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ABSTRACT. Let K be a pure number field generated by a root α of a monic

irreducible polynomial f(x) = xn −m with m a rational integer and 3 ≤ n ≤ 9
an integer. In this paper, we calculate an integral basis of ZK , and we study the
monogenity of K, extending former results to the case when m is not necessarily
square-free. Collecting and completing the corresponding results in this more
general case, our purpose is to provide a parallel to [Gaál, I.—Remete,L.: Power

integral bases and monogenity of pure fields, J. Number Theory, 173 (2017),
129–146], where only square-free values of m were considered.

1. Introduction

Let K be a number field of degree n with ring of integers ZK , and absolute
discriminant dK . The number field K is called monogenic if it admits a power
integral basis, that is an integral basis of type (1, α, . . . , αn−1) with some α∈ZK .
Monogenity of number fields is a classical problem of algebraic number theory,
going back to Dedekind, Hasse and Hensel, cf., e.g., [22, 23] and [17] for the
present state of this area. It is called a problem of Hasse to give an arithmetic
characterization of those number fields which have a power integral basis [22,23,
26].
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For any primitive element α of ZK (that is α ∈ ZK with K = Q(α)) we
denote by

ind(α) = (ZK : Z[α])

the index of α, that is the index of the Z-module Z[α] in the free-Z-module ZK

of rank n. As it is known [17], we have

�(α) = ind(α)2 · dK ,
where �(α) is the discriminant of α.

Let (1, ω1, . . . , ωn−1) be an integral basis of ZK . The discriminant

�(
L(X1, . . . , Xn)

)
of the linear form

L(X1, . . . , Xn−1) = ω1X1 + · · ·+ ωn−1Xn−1

can be written (cf. [17]) as

�(
L(X1, . . . , Xn−1)

)
=

(
ind(X1, . . . , Xn−1)

)2 · dK ,
where ind(X1, . . . , Xn−1) is the index form corresponding to the integral basis
(1, ω1, . . . , ωn−1) having the property that for any

α = x0 + ω1x1 + · · ·+ ωn−1xn−1 ∈ ZK (with x0, x1, . . . , xn−1 ∈ Z)

we have ind(α) = | ind(x1, . . . , xn−1)|.
Obviously, ind(α) = 1 if and only if (1, α, . . . , αn−1) is an integral basis of ZK .

Therefore α is a generator of a power integral basis if and only if x1, . . . , xn−1 ∈ Z

is a solution of the index form equation

ind
(
x1, . . . , xn−1

)
= ±1 in x1, . . . , xn−1 ∈ Z.

If f ∈ Z[x] is a monic irreducible polynomial having α as a root, then

ind(f) = (ZK : Z[α])

is called the index of the polynomial f , where K is the number field generated
by α. Analogously, �(f) = ind(f)2 · dK
�(f) denoting the discriminant of f .

Throughout the paper νp(a) denoted the p-exponent of the rational integer a.

The problem of testing the monogenity of number fields and constructing
power integral bases have been intensively studied during the last decades, see
for instance [2,18,29].

An especially delicate and intensively studied problem is the monogenity
of pure fields K generated by a root α of an irreducible polynomial xn − m.
In all former results it was assumed that m �= ±1 is a square-free integer.
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Funakura [16] studied the integral basis in pure quartic fields. Gaál and
Remete [19] calculated the elements of index 1 (that is generators of power
integral bases), with coefficients of absolute value < 101000 in an integral basis,

of pure quartic fields generated by m
1
4 for 1 < m < 107 and m ≡ 2, 3 (mod 4).

Ahmad, Nakahara, and Husnine [1] proved that if m ≡ 2, 3 (mod 4) and

m �≡ ∓1 (mod 9), then the sextic number field generated by m
1
6 is monogenic.

They also showed [2] that ifm ≡ 1 (mod 4) andm �≡ ∓1 (mod 9), then the sextic

number field generated by m
1
6 is not monogenic. Based on prime ideal factor-

ization, El Fadil [11] showed that if m ≡ 1 (mod 4) or m ≡ 1 (mod 9), then

the sextic number field generated by m
1
6 is not monogenic. Hameed and Naka-

hara [5], proved that ifm ≡ 1 (mod 16), then the octic number field generated by
m1/8 is not monogenic, but if m ≡ 2, 3 (mod 4), then it is monogenic. Applying
the explicit form of the index forms, Gaál and Remete [20] obtained new results

on monogenity of the number fields generated by m
1
n , where 3 ≤ n ≤ 9. While

Gaál’s and Remete’s techniques are based on determining elements of index 1,
El Fadil used a new method based on Newton polygons to study the monogenity
of some pure fields.

In this paper, we calculate an integral basis and we study the monogenity
of pure fields K for degrees 3 ≤ n ≤ 9, without assuming that m is square-free.
In this way, our results generalize those given in [1, 2, 5, 11, 16, 20]. For n = 6, 8,
we shall refer to the results of El Fadil [12] and El Fadil and Gaál [14] where pure
sextic resp. pure octic fields were studied without assuming thatm is square-free.

2. Pure cubic fields

In this section, K is a pure cubic number field generated by α = m
1
3 with

m = a1a
2
2, a1 and a2 two coprime square free integers andm �= ±1. The following

theorem allows the calculation of an integral basis of ZK (cf. also Alaca [3],
El Fadil [9]).

������� 2.1�

(1) If m �≡ ±1 (mod 9), then (1, α, α
2

a2
) is a Z-basis of ZK .

(2) If m ≡ ±1 (mod 9), then (1, α, α
2+mα+m2

3a2
) is a Z-basis of ZK .

Based on these integral bases we have

����		
�� 2.2� Z[α] is the ring of integers of K if and only if m �≡ ±1 (mod 9)
and m is a square free integer.

For pure cubic number fields, the explicit form of the index form is obtained
by direct calculations:
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����
 2.3� Let x0, x1, x2 ∈ Z.

(1) If m �≡ ±1 (mod 9), then for any θ = x0 + x1α+ x2α
2

a2
∈ ZK we have

ind(θ) =
∣∣a2x31 − a1x

3
2

∣∣ .
In particular, if m is a square free integer, then

ind(θ) =
∣∣x31 −mx32

∣∣ .
(2) If m ≡ ±1 (mod 9), then for any θ = x0+x1α+x2

α2+mα+m2

3a2
∈ ZK we have

ind(θ) =

∣∣∣∣3a2x31 + (2m+ 1)x21x2 +ma1a2x1x
2
2 − a1

1−m2

9
x32

∣∣∣∣ .
In particular, if m is a square free integer, then

ind(θ) =

∣∣∣∣3x31 + (2m+ 1)x21x2 +m2x1x
2
2 −m

1−m2

9
x32

∣∣∣∣ .
As a special case, we have

����		
�� 2.4� Assume that m = a2 with a �= ±1 a square free integer.
Then if a �≡ ±1 (mod 9), then K is monogenic.

��
���

(1) If a ≡ 1 (mod 9), then let a = 1 + 9k for some integer k. Based on the
results given in [20], the index form equation is solvable for k = 27, 37, but
not solvable for k = 10, 11, 12.

(2) If a ≡ −1 (mod 9), then let a = −1 + 9k for some integer k. Based on the
results given in [20], the index form equation is solvable for k = 1, 4, 12,
but not solvable for k = 2, 3, 5, 6, 7.

3. Pure quartic fields

In this section, K is a pure quartic number field generated by α = m
1
4 , with

m = a1a
2
2a

3
3, a1, a2, and a3 pairwise coprime square free integers and m �= ±1.

Let A1 = 1, A2 = a2a3, and A3 = a2a
2
3. The following theorem explicitly gives

an integral basis of ZK (cf. also Alaca and Williams [4]).

������� 3.1�

(1) If ν2(m) is odd or ν2(m− 1) = 1, then (1, α, α
2

A2
, α3

A3
) is a Z-basis of ZK .

(2) If m ≡ 4 (mod 16), then (1, α, α
2+A2

2A2
, α

3+A2α
2A3

) is a Z-basis of ZK .
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(3) If m ≡ 12 (mod 32), then (1, α, α
2+A2α−A2

2A2
, α

3+A3α
2−A3α

2A3
) is a Z-basis

of ZK .

(4) If m ≡ 28 (mod 32), then (1, α, α
2+A2α+A2

2A2
, α

3+A3α
2+A3α

4A3
) is a Z-basis

of ZK .

(5) If m ≡ 5 (mod 8), then (1, α, α
2+m
2A2

, α
3+mα2+mα+m

2A3
) is a Z-basis of ZK .

(6) If m ≡ 1 (mod 8), then (1, α, α
2+m
2A2

, α
3+mα2+mα+m

4A3
) is a Z-basis of ZK .

Based on these integral bases we have:

����		
�� 3.2� Z[α] is the ring of integers of K if and only if m �= ±1 is a
square free integer and m �≡ 1 (mod 4).

Also for pure quartic number fields, the explicit form of the index form can
be obtained by direct calculations. For brevity we only give it in case (1).

����
 3.3� Let x0, x1, x2, x3∈Z. If ν2(m) is odd or ν2(m−1)=1, then for any

θ = x0 + x1α+
x2α

2

A2
+
x3α

3

A3
we have

ind(θ) =
∣∣(a3x21 − a1x

2
3)

× (
(a2a3)

2x41 + 2a1a
2
2a3x

2
1x

2
3 + 4a1a3x

4
2

−8a1a2a3x1x
2
2x3 + (a1a2)

2x43
)∣∣ .

As a special case, we have

����		
�� 3.4� Assume that m = au with a �= ±1 a square free integer and
u ∈ {1, 3} a positive integer. Then

(1) If a �≡ 1 (mod 4), then K is monogenic.

(2) If a �≡ 1 (mod 16), then K is not monogenic.

��
��� Based on the results given in [20], if a ≡ 1 (mod 4), then K is mono-
genic for a ∈ {−3, 73, 89}.
��
��� Similarly to the case (1) in Lemma 3.3 the index form in pure quartic
fields is a product of a quadratic factor F2 and a quartic factor F4 in all cases.
Eliminating x41 from a linear combination of F 2

2 and F4 we obtain a divisibility
relation which is a necessary condition for the monogenity of pure quartic fields.

����		
�� 3.5� The following are the necessary conditions for monogenity
of pure quartic number fields:

(1) If ν2(m) is odd or ν2(m− 1) = 1, then 4a1a3 divides (a22 ± 1).
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(2) If m ≡ 4 (mod 16), then a1a3 divides (4a22 ± 1).

(3) If m ≡ 12 (mod 32), then 4a1a3 divides (a22 ± 16).

(4) If m ≡ 28 (mod 32), then a1a3 divides (a22 ± 64).

(5) If m ≡ 5 (mod 8), then a1a3 divides (4a22 ± 1).

(6) If m ≡ 1 (mod 8), then a1a3 divides (a22 ± 1).

4. Pure quintic fields

In this section, K is a pure quintic number field generated by α = m
1
5 ,

where m ∈ Z is not necessarily a square free integer and m �= ±1. It is well
known that we can assume that νp(m) ≤ 4 for every prime integer p, and
so m = a1a

2
2a

3
3a

4
4, where a1, . . . , a4 are pairwise coprime square-free integers.

Let A1 = 1, A2 = a3a4, A3 = a2a3a
2
4, and A4 = a2a

2
3a

3
4. The following

theorem explicitly gives an integral basis of ZK (cf. also El Fadil [10]). For every
positive integer n and for every integer x, the notation m = x (mod n) means
that m ≡ x (mod n).

������� 4.1�

(1) If m �∈{1, 7, 18, 24} (mod 25), then
(
1, α, α2

A2
, α3

A3
, α4

A4

)
is a Z-basis of ZK .

(2) If m∈{1, 7, 18, 24} (mod 25), then
(
1, α, α

2

A2
, α

3

A3
, (α−m)4

5A4

)
is a Z-basis of ZK .

Based on these integral bases we have:

����		
�� 4.2� Z[α] is the ring of integers of K if and only if m �= ±1 is a
square free integer and m �∈ {1, 7, 18, 24} (mod 25).

The index form can be directly calculated, for brevity we give it in case (1)
only.

����
 4.3� Let x0, x1, x2, x3, x4 ∈ Z. If m �∈ {1, 7, 18, 24} (mod 25), then
for any

θ = x0 + x1α+
x2α

2

A2
+
x3α

3

A3
+
x4α

4

A4
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we have

ind(θ) =
∣∣∣11a41a52a3a24x52x54 − 11a51a

2
2a

4
3a4x

5
3x

5
4

− 2a31a
3
2a

3
3a

3
4x

5
1x

5
4 − a41a

6
3a

2
4x

10
3

− a21a
6
2a

4
4x

10
2 + 11a21a2a

5
3a

4
4x

5
1x

5
3

+ a22a
4
3a

6
4x

10
1 − 11a1a

4
2a

2
3a

5
4x

5
1x

5
2

+ x104 a
4
2a

2
3a

6
1 − 20a51a

4
2a

2
3a4x

2
2x3x

7
4

+ 5a51a
4
2a

2
3a4x1x2x

8
4 + 35a51a

3
2a

3
3a4x2x

3
3x

6
4

− 15a51a
3
2a

3
3a4x1x

2
3x

7
4 − 5a41a

3
2a

3
3a

2
4x

3
1x3x

6
4

+ 2a31a
3
2a

3
3a

3
4x

5
2x

5
3 + 20a41a2a

5
3a

2
4x1x

7
3x

2
4

− 75a41a
3
2a

3
3a

2
4x1x

2
2x

3
3x

4
4 + 45a41a

3
2a

3
3a

2
4x

2
1x2x

2
3x

5
4

+ 40a41a
4
2a

2
3a

2
4x1x

3
2x3x

5
4 − 40a41a

2
2a

4
3a

2
4x1x2x

5
3x

3
4

− 75a21a
3
2a

3
3a

4
4x

4
1x

3
2x

2
3x4 − 40a21a

4
2a

2
3a

4
4x

3
1x

5
2x3x4

+ 45a21a
3
2a

3
3a

4
4x

5
1x

2
2x3x

2
4 + 40a21a

2
2a

4
3a

4
4x

5
1x2x

3
3x4

+ 75a31a
2
2a

4
3a

3
4x

3
1x2x

4
3x

2
4 + 75a31a

4
2a

2
3a

3
4x

2
1x

4
2x3x

3
4

+ 50a31a
3
2a

3
3a

3
4x

4
1x2x3x

4
4 − 200a31a

3
2a

3
3a

3
4x

3
1x

2
2x

2
3x

3
4

+ 200a31a
3
2a

3
3a

3
4x

2
1x

3
2x

3
3x

2
4 − 45a31a

2
2a

4
3a

3
4x

2
1x

2
2x

5
3x4

− 45a31a
4
2a

2
3a

3
4x1x

5
2x

2
3x

2
4 − 50a31a

3
2a

3
3a

3
4x1x

4
2x

4
3x4

+ 25a41a
2
2a

4
3a

2
4x

2
1x

4
3x

4
4 − 25a41a

4
2a

2
3a

2
4x

4
2x

2
3x

4
4

+ 25a41a
3
2a

3
3a

2
4x

3
2x

4
3x

3
4 − 5a41a2a

5
3a

2
4x2x

8
3x4

− 10a41a
4
2a

2
3a

2
4x

2
1x

2
2x

6
4 + 10a41a

2
2a

4
3a

2
4x

2
2x

6
3x

2
4

− 15a1a
3
2a

3
3a

5
4x

7
1x

2
2x4 − 20a1a

2
2a

4
3a

5
4x

7
1x2x

2
3

+ 5a1a
2
2a

4
3a

5
4x

8
1x3x4 + 35a1a

3
2a

3
3a

5
4x

6
1x

3
2x3

+ 20a21a
5
2a3a

4
4x

2
1x

7
2x4 − 5a21a

3
2a

3
3a

4
4x

6
1x2x

3
4

+ 25a21a
4
2a

2
3a

4
4x

4
1x

4
2x

2
4 − 25a21a

2
2a

4
3a

4
4x

4
1x

2
2x

4
3

+ 25a21a
3
2a

3
3a

4
4x

3
1x

4
2x

3
3 − 5a21a

5
2a3a

4
4x1x

8
2x3

− 10a21a
2
2a

4
3a

4
4x

6
1x

2
3x

2
4 + 10a21a

4
2a

2
3a

4
4x

2
1x

6
2x

2
3

− 35a31a2a
5
3a

3
4x

3
1x

6
3x4 + 15a31a2a

5
3a

3
4x

2
1x2x

7
3

− 35a31a
5
2a3a

3
4x1x

6
2x

3
4 + 5a31a

2
2a

4
3a

3
4x1x

3
2x

6
3

+ 15a31a
5
2a3a

3
4x

7
2x3x

2
4 + 5a31a

4
2a

2
3a

3
4x

6
2x

3
3x4

− 25a31a
2
2a

4
3a

3
4x

4
1x

3
3x

3
4 − 25a31a

4
2a

2
3a

3
4x

3
1x

3
2x

4
4

∣∣∣.
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We also prove the following statement

����		
�� 4.4� Assume that m = au with a �= ±1 a square free integer and
1 ≤ u ≤ 4 a positive integer. Then

(1) If a �∈ {1, 7, 18, 24} (mod 25), then K is monogenic.

(2) If a ∈ {1, 7, 18, 24} (mod 25), then K is not monogenic with the exception
of a = 7, in which case K is monogenic.

5. Pure sextic fields

In this section, K is a pure sextic number field generated by α = m
1
6 , with

m = a1a
2
2a

3
3a

4
4a

5
5, where a1, a2, a3, a4, and a5 are pairwise coprime square free

integers and m �= ±1. Let

A1 = 1, A2 = a3a4a5 ,

A3 = a2a3a
2
4a

2
5 , A4 = a2a

2
3a

2
4a

3
5 ,

and
A5 = a2a

2
3a

3
4a

4
5.

A detailed table of integral bases is given in [12] that we do not repeat here.
Based on these integral bases we have:

����		
�� 5.1� Z[α] is the ring of integers of K if and only if m �= ±1 is a
square free integer, m �≡ 1 (mod 4), and m �≡ ±1 (mod 9).

The index form can be directly calculated, for brevity we only give it explicitly
in case the integral basis (1, α, α2/A2, α

3/A3, α
4/A4, α

5/A5) is valid.

����
 5.2� Assume that 6 divides m, ν2(m) is odd, and ν3(m) �= 3. Let
(x0, x1, x2, x3, x4, x5) ∈ Z6. Then for any

θ = x0 + x1α+ x2
α2

A2
+ x3

α3

A3
+ x4

α4

A4
+ x5

α5

A5

we have

ind(θ) = |G1 ·G2 ·G3|

with sextic factors G1, G3 and a cubic factor G2, where
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(1) G1 = a22a
3
3a

4
4a

4
5x

6
1 − 216a21a

3
2a3a

2
4a

2
5x

3
2x3x4x5

− 72a1a
2
2a

2
3a

3
4a

3
5x

3
1x2x3x4 − 216a21a

2
2a3a

3
4a

2
5x1x2x3x

3
4

− 54a21a
3
2a

2
3a

3
4a

2
5x

2
1x2x4x

2
5 − 72a31a

3
2a

2
3a

2
4a5x2x3x4x

3
5

+ 27a31a
2
2a

4
4a5x

6
4 + 162a21a

3
2a3a

3
4a

2
5x1x

2
2x

2
4x5

+ a41a
2
2a

3
3a

2
4x

6
5 + 27a1a

4
2a

2
4a

3
5x

6
2

+ 9a31a
4
2a

2
3a

2
4a5x

2
2x

4
5 + 9a1a

2
2a

2
3a

4
4a

3
5x

4
1x

2
4

− 96a21a2a
3
3a4a

2
5x1x

4
3x5 + 144a21a2a

2
3a

2
4a

2
5x1x

3
3x

2
4

− 288a21a2a
2
3a4a

2
5x2x

4
3x4 + 12a31a

3
2a

3
3a

2
4a5x1x3x

4
5

+ 36a21a
2
2a

3
3a

2
4a

2
5x

2
1x

2
3x

2
5 − 108a31a

2
2a3a

3
4a5x3x

4
4x5

+ 54a31a
3
2a3a

3
4a5x2x

3
4x

2
5 − 18a31a

3
2a

2
3a

3
4a5x1x

2
4x

3
5

+ 108a1a
2
2a

2
3a

2
4a

3
5x

2
1x

2
2x

2
3 + 108a31a

2
2a

2
3a

2
4a5x

2
3x

2
4x

2
5

+ 54a1a
3
2a3a

3
4a

3
5x

2
1x

3
2x4 − 18a1a

3
2a

2
3a

3
4a

3
5x

3
1x

2
2x5

+ 12a1a
2
2a

3
3a

3
4a

3
5x

4
1x3x5 − 108a1a

3
2a3a

2
4a

3
5x1x

4
2x3

+ 2a21a
3
2a

3
3a

3
4a

2
5x

3
1x

3
5 + 27a21a

2
2a3a

4
4a

2
5x

2
1x

4
4

− 54a21a
3
2a

3
4a

2
5x

3
2x

3
4 + 27a21a

4
2a3a

2
4a

2
5x

4
2x

2
5

− 16a1a2a
3
3a

2
4a

3
5x

3
1x

3
3 − 16a31a

2
2a

3
3a4a5x

3
3x

3
5

+ 64a21a
3
2a

3
3a

2
5x

6
3 + 144a21a

2
2a

2
3a4a

2
5x

2
2x

3
3x5

+ 324a21a
2
2a3a

2
4a

2
5x

2
2x

2
3x

2
4,

(2) G2 = − 3a1a2a4a5x1x3x5 + a2a
2
4a

2
5x

3
1

+ a1a5x
3
3 + a21a

2
2a4x

3
5,

(3) G3 = 18a21a2a
2
3a4a

2
5x

2
1x2x4x

2
5 − 18a21a2a3a4a

2
5x1x

2
2x

2
4x5

− 3a31a
2
2a

2
3a5x

2
2x

4
5 − 2a21a2a

3
3a4a

2
5x

3
1x

3
5

+ 3a21a3a
2
4a

2
5x

2
1x

4
4 + 3a21a

2
2a3a

2
5x

4
2x

2
5

+ 2a21a2a4a
2
5x

3
2x

3
4 − 3a1a

2
3a

2
4a

3
5x

4
1x

2
4

− 6a31a2a
2
3a4a5x1x

2
4x

3
5 + 6a31a2a3a4a5x2x

3
4x

2
5

− 6a1a2a
2
3a4a

3
5x

3
1x

2
2x5 + 6a1a2a3a4a

3
5x

2
1x

3
2x4

+ a41a
2
2a

3
3x

6
5 − a31a

2
4a5x

6
4

− a1a
2
2a

3
5x

6
2 + a33a

2
4a

4
5x

6
1.
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��
��� In other cases, the integral basis and the index form is more compli-
cated but the index form has similarly three factors. By eliminating x61 from a
linear combination of G1 and G

2
2, we obtain a divisibility relation which is a nec-

essary condition for monogenity of pure sextic number fields defined by x6 −m
as follows.

����		
�� 5.3�

(1) If ν2(m) is odd and ν3(m) �= 3, then a1a5 divides (a23 ± a22a
2
4)

is a necessary condition for monogenity of K.

(2) If m ≡ 4 (mod 16) and ν3(m) �= 3, then a1a5 divides (a23 ± 64a22a
2
4)

is a necessary condition for monogenity of K.

(3) If m ≡ 12 (mod 16) and ν3(m) �= 3, then a1a5 divides (−a23 ± 4a22)
is a necessary condition for monogenity of K.

In the remaining cases the formulas become far too complicated.
The following results are proved in [12].

����		
�� 5.4� Assume that m = e5 such that e �= ∓1 is a square free rational
integer. Then

(1) If e �≡ 1 (mod 4) and e �≡ ±1 (mod 9), then K is monogenic and ZK = Z[θ]

with θ = α5

e4 .

(2) If e ≡ 1 (mod 4) or e ≡ ±1 (mod 9), then K is not monogenic.

��
��� When m �= ±1 is a square free integer, we refer to [20] for further
results on the monogenity of pure sextic number fields defined by x6−m. For in-
tegral bases and monogenity of sextic fields with a quadratic and a cubic subfield
see Charkani and Sahmoudi [6].

6. Pure septic fields

In this section, K is a pure septic number field generated by α = m
1
7, where

m ∈ Z is not necessarily a square free integer and m �= ±1. It is well-known that
we can assume that νp(m) ≤ 6 for every prime integer p, and so

m = a1a
2
2a

3
3a

4
4a

5
5a

6
6

, where a1, . . . , a6 are pairwise coprime square-free integers. Let

A1 = 1, A2 = a4a5a6, A3 = a3a4a
2
5a

2
6,

A4 = a2a3a
2
4a

2
5a

3
6, A5 = a2a

2
3a

2
4a

3
5a

4
6 and A6 = a2a

2
3a

3
4a

4
5a

5
6.

The following theorem explicitly gives an integral basis of ZK .
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������� 6.1�

(1) If m �∈ {±1,±18,±19} (mod 49), then
(
1, α, α

2

A2
, α

3

A3
, α4

A4
, α5

A5
, α6

A6

)
is a

Z-basis of ZK .

(2) If m ∈ {±1,±18,±19} (mod 49), then(
1, α,

α2

A2
,
α3

A3
,
(α−m)4

A4
,
α5

A5
,
α6−α5+α4−α3+α2−α+1

7A6

)
is a Z-basis of ZK .

Based on these integral bases we have

����		
�� 6.2� Z[α] is the ring of integers of K if and only if m �= ±1 is a
square free integer and m �∈ {±1,±18,±19} (mod 49).

As a special case, we have:

����		
�� 6.3� Assume that m = au with a �= ±1 a square free integer
and 1 ≤ u ≤ 6 a positive integer. If a �∈ {±1,±18,±19} (mod 49), then K is
monogenic.

7. Pure octic fields

In this section K is a pure octic number field generated by m
1
8 , with m �= ±1

a rational integer, not necessarily square-free. Let m = a1a
2
2a

3
3a

4
4a

5
5a

6
6a

7
7, where

a1, . . . , a7 are pairwise coprime square free rational integers. Let

A2 = a4a5a6a7, A3 = a3a4a5a
2
6a

2
7, A4 = a2a3a

2
4a

2
5a

3
6a

3
7,

A5 = a2a3a
2
4a

3
5a

3
6a

4
7, A6 = a2a

2
3a

3
4a

3
5a

4
6a

5
7, and A7 = a2a

2
3a

3
4a

4
5a

5
6a

6
7.

A detailed table for integral bases is given in [14] that we do not repeat here.
Based on these integral bases we have:

����		
�� 7.1� Z[α] is the ring of integers of K if and only if m �= ±1 is a
square free integer and m �≡ 1 (mod 4).

The following theorem will appear in [14], it gives sufficient conditions on m
for the non-monogenity of K. It relaxes the condition m is a square free rational
integer required in [5,20].

������� 7.2� If one of the following conditions holds:

(1) m ≡ 1 (mod 32),

(2) m ≡ 272 (mod 512),

(3) ν2(m) is odd and a2a6 (mod 8) ∈ {2, 6},
then K is not monogenic.
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The following theorem will appear in [14].

������� 7.3� Assume that m = at with a �= ±1 is a square free rational
integer and t ∈ {3, 5, 7}. Then
(1) If a �≡ 1 (mod 4), then K is monogenic and ZK = Z[θ] with θ =

αu

av
, where

(u, v) ∈ Z2 is a solution of tu− 8v = 1 with u < 8 and u, v ≥ 0.

(2) If a ≡ 1 (mod 4), then K is not monogenic with the exception on a = −3.

8. Pure nonic fields

In this section, K is a pure nonic number field generated by m
1
9 , where m ∈ Z

is not necessarily a square free integer and m �= ±1. It is well known that we can
assume that νp(m) ≤ 8 for every prime integer p, and so m = a1a

2
2a

3
3a

4
4a

5
5a

6
6a

7
7a

8
8,

where a1, . . . , a8 are pairwise coprime square-free integers. Let

A1 = 1, A2 = a5a6a7a8, A3 = a3a4a5a
2
6a

2
7a

2
8,

A4 = a3a4a
2
5a

2
6a

3
7a

3
8, A5 = a2a3a

2
4a

2
5a

3
6a

3
7a

4
8, A6 = a2a

2
3a

2
4a

3
5a

4
6a

4
7a

5
8,

A7 = a2a
2
3a

3
4a

3
5a

4
6a

5
7a

6
8, and A8 = a2a

2
3a

3
4a

4
5a

5
6a

6
7a

7
8.

The following theorem gives explicitly an integral basis B of ZK .

������� 8.1� In the following Table 1, B is a Z-integral basis of ZK . The
notation m3 stands for m/3ν3(m).

Based on these integral bases we have

����		
�� 8.2� Z[α] is the ring of integers of K if and only if m �= ±1 is a
square free integer and m �≡ ±1 (mod 9).

As a special case, we have

����		
�� 8.3� Assume that m = au with a �= ±1 a square free integer,
1 ≤ u ≤ 8 a positive integer. If a �≡ ±1 (mod 9), then K is monogenic.

9. Preliminaries

In order to prove our results, we recall some fundamental facts on Newton
polygon techniques. Namely, the theorems of index and prime ideal factorization.

Let f(x) ∈ Z[x] be the defining polynomial of α and let f(x) =
∏r

i=1 φi(x)
li

modulo p be the factorization of f(x) into powers of monic irreducible coprime
polynomials of Fp[x]. Recall Dedekind’s well known theorem says
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Table 1.

C
o
n
d
it
io
n
s

B

ν
3
(m

)
≥

1
a
n
d

ν
3
(m

)
�∈
{3

,6
}

( 1
,α

,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
5

A
5
,
α
6

A
6
,
α
7

A
7
,
α
8

A
8

)
o
r

ν
3
(m

2
−

1
)
=

1

ν
3
(m

2
−

1
)
=

2

( 1
,α

,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
5

A
5
,
α
6
+
m

α
3
+
m

3
A

6
,
α
7
+
2
m

α
6
+
m

α
4
−
m

α
3
+
α
+
m

3
A

7
,

β
3
A

8

)

β
=

α
8
+

m
α
7
+

α
6
+

m
α
5
+

α
4
+

m
α
−

2

ν
3
(m

2
−

1
)
≥

3

( 1
,α

,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
5

A
5
,
α
6
+
m

α
3
+
m

3
A

6
,
α
7
+
2
m

α
6
+
m

α
4
−
m

α
3
−
2
α
+
m

3
A

7
,

β
9
A

8

)

β
=

α
8
+

m
α
7
+

4
α
6
−

2
m
α
5
−

2
α
4
+

3
α
2
+

m
α
−

2
+

3
m

ν
3
(m

)
=

3
( 1

,α
,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
2
φ
2
(α

)
3
A

5
,
(φ

2
(α

))
2

3
A

6
,
α
(φ

2
(α

))
2

3
A

7
,
α
2
(φ

2
(α

))
2

3
A

8

)

ν
3
(m

2 3
−

1
)
=

1
φ
2
(α

)
=

α
3
−

3
m

3
u
α
−

3
m

3
,
u
=

(m
2 3
−

1
)/
3

a
n
d

m
3
=

m
/
3
ν
3
(m

)

ν
3
(m

)
=

3
( 1

,α
,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
2
φ
2
(α

)
3
A

5
,
(φ

2
(α

))
2

3
A

6
,
α
(φ

2
(α

))
2

3
A

7
,
α
2
(φ

2
(α

))
2

3
A

8

)

ν
3
(m

2 3
−

1
)
≥

1
φ
2
(α

)
=

α
3
−

3
m

3
,
m

3
=

m
/
3
ν
3
(m

)

ν
3
(m

)
=

6
( 1

,α
,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
2
φ
2
(α

)
3
A

5
,
(φ

2
(α

))
2

3
A

6
,
α
(φ

2
(α

))
2

3
A

7
,
α
2
(φ

2
(α

))
2

3
A

8

)

ν
3
(m

2 3
−

1
)
=

1
φ
2
(α

)
=

α
3
−

3
m

3
u
α
2
−

9
m

3
,
u
=

(m
2 3
−

1
)/
3

a
n
d

m
3
=

m
/
3
ν
3
(m

)

ν
3
(m

)
=

6
( 1

,α
,
α
2

A
2
,
α
3

A
3
,
α
4

A
4
,
α
2
φ
2
(α

)
3
A

5
,
(φ

2
(α

))
2

3
A

6
,
α
(φ

2
(α

))
2

3
A

7
,
α
2
(φ

2
(α

))
2

3
A

8

)

ν
3
(m

2 3
−

1
)
≥

1
φ
2
(α

)
=

α
3
−

9
m

3
,
m

3
=

m
/
3
ν
3
(m

)
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������� 9.1 ([27] Chapter I, Proposition 8.3)� If p does not divide the index

(ZK : Z[α]), then pZK =
∏r

i=1 p
li
i , where every pi = pZK + φi(α)ZK and the

residue degree of pi is f(pi) = deg(φi).

In order to apply this theorem in an efficient way one needs a criterion to test
whether p divides the index (ZK : Z[α]). In 1878, Dedekind gave the following
criterion

������� 9.2 (Dedekind’s Criterion [7], Theorem 6.1.4 and [8])� For a number
field K generated by a root α of a monic irreducible polynomial

f(x) ∈ Z[x] and a rational prime integer p, let f(x) =
∏r

i=1 φi
li
(x) (mod p)

be the factorization of f(x) in Fp[x], where the polynomials φi ∈ Z[x] are monic

with their reductions irreducible over Fp and gcd(φi, φj) = 1 for every i �= j.
If we set

M (x) =
f(x)−∏r

i=1 φi
li(x)

p
,

then M (x) ∈ Z[x] and the following statements are equivalent:

1. p does not divide the index (ZK : Z[α]).

2. For every i = 1, . . . , r, either li = 1 or li ≥ 2 and φi(x) does not divide M(x)
in Fp[x].

When Dedekind’s criterion fails, then we use the Newton polygon method,
which is an alternative approach developed by Ore for obtaining the index
(ZK : Z[α]), the absolute discriminant, and the prime ideal factorization of the
rational primes in a number field K (see [15, 25, 28], for more details [13, 21]).
For a prime p, let νp be the p-adic valuation of Q, Qp its p-adic completion,
and Zp the ring of p-adic integers. Let also νp be the Gauss’s extension of νp
to Qp(x). For any polynomial

P =

n∑
i=0

aix
i ∈ Qp[x]

set νp(P ) = min
(
νp(ai), i = 0, . . . , n

)
, and for every nonzero polynomials P

and Q of Qp[x] set
νp(P/Q) = νp(P )− νp(Q).

Let φ ∈ Zp[x] be a monic polynomial whose reduction is irreducible in Fp[x],

let Fφ be the field
Fp[x]

(φ)
. For any monic polynomial f(x) ∈ Zp[x]. Using Euclidean

division by successive powers of φ, we expand f(x) as

f(x) =

l∑
i=0

ai(x)φ(x)
i,

called the φ-expansion of f(x) (for every i, deg
(
ai(x)

)
< deg(φ)). The φ-Newton

polygon of f(x) with respect to p, is the lower boundary convex envelope of the
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set of points
{(
i, νp(ai(x))

)
, ai(x) �= 0

}
in the Euclidean plane, which we denote

by Nφ(f). Geometrically, the φ-Newton polygon of f(x) is the process of joining
the obtained segments S1, . . . , St ordered by the increasing slopes, which can be
expressed as Nφ(f) = S1 + · · ·+ St. These segments are called the sides of the
polygon Nφ(f). For every j = 1, . . . , t, let l(Sj) be the length of the projection
of Sj to the x-axis and h(Sj) the length of its projection to the y-axis. Then
l(Sj) is called the length of Sj , h(Sj) is its height, and −λj = −h(Sj)/l(Sj)

is its slope. The principal φ-Newton polygon of f(x), denoted N+
φ (f), is the

part of the polygon Nφ(f), which is determined by joining all sides of negative

slopes. For every side S of the polygon N+
φ (f) of length l(S) and height h(S),

let d(S) = gcd
(
l(S), h(S)

)
be the degree of S. For every side S of N+

φ (f),

with initial point (s, us) and length l, and for every 0 ≤ i ≤ l, we attach the
residue coefficient ci ∈ Fφ:

ci =

⎧⎪⎨
⎪⎩

0, if (s+ i, us+i) lies strictly above S,(
as+i(x)

pus+i

) (
mod

(
p, φ(x)

))
, if (s+ i, us+i) lies on S,

where (p, φ(x)) is the maximal ideal of Zp[x] generated by p and φ. Let−λ=−h/e
be the slope of S, where h and e are two positive coprime integers.
Then d = l/e is the degree of S. Notice that, the points with integer coordi-
nates lying on S are exactly

(s, us), (s+ e, us − h), · · · , (s+ de, us − dh).

Thus, if i is not a multiple of e, then (s+ i, us+i) does not lie in S, and so ci = 0.
The polynomial

fS(y) = tdy
d + td−1y

d−1 + · · ·+ t1y + t0 ∈ Fφ[y]

is called the residual polynomial of f(x) associated to the side S, where for every
i = 0, . . . , d, ti = cie. Notice that as td �= 0, deg(fS) = d.

Let N+
φ (f) = S1 + · · · + St be the principal φ-Newton polygon of f with

respect to p. We say that f is a φ-regular polynomial with respect to p, if fSi
(y)

is square free in Fφ[y] for every i = 1, . . . , r. The polynomial f is said to be

p-regular if f(x) =
∏r

i=1 φi
li
for some monic polynomials φ1, . . . , φr of Z[x] such

that φ1, . . . , φr are irreducible coprime polynomials over Fp and f is a φi-regular
polynomial with respect to p for every i = 1, . . . , r.

The theorem of Ore plays a key role for proving our main Theorems.
Let φ ∈ Zp[x] be a monic polynomial, assume that φ(x) is irreducible in Fp[x].
As defined in [15, Def. 1.3], the φ-index of f(x), denoted by indφ(f), is deg(φ)
times the number of points with natural integer coordinates that lie below or
on the polygon N+

φ (f), strictly above the horizontal axis, and strictly beyond

the vertical axis (see Figure 1).
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0

S1

S2

S3

Figure 1. N+
φ (f).

Now assume that f(x) =
∏r

i=1 φi
li
is the factorization of f(x) in Fp[x], where

every φi ∈ Z[x] is monic polynomial, such that φi(x) is irreducible in Fp[x], φi(x)

and φj(x) are coprime when i �= j and i, j = 1, . . . , r. For every i = 1, . . . , r, let
N+

φi
(f)=Si1+· · ·+Siri be the principal φi-Newton polygon of f with respect to p.

For every j = 1, . . . , ri, let fSij
(y) =

∏sij
k=1 ψ

aijk

ijk (y) be the factorization of fSij
(y)

in Fφi
[y]. Then we have the following index theorem of Ore (see [15, Theorem 1.7

and Theorem 1.9]).

������� 9.3 (Theorem of Ore)�

νp((ZK : Z[α])) ≥
r∑

i=1

indφi
(f).

The equality holds if f(x) is p-regular.

If f(x) is p-regular, then

pZK =

r∏
i=1

ri∏
j=1

sij∏
k=1

p
eij
ijk,

is the factorization of pZK into powers of prime ideals of ZK lying above p,
where eij = lij/dij , lij is the length of Sij , dij is the ramification degree of Sij ,
and fijk = deg(φi)×deg(ψijk) is the residue degree of the prime ideal pijk over p.

If some factors of f(x) provided by Hensel’s factorization and refined by first
order Newton polygon (Ore program) are not irreducible over Qp, then in order
to complete the factorization of f(x), Guardia, Montes, and Nart introduced the
notion of high order Newton polygon. Using the theorem of index they showed
that after a finite number of iterations this process yields all monic irreducible
factors of f(x), all prime ideals of ZK lying above a prime integer p, the index
(ZK : Z[α]), and the absolute discriminant of K. We recall here some funda-
mental techniques of Newton polygons of high order. For more details, we refer
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to [21]. As introduced in [21], a type of order r − 1 is a data

t =
(
g1(x),−λ1, g2(x),−λ2, . . . , gr−1(x),−λr−1, ψr−1(x)

)
,

where every gi(x) is a monic polynomial in Zp[x], λi ∈ Q+, and ψr−1(y) is a poly-

nomial over a finite field of pH elements withH =
∏r−2

i=0 fi, here fi = deg(ψi(x)),
satisfying the following recursive properties:

(1) g1(x) is irreducible modulo p, ψ0(y) ∈ F[y] (F0 = Fp) being the polynomial
obtained by reduction of g1(x) modulo p, and F1 := F0[y]/

(
ψ0(y)

)
.

(2) For every i = 1, . . . , r − 1, the Newton polygon of ith order, Ni

(
gi+1(x)

)
,

has a single side of slope −λi.
(3) For every i = 1, . . . , r−1, the residual polynomial of ith order, Ri(gi+1)(y) is

an irreducible polynomial in Fi[y], ψi(y) ∈ Fi[y] being the monic polynomial
determined by Ri(gi+1)(y) 	 ψi(y) are equal up to multiplication by a
nonzero element of Fi, and Fi+1 = Fi[y]/

(
ψi(y)

)
. Thus, F0 ⊂ F1 ⊂ · · · ⊂ Fr

is a tower of finite fields.

(4) For every i = 1, . . . , r − 1, gi+1(x) has minimal degree among all monic
polynomials in Zp[x] satisfying (2) and (3).

(5) ψr−1(y) ∈ Fr−1[y] is a monic irreducible polynomial, ψr−1(y) �= y, and
Fr = Fr−1[y]/

(
ψr−1(y)

)
.

Here the field Fi should not be confused with the finite field of i elements.
Let ω0 = [νp, x, 0] be the Gauss’s extension of νp to Qp(x). Since Ri(gi+1)(y)
(i = 1, . . . , r − 1) is irreducible in Fi[y] hence according to MacLane’s notations
and definitions (cf. [24]), gi+1(x) is a key polynomial of ωi, and so it induces
a valuation on Qp(x), denoted by ωi+1 = ei+1[ωi, gi+1, λi+1], where λi+1 =
hi+1/ei+1, ei+1 and hi+1 are positive coprime integers. The valuation ωi+1 is
called the augmented valuation of νp with respect to φ and λ is defined overQp[x]
as follows

ωi+1

(
f(x)

)
= min{ei+1ωi

(
ai+1
j (x)

)
+ jhi+1, j = 0, . . . , ni+1},

where f(X)=
∑ni+1

j=0 a
i+1
j (x)gji+1(x) is the gi+1(x)-expansion of f(x). According

to the terminology in [21], the valuation ωr is called the rth-order valuation
associated to the data t. For every order r ≥ 1, the gr-Newton polygon of f(x),
with respect to the valuation ωr is the lower boundary of the convex enve-
lope of the set of points {(i, μi), i = 0, . . . , nr} in the Euclidean plane, where
μi = ωr

(
ari (x)g

i
r(x)

)
.

The following are the relevant theorems from Montes-Guardia-Nart’s work
on high order Newton polygons

������� 9.4 ([21] Theorem 3.1)� Let f ∈ Zp[x] be a monic polynomial such

that f(x) is a positive power of φ. If Nr(f) = S1 + · · · + Sg has g sides, then
we can split f(x) = f1 × · · · × fg(x) in Zp[X], such that Nr(fi) = Si and
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Rr(fi)(y) = Rr(f)(y) up to multiplication by a nonzero element of Fr for every
i = 1, . . . , g.

������� 9.5 ([21] Theorem 3.7)� Let f ∈ Zp[x] be a monic polynomial such

that Nr(f) = S has a single side of finite slope −λr. If Rr(f)(y) =
∏t

i=1 ψi(y)
ai

is the factorization in Fr[y], then f(x) splits as f(x) = f1(x)×· · ·×ft(x) in Zp[x]
such that Nr(fi) = S has a single side of slope −λr and Rr(fi)(y) = ψi(y)

ai

up to multiplication by a nonzero element of Fr for every i = 1, . . . , t.

In [21, Definition 4.15], the authors introduced the notion of rth-order index
of a monic polynomial f ∈ Z[x] as follows.

For a fixed data

t =
(
g1(x),−λ1, g2(x),−λ2, . . . , gr−1(x),−λr−1, ψr−1(x)

)
,

let Nr(f) be the Newton polygon of rth-order with respect to the data t and

indt(f) = f0 · · · fr−1 ind
(
Nr(f)

)
,

where ind
(
Nr(f)

)
is the index of the polygon Nr(f); the number of points

with natural integer coordinates that lie below or on the polygon N+
φ (f), strictly

above the horizontal line of equation y = ωr(f), and strictly beyond the verti-
cal axis. In [21, Theorem 4.18], they showed the following index formula which
generalizes the theorem of index of Ore

ind(f) ≥ ind1(f) + · · ·+ indr(f).

10. Proofs of main results

10.1. Pure cubic fields

P r o o f o f T h e o r e m 2.1. Since the discriminant of f(x) = x3 − m is
�(f) = −33m2, thank to the formula �(f) = (ZK : Z[α])2dK , linking the
absolute discriminant of dK of K, the index (ZK : Z[α]) and �(f), we need
only to calculate νp((ZK : Z[α])) and a p-integral basis of ZK for every prime
integer p dividing 3 ·m. Let p be a prime integer dividing 3 ·m.

(1) Assume p divides m. In this case f(x) = φ3 in Fp[x], where φ = x.
Let v = νp(m). Then Nφ(f) = S has a single side joining (0, v) and (3, 0).
As v ∈ {1, 2}, then d = 1 is the degree of fS(y), and so by Theorem 9.3,

we get νp((ZK : Z[α])) = indφ(f) and (1, α, α
2

a2
) is a p-integral basis of ZK .

(2) For p = 3 and 3 does not divide m, f(x) = φ3 + 3mφ2 + 3m2φ +m3 −m,
where φ = x−m. It follows that:

(a) If ν3(m
2 − 1) = 1, then νp((ZK : Z[α])) = 0 and (1, α, α

2

a2
) is an integral

basis of ZK .
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(b) If ν3(m
2 − 1) ≥ 2; m ≡ ±1 (mod 9), then ν3((ZK : Z[α])) = 1 and

(1, α, α
2+mα+m2

3a2
) is an integral basis of ZK . �

P r o o f o f C o r o l l a r y 2.4. Under the hypothesis a1 = ±1 and a2 = a.
So if a �≡ ±1 (mod 9), then

ind(θ) =
∣∣ax31 ± x32

∣∣ .
is the index from of K. Thus for (x1, x2) = (0, 1), we have ind(θ) = 1 and
K is monogenic. �

10.2. Pure quartic fields

P r o o f o f T h e o r e m 3.1. Since the discriminant of f(x) = x4 − m is
�(f)=−44m3, thank to the formula linking the discriminant of K,
the index, and �(f), we need only to calculate νp

(
ind(f)

)
and a p-integral

basis of ZK for every prime integer p dividing 2 ·m. Let p be a prime integer
dividing 2 ·m.

(1) p divides m. In this case f(x) = φ4 in Fp[x], where φ = x. Let v = νp(m).
Then Nφ(f) = S has a single side joining (0, v) and (4, 0). Let gcd(v, 4) = d.
Then d ∈ {1, 2}. It follows that
(a) If p �= 2 or d = 1, then fS(y) is square-free in Fp[x]. By Theorem 9.3,

we get νp((ZK : Z[α])) = indφ(f) and (1, α, α
2

A2
, α

3

A3
) is a p-integral basis

of ZK .
(b) For p = 2 and d = 2; ν2(m) = 2, we have fS(y) = (y − 1)2. Thus,

we have to use second order Newton polygon techniques. The follow-
ing table gives the adequate φ2 in order to have νp((ZK : Z[α])) =
ind1(f) + ind2(f) and a lower bound of V (φ2(α)) for any valuation V
of K extending ν2.

Conditions φ2 V
(
φ2(α)

)
m ≡ 4 (mod 16) x2 + 2 ≥ 2

m ≡ 12 (mod 32) x2 − 2x+ 6 ≥ 5/2

m ≡ 28 (mod 32) x2 − 2x+ 2 ≥ 5/2

(2) If 2 does not divide m, then f(x) = φ4 +4mφ3 + 6m2φ2 + 4m3φ+m4 −m,
where φ = x−m.

(a) If ν2(m− 1) = 1, then νp((ZK : Z[α])) = 0 and
(
1, α, α

2

A2
, α

3

A3

)
is an integral basis of ZK .

(b) If ν2(m− 1) = 2, then νp((ZK : Z[α])) = 2 and
(
1, α, α

2+m2

2A2
, α

3+m2α
2A3

)
is an integral basis of ZK .
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(c) If ν2(m− 1) ≥ 3, then νp((ZK : Z[α])) = 3 and(
1, α,

α2 +m2

2A2
, α

3−mα2−m2α+2m4−m3

4A3

)
is an integral basis of ZK . �

P r o o f o f C o r o l l a r y 3.4. If m = a, then a1 = a and a2 = a3 = 1.
So if a �≡ ±1 (mod 4), then

ind(θ) =
∣∣(x21 − ax23)(x

4
1 + 2a2x21x

2
3 + 4ax42 − 8ax1x

2
2x3 + a2x43)

∣∣ .
is the index from of K. Thus for (x1, x2, x3) = (1, 0, 0), we have ind(θ) = 1.
Similarly, if m = a3, then a3 = a and a2 = a1 = 1. So if a �≡ ±1 (mod 4), then
ind(θ)=

∣∣(ax21 − x23)(a
2x41 + 2ax21x

2
3 + 4ax42 − 8ax1x

2
2x3 + x43)

∣∣. is the index form
of K. Thus for (x1, x2, x3) = (0, 0, 1), we have ind(θ) = 1. In both cases, K is
monogenic. �

10.3. Pure quintic fields

P r o o f o f T h e o r e m 4.1. Since the discriminant of f(x) = x5 − m is
�(f) = 55m4, thank to the formula linking the discriminant of K, the index,
and �(f), we need only to calculate νp(ind(f)) and a p-integral basis of ZK for
every prime integer p dividing 5 ·m. Let p be a prime integer dividing 5 ·m.

(1) If p divides m, then f(x) = φ5 in Fp[x], where φ = x. Let v = νp(m).
Then Nφ(f) = S has a single side joining (0, v) and (5, 0). Since 1 ≤ v ≤ 4,
gcd(v, 5) = 1, and so the side is of degree 1. Thus fS(y) is irreducible over Fφ.

By Theorem 9.3, we get νp((ZK : Z[α])) = indφ(f) and (1, α, α
2

A2
, α3

A3
, α4

A4
) is

a p-integral basis of ZK .

(2) If p = 5 and 5 does not divide m, then f(x) = φ5 is the factorization

of f(x) in F5[x], where φ = x − m. By considering f(x + m), let f(x) =
φ5+5mφ4+10m2φ3+10m3φ2+5m4φ+m5−m be the φ-expansion of f(x)
with φ = x − m. Thus, if ν5(m

5 − m) = 1, then N+
φ (f) has a single side

of height 1, and so 5 does not divide (ZK : Z[α]). If ν5(m
5 −m) ≥ 2, then

N+
φ (f) = S1 + S2 has two sides joining (0, v), (1, 1), and (5, 0). Thus each

side is of degree 1, and so by Theorem 9.3, ν5((ZK : Z[α])) = indφ(f) = 1

and (1, α, α
2

A2
, α

3

A3
, φ(α)5A4

) is a Z-basis of ZK , where φ(α) = α−m. �

P r o o f o f L e mm a 4.3.
If 5 divides m or ν5(m

4 − 1) = 1, then
(
1, α, α

2

A2
, α3

A3
, α4

A4

)
is a Z-integral

basis of ZK and (Z[θ] : Z[α]) = a22a
4
3a

6
4. Now for every (x0, x1, x2, x3, x4) ∈ Z5,

let θ = x0 + x1α+ x2
α2

a3a4
+ x3

α3

a2a3a2
4
+ x4

α4

a2a2
3a

3
4
. If we replace

(x1, x2, x3, x4) by
(
x1,

x2
a3a4

,
x3

a2a3a24
,

x4
a2a23a

3
4

)
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in the index formula given in [20, 5.3, p. 139], we can compute the index (Z[α] :
Z[θ]). Thus,

(ZK :Z[θ]) = (ZK :Z[α]) · (Z[α] :Z[θ])=
∣∣∣a22a43a64 · ind

(
x1,

x2
a3a4

,
x3

a2a3a24
,

x4
a2a23a

3
4

)∣∣∣,
and we conclude the desired index form ind(x1, x2, x3, x4). �

P r o o f o f C o r o l l a r y 4.4.

(1) Ifm4 �≡1 (mod 25) that ism≡1, 7, 18, 24 (mod 25), then
(
1, α, α

2

A2
, α3

A3
, α4

A4

)
is

a Z-basis of ZK . Denote by ind(x1, x2, x3, x4) the index form corresponding
to this integral basis. We can apply the index formula given in Lemma 4.3.
We have, ind(x1, x2, x3, x4) ≡ ±Bix

10
i (mod aji) with

j1 = 1, B1 = a22a
4
3a

6
4, j2 = 3, B2 = −a21a62a44,

j3 = 2, B3 = −a41a63a24, and j4 = 4, B4 = a61a
4
2a

2
3.

Let δji be the Kronecker symbol, that is δii = 1 and δji = 0 for i �= j.
Thus for m = auji we have ak = 1 for every k �= ji, and so Bi = ±1, and

ind
(
δ1ji , δ

2
ji
, δ3ji , δ

4
ji

)
= Bji · 110 = ±1. Therefore K is monogenic.

(2) Ifm = au, then let (x0, y0) ∈ Z2 be the unique solution of ux0−5y0 = 1 with
1 ≤ x0 ≤ 4; x0 is the unique integer satisfying 1 ≤ x0 ≤ 4 and ux0−5y0 = 1.
Since θ5 = a, g(x) = x5 − a is the minimal polynomial of θ = αx0

a over Q,
and so θ is a primitive element of K. Since a �= ±1 is a square free integer,
by [20, 5.3, Remark 6], we conclude that if a4 ≡ 1 (mod 25), then K is not
monogenic with the unique exception a = 7. �

10.4. Pure septic fields

P r o o f o f T h e o r e m 6.1. Since the discriminant of f(x) = x7−m is �(f) =
−77m6, thank to the formula linking the discriminant of K, the index, and �(f),
we need only to calculate νp(ind(f)) and a p-integral basis of ZK for every prime
integer p dividing 7 ·m. Let p be a prime integer dividing 7 ·m.

(1) If p divides m, then f(x) = φ7 in Fp[x], where φ = x. Let v = νp(m).
Then Nφ(f) = S has a single side joinining (0, v) and (7, 0) with v = νp(m).
Since 1 ≤ v ≤ 6, gcd(v, 7) = 1, and so the side is of degree 1. Thus fS(y) is
irreducible over Fφ. By Theorem 9.3, we get νp((ZK : Z[α])) = indφ(f) and(
1, α, α

2

A2
, α3

A3
, α4

A4
, α

5

A5
, α

6

A6

)
is a p-integral basis of ZK .

(2) If p = 7 and 7 does not divide m, then f(x) = φ7 is the factorization

of f(x) in F7[x], where φ = x − m. By considering f(x + m), let f(x) =
φ7+7mφ6+21m2φ5+35m3φ4+35m4φ3+21m5φ2+7m6φ+m7−m be the φ-
expansion of f(x) with φ = x−m. Thus, if ν7(m

6−1) = 1, then N+
φ (f) has a

single side of height 1, and so 7 does not divide (ZK : Z[α]). If ν7(m
6−1) ≥ 2;
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m ≡ ±1,±18,±19, then N+
φ (f) = S1 + S2 has two sides joining (0, v),

(1, 1), and (7, 0). Thus each side is of degree 1, and so by Theorem 9.3,

ν7((ZK : Z[α])) = indφ(f) = 1 and
(
1, α, α

2

A2
, α3

A3
, α4

A4
, α

5

A5
, φ(α)

6

7A6

)
is a Z-basis

of ZK , where φ(α) = α−m. �
P r o o f o f C o r o l l a r y 6.3.
Let (x, y) be the unique solution of u · x − 7y = 1 and 0 ≤ x ≤ 6. Let θ = αx

ay .

Then θ is a complex root of the polynomial g(x) = x7 − a. Since a �= ±1 is
a square free integer and a �∈ {±1,±18,±19} (mod 49), then by Theorem 6.1,
(1, θ, . . . , θ6) is a Z-basis of ZK , which means that K is monogenic. �

10.5. Pure nonic fields

P r o o f o f T h e o r e m 8.1. Since the discriminant of f(x) = x9 − m is
�(f) = 99m8, thank to the formula linking the absolute discriminant dK of K,
the index, and �(f), we need only to calculate νp(ind(f)) and a p-integral basis
of ZK for every prime integer p dividing 3 ·m. Let p be a prime integer dividing
3 ·m.

(1):

If p divides m, then f(x) = φ9 in Fp[x], where φ = x. Let v = νp(m). Then
Nφ(f) = S has a single side joining (0, v) and (9, 0). Let d =gcd(v, 9). If 3 does
not divide v, then d = 1, and so the side S is of degree 1 and fS(y) is irreducible
over Fφ. By Theorem 9.3, we get

νp((ZK : Z[α])) = indφ(f).

Similarly if d ∈ {3, 6} and p �= 3, then fS(y) = yd −m is a separable polynomial

over Fφ = Fp, and so νp((ZK : Z[α])) = indφ(f). In both cases
(
1, α, α

2

A2
, α3

A3
,

α4

A4
, α5

A5
, α6

A6
, α

7

A7
, α

8

A8

)
is a p-integral basis of ZK . For p = 3, 3 divides m, and

ν3(m) ∈ {3, 6}.
(1/a):
If ν3(m) = 3, then for φ = x, Nφ(f) = S has a single side of slope −λ = −1/3,
and fS(y) = (y − m3)

3. Thus we have to use second order Newton polygon
techniques. According to Nart’s notations in [21], let ω2 be the valuation of sec-
ond order Newton polygon associated to the data (φ, λ, ψ) with ψ(y) = y −m3

and φ2 = x3 − 3m3, where m3 = m/3ν3(m). Let also f(x) = φ32 + 9m3φ
2
2 +

27m2
3φ2 + 27m3(m

2
3 − 1) be the φ2-expansion of f(x) and N2(f) be the φ2-

-Newton polygon of f with respect to ω2. Then ω2(φ
3
2) = 9, ω2(9m3φ

2
2) = 12,

and ω2(27m
2
3φ2) = 12. It follows that:

(1/a/i):
If ν3(m

2
3−1) ≥ 2, then ω2(27m3(m

2
3−1)) ≥ 15, and so N2(f) = S1+S2 has two

sides joining the points (0, v), (1, 12), and (3, 9) with v ≥ 15. Thus, each side Si

is of degree 1, and so ν3(ind(f)) = ind1(f) + ind2(f) = 9 + 4 = 13. Let V be a
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valuation of K extending ν3 and r = V (φ2(α)). Since φ2(α) is integral over Z,
then r ≥ 0. As V (f(α)) = ∞, and N2(f) = S1+S2, we conclude that 3r = 3+ r
or 3 + r = v/3). Thus 2r = 3 or r ≥ 2. Hence V (φ2(α)) ≥ 3/2. Let us show that(

1, α,
α2

A2
,
α3

A3
,
α4

A4
,
α5 − 3m3α

2

3A5
,
α6 − 6m3α

3 + 9m2
3

3A6
,

α7 − 6m3α
4 + 9m2

3α

3A7
,
α8 − 6m3α

5 + 9m2
3α

2

3A8

)

is a Z-basis of ZK . Based on the calculation of the index ind(f), we need to show
that every element of this basis is integral. In order to show that each of these
elements is integral, we need to verify that for every valuation V of K extending
ν3, we have the V -valuations of these elements are greater than or equal to 0.
This technique will be repeated in all of the following cases.

(1/a/ii):
If ν3(m

2
3 − 1) = 1, then N2(f) = S has a single side of slope −1. Replace φ2

by φ2 − 3m3ux with u = (m2
3 − 1)/3, we get N2(f) = S1 + S2 has two sides

joining the points (0, v), (1, 12), and (3, 9) with v ≥ 15. Therefore,

ν3
(
ind(f)

)
= ind1(f) + ind2(f) = 9 + 4 = 13

and(
1, α,

α2

A2
,
α3

A3
,
α4

A4
,
α5 − 3m3uα− 3m3α

2

3A5
,
φ2(α)

2

3A6
,
αφ2(α)

2

3A7
,
α2φ2(α)

2

3A8

)

is a Z-basis of ZK , where φ2(x) = x3 − 3m3ux− 3m3.

(1/b):
If ν3(m) = 6, then for φ = x, Nφ(f) = S has a single side of slope −λ = −2/3,
and fS(y) = (y−m3)

3. Let ω2 be the valuation of second order Newton polygon
associated to the data (φ, λ, ψ) with ψ(y) = y−m3 and φ2 = x3− 9m3. Let also
f(x) = φ32 + 27m3φ

2
2 + 243m2

3φ2 + 729m3(m
2
3 − 1) be the φ2-expansion of f(x)

and N2(f) be the φ2-Newton polygon of f with respect to ω2. Similarly to the
previous case, we have the following cases

(1/b/i):
If ν3(m) = 6, then for φ = x, Nφ(f) = S has a single side of slope −λ = −2/3,
and fS(y) = (y −m3)

3. Let ω2 be the valuation of second order Newton poly-
gon associated to the data (φ, λ, ψ) with ψ(y) = y −m3 and φ2 = x3 − 32m3.
Let also f(x) = φ32 + 27m3φ

2
2 + 243m2

3φ2 + 729m3(m
2
3 − 1) be the φ2-expansion

of f(x) and N2(f) be the φ2-Newton polygon of f with respect to ω2.
It follows that

(1/b/i/A):
If ν3(m

2
3 − 1) ≥ 2, then N2(f) = S1 + S2 has two sides joining the points

(0, v), (1, 21), and (3, 18) with v ≥ 24. Thus, each side is of degree 1, and so
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ν3(ind(f)) = ind1(f)+ind2(f) = 21+4 = 25. Let V be a valuation of K extend-
ing ν3 and r = V

(
φ2(α)

)
.Based on N2(f), we conclude that V

(
φ2(α)

) ≥ 5/2.
Therefore(

1, α,
α2

A2
,
α3

A3
,
α4 − 9m3α

3A4
,
α5

A5
,
φ2(α)

2

3A6
,
αφ2(α)

2

3A7
,
α2φ2(α)

2

3A8

)

is a Z-basis of ZK , where φ2(x) = x3 − 32m3.

(1/b/i/B):
If ν3(m

2
3 − 1) = 1, then N2(f) = S has a single side joining (0, 21) and (3, 18),

and so is of slope −1. By replacing φ2 by φ2 − 3m3ux
2 with u = (m2

3 − 1)/3, we
get N2(f) = S1 + S2 has two sides joining the points (0, v), (1, 21), and (3, 18)
with v ≥ 24. Therefore, ν3(ind(f)) = ind1(f) + ind2(f) = 21 + 4 = 25 and so

(
1, α,

α2

A2
,
α3

A3
,
α4 − 9m3uα

2 − 9m3α

3A4
,
α5

A5
,
φ2(α)

2

3A6
,
αφ2(α)

2

3A7
,
α2φ2(α)

2

3A8

)

is a Z-basis of ZK , where φ2(x) = x3 − 3m3ux
2 − 32m3.

(1/b/ii):

For p=3 and 3 does not divide m, f(x)=φ9 is the factorization of f(x) in F3[x],
where φ = x − m. Let f(x) = φ9 + 9mφ8 + 36m2φ7 + 84m3φ6 + 126m4φ5 +
126m5φ4 + 84m6φ3 + 36m7φ2 + 9m8φ + m9 − m be the φ-expansion of f(x)
with φ = x−m.

(1/b/ii/A):
If ν3(m

2 − 1) = 1; ν3(m
9 −m) = 1, then N+

φ (f) has a single side of height 1,

and so 3 does not divide (ZK : Z[α]). Then

(
1, α,

α2

A2
,
α3

A3
,
α4

A4
,
α5

A5
,
α6

A6
,
α7

A7
,
α8

A8

)
is a Z-basis of ZK .

(1/b/ii/B):
If ν3(m

2 − 1) = 2, then N+
φ (f) has two sides joining (0, 2), (3, 1), and (9, 0).

Thus each side of N+
φ (f) has degree 1, and so ν3((ZK : Z[α])) = 2 and

(
1, α,

α2

A2
,
α3

A3
,
α4

A4
,
α5

A5
,
α6 +mα3 +m

3A6
,
α7 +mα4 +mα

3A7
,
α8 +mα5 +mα2

3A8

)

is a Z-basis of ZK .

(1/b/ii/C):
If ν3(m

2 − 1) ≥ 3, then N+
φ (f) has a three sides joining (0, v), (1, 2), (3, 1),

and (9, 0). Thus each side of N+
φ (f) has degree 1, and so ν3((ZK : Z[α])) = 4
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and(
1, α,

α2

A2
,
α3

A3
,
α4

A4
,
α5

A5
,
α6 +mα3 +m

3A6
,
α7 +mα4 +mα

3A7
,

α8 +mα7 + 4α6 − 2mα5 − 2α4 + 3α2 +mα− 2 + 3m

9A8

)
is a Z-basis of ZK . �
P r o o f o f C o r o l l a r y 8.3.
Since GCD(u, 9) = 1, let (x, y) be the unique solution of u · x − 9y = 1 and

0 ≤ x ≤ 8. Let θ = αx

ay . Then θ is a complex root of the polynomial g(x) = x9−a.
Since a �= ±1 is a square free integer and a �≡ ±1 (mod 9), then by Corollary 8.2,
(1, θ, . . . , θ8) is a Z-basis of ZK , which means that K is monogenic. �
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