| |\right)\right.$.
(2)(a) We show that $\left(\Gamma_{| |_{L}}: \Gamma\right)=$ e. Let $\mathbb{N}_{\mathrm{e}-1}=\{0, \ldots, \mathrm{e}-1\}$ and consider the mapping $\sigma: \mathbb{N}_{\mathrm{e}-1} \rightarrow \Gamma_{| |_{L}} / \Gamma$ defined by $i \mapsto\left(\overline{e^{i \lambda}}\right)$.
Let us show that σ is injective. Let $i, j \in \mathbb{N}_{\mathrm{e}-1}$ such that

$$
\overline{e^{-i \frac{h}{e}}}=\overline{e^{-j \frac{h}{e}}}(\bmod \Gamma) .
$$

Then $\overline{e^{(j-i) \frac{h}{e}}}=1(\bmod \Gamma)$, thus e divides $j-i$ and so $i=j$.
Let us show that σ is surjective. Let $\mu \in \Gamma_{| |_{L}} / \Gamma$. Then there exists a polynomial $P \in K[x]$ with $\operatorname{deg} P<\operatorname{deg} F$ such that $\mu=|P(\alpha)|_{L} \cdot \Gamma$, then $\operatorname{deg} R_{\lambda}(P)(y)<\operatorname{deg} R_{\lambda}(F)(y)$ and so $\psi(y)$ does not divide $R_{\lambda}(F)(y)$. Let $\sum_{i=0}^{n} p_{i} \phi^{i}$ be the ϕ-expansion of P. By Theorem 3.2, there exists an integer $i_{0}=0, \ldots, n$ such that

$$
\begin{aligned}
\left.P(\alpha)\right|_{L} & =\max \left\{\left|p_{i}(x)\right|_{\infty} \cdot e^{i \lambda}, i=0, \ldots, n\right\} \\
& =e^{-u_{i_{0}}} e^{i_{0} \lambda}=e^{-u_{i_{0}}-i_{0} \frac{\frac{k}{e}}{}}
\end{aligned}
$$

where $u_{i_{0}}=\nu\left(p_{i_{0}}\right) \in \mathbb{Z}$. By the Euclidean division, there exists a unique pair (q, j) of integers such that $i_{0}=q \mathrm{e}+j$ with $0 \leq j \leq \mathrm{e}-1$, then

$$
|P(\alpha)|_{L}=e^{-j \frac{\mathrm{~h}}{\mathrm{e}}} \cdot e^{-u_{i_{0}}-q h} \in e^{-j \frac{\mathrm{~h}}{\mathrm{e}}} \cdot \Gamma .
$$

Thus there exists an element $j \in \mathbb{N}_{\mathrm{e}-1}$ such that $\sigma(j)=\mu$ and so σ is a one-to-one correspondence between $\mathbb{N}_{\mathrm{e}-1}$ and $\Gamma_{| |_{L}} / \Gamma$. Therefore

$$
\left(\Gamma_{| |_{L}}: \Gamma\right)=\mathrm{e} .
$$

(b) We show that $\mathfrak{f}\left(\left|\left.\right|_{L} /| |\right)=m d\right.$. Since $\left[\mathbb{F}_{\left.\right|_{L}}: \mathbb{F}\right]=\left[\mathbb{F}_{\left.\right|_{L}}: \mathbb{F}_{\phi}\right]\left[\mathbb{F}_{\phi}: \mathbb{F}\right]$, and $\mathbb{F}_{\phi}=\frac{\mathbb{F}[x]}{(\bar{\phi})}$, we get $\quad\left[\mathbb{F}_{\phi}: \mathbb{F}\right]=\operatorname{deg} \phi=m$.
Then it remains to show that $\left[\mathbb{F}_{\left.\right|_{L}}: \mathbb{F}_{\phi}\right]=d$. Consider the following ring homomorphism
defined by

$$
\tau: \mathbb{F}_{\phi}[y] \rightarrow \mathbb{F}_{| |_{L}}
$$

$$
Q(y) \mapsto Q(\bar{\gamma}) \quad \text { with } \quad \gamma=\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}} \in \mathcal{O}_{\left.\right|_{\mid L}}^{*}
$$

Then:
(i) We claim that $\operatorname{ker} \tau=\left(R_{\lambda}(F)(y)\right)$. By Lemma 3.1 $R_{\lambda}(F)(y)$ is the minimal polynomial of $\bar{\gamma}$ over \mathbb{F}_{ϕ}. Thus we conclude that $\operatorname{ker} \tau$ is the principal ideal of $\mathbb{F}_{\phi}[y]$ generated by $R_{\lambda}(F)(y)$.
(ii) We show that τ is a surjective. Let ω be an element of $\mathbb{F}_{\left.\right|_{L}}$, then $\omega=\overline{P(\alpha)}$ for some polynomial $P \in K[x]$ with $\operatorname{deg} P<\operatorname{deg} F$ and $|P(\alpha)|_{L} \leq 1$. If $|P(\alpha)|_{L}<1$ (i.e, $\omega=0$), then by Lemma 3.1 , we have $R_{\lambda}(F)(\bar{\gamma})=0$. Hence $\omega=\tau\left(R_{\lambda}(F)(y)\right)$. If $|P(\alpha)|_{L}=1$ (i.e; $\omega \neq \overline{0}$), then $|P(\alpha)|_{L}=1$. Let $\sum_{i=0}^{n} p_{i} \phi^{i}$ be the ϕ-expansion of $P, P_{0}=\frac{P}{\pi^{\nu(P)}} \in \mathcal{O}[x]$, and $N_{\phi}^{-}\left(P_{0}\right)$ the ϕ-Newton polygon of P_{0}.

Let (s, u) be the initial point of T; the λ-component of $N_{\phi}^{-}\left(P_{0}\right)$, $t=l(T)$ its x-length, and let $\delta=d(T)=\frac{t}{e}$ be its degree. As we have seen in the proof of the Theorem [3.2, we have

$$
\begin{aligned}
P(\alpha)=\pi^{u+\nu(P)} \phi(\alpha)^{s}\left[\sum_{\left(j, \nu\left(p_{0 j}\right)\right) \in T} \frac{p_{0 j}(\alpha) \phi(\alpha)^{j}}{\pi^{u} \cdot \phi(\alpha)^{s}}+\right. \\
\left.\sum_{\left(j, \nu\left(p_{0 j}\right)\right) \text { above } T} \frac{p_{0 j}(\alpha) \phi(\alpha)^{j}}{\pi^{u} \cdot \phi(\alpha)^{s}}\right] \text { in } \mathcal{O}_{| |_{L}},
\end{aligned}
$$

with $p_{0 j}=\frac{p_{j}}{\pi^{\nu(P)}} \in \mathcal{O}[x]$, for every $j=0, \ldots, n$.
If $\left(j, \nu\left(p_{0 j}\right)\right)$ lies above T, then $\left|\frac{p_{0 j}(\alpha) \phi(\alpha)^{j}}{\pi^{u} \cdot \phi(\alpha)^{s}}\right|_{L}<1$. Then

$$
\frac{p_{0 j}(\alpha) \phi(\alpha)^{j}}{b \cdot \pi^{u} \cdot \phi(\alpha)^{s}} \equiv 0\left(\bmod M_{| |_{L}}\right)
$$

and so
$P(\alpha) \equiv \pi^{u+\nu(P)} \cdot \phi(\alpha)^{s}\left[\sum_{\left(j, \nu\left(p_{0 j} j\right) \in T\right.} \frac{p_{0 j}(\alpha) \phi(\alpha)^{j}}{\pi^{u} \cdot \phi(\alpha)^{s}}\right]\left(\bmod M_{| |_{L}}\right)$.
As $\left(j, \nu\left(p_{0 j}\right)\right)$ lies on T, there is a unique $i=0, \ldots, \delta$ such that $j=s+i \mathrm{e}$ and $\nu\left(p_{0 s+i \mathrm{e}}\right)=u-i \mathrm{~h}$. Thus
$P(\alpha) \equiv \pi^{u+\nu(P)} \cdot \phi(\alpha)^{s}\left[\sum_{i=0}^{\delta}\left(\frac{p_{0 s+i \mathrm{e}}(\alpha)}{\pi^{u-i \mathrm{~h}}}\right)\left(\frac{\phi(\alpha)^{\mathrm{e}}}{\pi^{\mathrm{h}}}\right)^{i}\right]\left(\bmod M_{| |_{L}}\right)$.
On the other hand, since the point (s, u) lies on T, by Theorem 3.2 we have $|P(\alpha)|_{L}=e^{-u-\nu(P)} \cdot e^{s \lambda}$. Since $|P(\alpha)|_{L}=1, e^{-\nu(P)-u-s \frac{h}{e}}=1$. Then $\nu(P)+u+s \frac{\mathrm{~h}}{\mathrm{e}}=0$, thus e divides s, and $s=\mathrm{e} a$ for some rational integer a. Hence $\pi^{u+\nu(P)} \cdot \phi(\alpha)^{s}=\pi^{u+\nu(P)+a \mathrm{~h}} \cdot \gamma^{a}=c \cdot \gamma^{a}$, where $c=\pi^{u+\nu(P)+a \mathrm{~h}} \in \mathbb{F}^{*}$ because $|c|=e^{-\nu(P)-u-a \mathrm{~h}}=1$. Then

$$
P(\alpha) \equiv c \cdot \gamma^{a} \sum_{i=0}^{\delta}\left(\frac{p_{0 s+i \mathrm{e}}(\alpha)}{\pi^{u-i \mathrm{~h}}}\right) \gamma^{i}\left(\bmod M_{| |_{L}}\right)
$$

Thus, there exists a polynomial $Q(y)=c y^{a} R_{\lambda}\left(P_{0}\right)(y) \in \mathbb{F}_{\phi}[y]$ such that $\overline{P(\alpha)}=Q(\bar{\gamma})$ in $\mathbb{F}_{| |_{L}}$. Therefore, τ is a surjective ring homomorphism. As $R_{\lambda}(F)(y)$ is the minimal polynomial of $\bar{\gamma}$ over \mathbb{F}_{ϕ}, we get

$$
\mathbb{F}_{\left.\right|_{L}} \cong \frac{\mathbb{F}_{\phi}[y]}{\left(R_{\lambda}(F)(y)\right)}
$$

Thus
$\left[\mathbb{F}_{| |_{L}}: \mathbb{F}_{\phi}\right]=\operatorname{deg} R_{\lambda}(F)(y)=d \quad$ and $\quad \mathfrak{f}\left(\left|\left.\right|_{L} /| |\right)=m d\right.$.

Proof of Corollary 3.5,
(1) Let $F=F_{1} \cdots F_{t}$ be the factorization of the polynomial F in $K^{h}[x]$. For every $i=1, \ldots, t$, we have by [5. Theorem 3.7] that $\overline{F_{i}}=\bar{\phi}^{l_{i}} \in \mathbb{F}_{\phi}[x]$ for some integer $l_{i} \geq 1, N_{\phi}^{-}\left(F_{i}\right)=S_{i}$ has a single side of slope λ, and $R_{\lambda}\left(F_{i}\right)(y) \equiv \psi_{i}(y) \in \mathbb{F}_{\phi}[y]$, then F_{i} is irreducible in $K^{h}[x]$. Let $\alpha_{i} \in \overline{K^{h}}$ be a root of F_{i}, and $L_{i}=K^{h}\left(\alpha_{i}\right)$. Then there is a unique absolute value $\left|\left.\right|_{L_{i}}\right.$ of L_{i} extending ||. Moreover, by Theorem 3.2,

$$
\left|P\left(\alpha_{i}\right)\right|_{L_{i}}=\max \left\{\left|p_{j}(x)\right|_{\infty} \cdot e^{j \lambda}, j=0, \ldots, n\right\}
$$

for every polynomial
does not divide

$$
P=\sum_{j=0}^{n} p_{j} \phi^{j} \in K[x] \quad \text { with } \quad \psi_{i}(y)
$$

$$
R_{\lambda}\left(\frac{P}{\pi^{\nu(P)}}\right)(y)
$$

By Theorem 2.1 there are exactly t absolute values $\left|\left.\right|_{1}, \ldots,| |_{t}\right.$, of $L=K(\alpha)$ extending || such that

$$
|P(\alpha)|_{i}=\left|P\left(\alpha_{i}\right)\right|_{\overline{K^{h}}}=\left|P\left(\alpha_{i}\right)\right|_{L_{i}}
$$

for every such a polynomial P.
(2) By Theorem 3.4 for every $i=1, \ldots, t$ we have

$$
\mathfrak{e}\left(\left|\left.\right|_{i} /| |\right)=\mathfrak{e}\left(| |_{L_{i}} /| |\right)=\mathrm{e}\right.
$$

and

$$
\mathfrak{f}\left(\left|\left.\right|_{i} /| |\right)=\mathfrak{f}\left(| |_{L_{i}} /| |\right)=\operatorname{deg} \psi_{i} \cdot \operatorname{deg} \phi\right.
$$

5. Examples

Example 1. Let $\left(\mathbb{Q},| |_{3}\right)$ be the non-archimedean valued field with $\left|\left.\right|_{3}\right.$ the 3-adic absolute value associated to the valuation ν_{3}. Let $F=x^{9}+54 x^{3}+45 \in \mathbb{Z}[x]$. Then

$$
\bar{F}=\phi^{9} \in \mathbb{F}_{3}[x] \quad \text { with } \quad \phi=x \quad \text { and } \quad N_{\phi}^{-}(F)=S
$$

has a single side joining the points $(0,2)$ and $(9,0)$ of slope $\lambda=-\frac{2}{9}$ (see Figure 3). Also we have $R_{\lambda}(F)(y)=1+y \in \mathbb{F}_{\phi}[y]$ is irreducible. Then by [5, Corollary 3.2] F is an irreducible polynomial over \mathbb{Q}_{3}. Let α be a root of F and $L=\mathbb{Q}(\alpha)$. By Corollary 3.3 there exists a unique absolute value of L extending $\left|\left.\right|_{3}\right.$ such that

$$
\left|a_{0}+a_{1} \alpha+\cdots+a_{8} \alpha^{8}\right|_{L}=\max \left\{\left|a_{0}\right|_{3},\left|a_{1}\right|_{3} \cdot e^{\frac{-2}{9}}, \ldots,\left|a_{8}\right|_{3} \cdot e^{\frac{-16}{9}}\right\}
$$

for every $a_{0}, \ldots, a_{8} \in \mathbb{Q}$.

Figure 3. ϕ-Newton polygon of F.

Example 2. Let $K=\mathbb{F}_{3}((x))$ be the field of formal power series over \mathbb{F}_{3}. Consider the following non-archimedean absolute value defined

$$
|f|=\max \left\{e^{-i}, x^{i} \text { divides } f \text { in } \mathbb{F}_{3}[[x]]\right\}
$$

For every $f \in \mathbb{F}_{3}[[x]]$ and extend $\left.\left|\mid\right.$ to $\mathbb{F}_{3}((x))$ by $| \frac{f}{g} \right\rvert\,=\frac{|f|}{|g|}$, for every

$$
(f, g) \in \mathbb{F}_{3}[[x]] \times \mathbb{F}_{3}[[x]]^{*}
$$

Let

$$
F(y)=y^{4}+x^{2} y^{2}+x^{3} y+x^{3} \in \mathcal{O}[y]
$$

where $\mathcal{O}=\mathbb{F}_{3}[[x]]$ is the valuation ring of $(K,| |)$ with maximal ideal $\mathcal{M}=x \cdot \mathbb{F}_{3}[[x]]$. Then $F(y) \equiv y^{4}(\bmod x)$. Let $\phi=y$, then $N_{\phi}^{-}(F)=S$ is a single side of slope $\lambda=\frac{-3}{4}$, joining the points $(0,3)$ and (4,0) (see Figure 4). Since the side S is of degree $\operatorname{gcd}(3,4)=1$ and

$$
R_{\lambda}(F)(T)=1+T \in \mathbb{F}_{\phi}[T] \cong \mathbb{F}_{3}[T]
$$

By [5, Corollary 3.2] we conclude that $F(y)$ is irreducible over K. Let α be a root of the polynomial $F(y)$. By Corollary 3.3, there is a unique absolute value $\left|\left.\right|_{L}\right.$ of $L=K(\alpha)$ extending | | such that

$$
\begin{aligned}
\left|a_{0}(x)+a_{1}(x) \alpha+a_{2}(x) \alpha^{2}+a_{3}(x) \alpha^{3}\right|_{L} & = \\
\max & \left\{\left|a_{0}(x)\right|,\left|a_{1}(x)\right| \cdot e^{-3 / 4},\left|a_{2}(x)\right| \cdot e^{-3 / 2},\left|a_{3}(x)\right| \cdot e^{-9 / 4}\right\}
\end{aligned}
$$

for every $a_{0}(x), \ldots, a_{3}(x) \in \mathbb{F}_{3}((x))$. Moreover,

$$
\mathfrak{e}\left(| | _ { L } / | |) = 4 \quad \text { and } \quad \mathfrak { f } \left(\left|\left.\right|_{L} /| |\right)=1\right.\right.
$$

Figure 4. ϕ-Newton polygon of F.

Acknowledgement.

The authors are very grateful to Professor Abdulaziz Deajim for his valuable comments and suggestions, which have considerably improved the quality of this paper.

REFERENCES

[1] BROWN, R.: Roots of generalized Schönemann polynomials in henselian extension fields, Indian J. Pure Appl. Math. 39 (2008), 403-410.
[2] COHEN, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.
[3] DEAJIM, A.-EL FADIL, L.-NAJIM, A.: On a theorem of Dedekind (submitted).
[4] EL FADIL, L.-FARIS, M.: On the Irreducible Factors of a Polynomial and Applications to Extensions of Absolute Values, IntechOpen,
https://www.intechopen.com/online-first/on-the-irreducible-factors-of-a-poly nomial-and-applications-to-extensions-of-absolute-values
[5] EL FADIL, L.: On Newton polygon echniques and factorization of polynomials over Henselian fields, J. Algebra Appl. 19 (2020), no. 10, doi: 10.1142/S0219498820501881.
[6] GUÀRDIA, J.- MONTES, J.—NART, E.: Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361-416.
[7] KHANDUJA, S. K.-KUMAR, M.: A generalization of Dedekind criterion, Comm. Algebra 35 (2007), 1479-1486.
[8] MANJRA, S.: A note on non-Robba p-adic differential equations, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 3, 40-43.
[9] MANJRA, S.-REMMAL, S. E.: Equations différentielles p-adiques et Séries Gevrey arithmétiques, Math. Ann. 334 (2006), 37-64.

M. FARIS- L. EL FADIL

[10] MANJRA, S.: Arithmetic differential equations and E-functions, Illinois J. Math. 49 (Winter 2005), no. 4, 1061-1092. DOI: 10.1215/ijm/1258138127.
[11] KEDLAYA, K. S.: p-adic Differential Equations, Cambridge University Press, New York, 2010.
[12] BOURBAKI, N.: Algébre Commutative, Chapitres 5 à 7. Springer-Verlag, Berlin, Heidelberg, 2006.
[13] ORE, O.: Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84-117.
[14] MURTY, M. RAM: Introduction to p-adic Analytic Number Theory. AMS/IP Stud. Adv. Math. Vol. 27. American Mathematical Society (AMS), Providence, RI: International Press, Cambridge, MA, 2002. https://doi.org/10.1090/amsip/027

Received Novembeer 11, 2022

Mohamed Faris
Lhoussain El Fadil
Department of Mathematics
Faculty of Sciences
Sidi Mohamed Ben Abdellah University Fez, MOROCCO
E-mail: mohamedfaris9293@gmail.com lhouelfadil2@gmail.com

[^0]: (C) 2023 Mathematical Institute, Slovak Academy of Sciences.

 2020 Mathematics Subject Classification: 12E25,12E99, 13A18.
 Keywords: extensions of non-archimedean absolute value, Newton polygon, residual polynomial.

