
Tatra Mt. Math. Publ. 41 (2008), 79–91

tm
Mathematical Publications

REMARKS ON THE NFS COMPLEXITY

Pavol Zajac

ABSTRACT. We investigate practical issues with implementing the NFS algo-
rithm to solve the DLP arising in XTR-based cryptosystems. We can transform
original XTR-DLP to a DLP instance in Fp6 , where p is a medium sized prime.

Unfortunately, for practical ranges of p, the optimal degree of an NFS poly-
nomial is less than the required degree 6. This leads to a problem to find enough
smooth equations during the sieve stage of the NFS algorithm. We discuss sev-
eral techniques that can increase the NFS output, i.e., the number of equations
produced during the sieve, without increasing the smoothness bound.

1. Introduction

This research was motivated by the problem of finding discrete logarithms
in XTR based systems [7]. XTR uses a subgroup of F∗p6 with prime order q

dividing p2 − p + 1 (called XTR group). Its elements are represented by their
traces, and efficient arithmetic is developed to allow fast exponentiation. Thus
XTR-DL problem is to find the unknown exponent d from Q = Gd, where G, Q
are known XTR traces.

The XTR-DL problem can be solved in XTR group by generic methods of
asymptotic complexity O

(
q

1
2
)
. If q is chosen as large as possible, i.e., p2 − p + 1,

then the complexity becomes O(p). The computation becomes quickly infeasible
with growing p. On the other hand, XTR-DL can be transformed (in a polyno-
mial time) to an instance of the discrete logarithm problem in the finite field Fp6 .
Then it can be solved by the Number Field Sieve (NFS) in subexponential time
with complexity Lp6

(
1
3 , c

)
, where

Lx(α, c) = exp
(
(c + o(1))(log x)α(log log x)1−α

)
. (1)

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60, 11Y40, 11R04.
Keyword s: algebraic numbers, number field sieve, complexity.
This work was supported by Grant VEGA 1/3115/06 and ESF SORO/JPD3-038/2005.

79

PAVOL ZAJAC

The constant c in asymptotic complexity estimate is connected to a choice of
optimal smoothness bound B in the NFS algorithm. Using the complexity esti-
mates of [4], the complexity of NFS becomes smaller than complexity of general
methods for p ≈ 240.

In practical experiments, the situation becomes more complicated. The real
NFS is in fact a rather general method (or a set of related algorithms) than an
exact algorithm with exactly defined parameters. This leads to many implemen-
tation and parameterization options that affect the actual performance.

Other problems can arise from the fact that the polynomial of degree 6 is
actually too large for smaller p. Joint degree of two polynomials used in NFS
for Fp6 is at least 12 (two polynomials of degree 6 are required). Method of [3]
uses two polynomials of degrees d + 1, d. Degree d = 6 is optimal for fields of
sizes 2780, corresponding to our p ≈ 2130. For smaller primes, real performance
is affected by a faster growth of the norms of the sieved algebraic numbers.

NFS implementation for DLP in Fp6 gains optimal asymptotical performance
only for p’s that are too large to consider actual logarithms computable. In
practical ranges, NFS parameters must be chosen in a suboptimal (in terms of
asymptotic complexity) manner. The main problem during the computation is
to find enough smooth equations1. We literally strive for every single smooth
equation we can get. In this paper we present some heuristics that can be used
to increase the number of smooth equations gained from the sieve stage (NFS
yield) without considerable effect on the size of the factor base used during the
sieve stage.

In the Section 2 we summarize the basic steps of the NFS method. We also
show where possible changes can be made that affect the NFS output, i.e., the
number of equations produced during the sieve. In Section 3 we analyze how
we can influence the NFS output by the polynomial selection. More equations
can also be gained by using multiple sieves as it is described in Section 4. In
Section 5 an idea of [4] to sieve the space of higher dimension is elaborated. We
present a possible change of the line sieving algorithm and consider the actual
sieving results. In Section 6 we present some results considering the use of the
large factors. Section 7 summarizes the results and recommendations.

2. The Number Field Sieve

The description of the Number Field Sieve and its use to find discrete log-
arithms in finite fields can be found in [4]. The complexity of this method is

1Smooth equation is an equation in the form (3), but in the context of the NFS algorithm the
notion “smooth equation” can also denote a pair of smooth algebraic numbers, as well as the
corresponding point of the sieve region.

80

REMARKS ON THE NFS COMPLEXITY

described there as well. Another good complexity analysis of the NFS is in [1].
For the purpose of this article, we present a short overview of the NFS without
going into any details of its mathematical aspects. Some specific algorithmic
details are further elaborated in the appropriate sections of the article.

Let ZK be a ring of integers of the number field K. Let ξ ∈ ZK has B-smooth
norm N(ξ) =

∏
pei

i , i.e., N(ξ) has only prime divisors pi < B. We will call ξ
a B-smooth algebraic number. The principal ideal (ξ) = ξZK can be factored as
a product of prime ideals lying over primes pi.

Basic NFS principle is as follows: Let α, β ∈ C be the roots of two distinct
monic polynomials f, g ∈ Z[x] irreducible over Z. Then K1 = Q(α), K2 = Q(β)
are two algebraic number fields. Let t be a common root of f, g in Fpd . Then
there exist two homomorphisms φ : K1 → Fpd , and ψ : K2 → Fpd , defined by
sending α, resp. β, to t.

Let g be a generator of G = F∗pd and q is a (large) prime dividing order of G.
Let algebraic number ξ ∈ K1 be B-smooth with the corresponding prime ideal
decomposition

(ξ) =
∏

pj
vj .

Further let πj ∈ pj, and let h be a class number of K. Using Schirokauer loga-
rithmic maps λ, we can transform this equation to

logg

(
φ(ξ)

) ≡
r∑

j=0

λj(ξ)Λj +
∑

j

vjxj (mod q), (2)

where Λj = logg φ(υj) is an unknown “virtual logarithm” of the unit υj , and
xj = h−1 logg φ(πj) is an unknown “virtual logarithm” of prime ideal pj.

Let ξ1 ∈ ZK1 and ξ2 ∈ ZK2 be two B-smooth algebraic numbers, and let
φ(ξ1) = φ(ξ2). We call (ξ1, ξ2) a smooth pair. Using homomorphisms φ, ψ and
equations (2), we can write

r1∑

j=0

λ
(1)
j (ξ1)Λ

(1)
j +

∑

j

vix
(1)
j ≡

r2∑

j=0

λ
(2)
j (ξ2)Λ

(2)
j +

∑

j

vix
(2)
j (mod q), (3)

with unknown “virtual logarithms” Λ(1)
j , Λ(2)

j , x
(1)
j , and x

(2)
j . We call any equation

in the form (3) a smooth equation.
A set of all prime ideals in ZK1 , and ZK2 respectively, lying over primes

pj < B, is called an (algebraic) factor base. If the cardinality of the factor base is
c1 + c2, we can have at most C = c1 + c2 + r1 + r2 unknown “virtual logarithms”
in any smooth equation. If we are able to find R > C linearly independent
smooth equations, we can try to find a non-trivial solution of the corresponding
linear system. By substituting to equations (2) we can compute logarithms of
the corresponding elements of F∗pd . Logarithms of other F∗pd elements can be

81

PAVOL ZAJAC

further computed by the means of descent computation [1], [4], which is beyond
the scope of this article.

The goal of the NFS based algorithm is to find enough smooth equations in an
efficient manner. Equations are sought by the means of a sieve. A linear subspace
(a sieving region) representing elements of both K1, and K2 corresponding to
a same image in F∗pd , is mapped to a memory of the computer. A sieving region
is usually a space (a, b) ∈ Z2, 0 < |a|, b < M , corresponding to a pair of algebraic
numbers (a − bα, a − bβ). We mark points corresponding to algebraic numbers
belonging to prime ideals from factor base. After marking points from every
ideal we are able to identify the smooth ones. More details of the sieve can be
found in papers mentioned in [5].

Any NFS implementation thus consists of the four basic steps:

(1) Parameter selection. We select polynomials f, g, estimate B and size of the
sieving region, construct a factor base and do any required preprocessing
that can speed up sieving.

(2) Sieving. This is the most time consuming part, where smooth equations
are identified (usually in parallel on many computers).

(3) Linear algebra. Solve the linear systems constructed from smooth equa-
tions.

(4) Individual logarithms. Compute logarithms of elements of F∗pd .

The NFS is a complex method that allows many further parameterizations,
and different variants of algorithm implementation. Some of the optional heuris-
tics that can influence the actual algorithm performance are:

(1) Choice of the polynomials.
(2) Choice of the smoothness bound.
(3) Choice of the sieving region.
(4) Use of more than two algebraic fields.
(5) Use large primes and partially smooth equations.
(6) Use of special-q sieve.
(7) Use of a sieve region with higher dimension.
(8) Use of a different smoothness detection and factorization techniques.

In the following sections we present our findings from experiments involving
computations of discrete logarithms in Fp6 .

82

REMARKS ON THE NFS COMPLEXITY

3. A choice of the polynomials

In the first step of the NFS, we must choose (at least) two (monic) polynomials
f, g ∈ Z[x] irreducible over Z, with a common root in Fpd . In our case, when p
is not too large, the recommended choice is [4]:

• f is a monic polynomial of degree d irreducible over Fp with small coeffi-
cients (in absolute value);

• g(x) = f(x)± p .

3.1. A choice of f

There are no strict limits on the choice of the polynomial f, although according
to [4] it is possible to exploit automorphism group of certain number fields if the
class number of the field is known. Thus we consider only2 the absolute value of
coefficients in the selection of the polynomial f.

One of the most important parameters that influence the NFS performance
is the smoothness probability (in the sieve region). This is a probability that an
algebraic number from the sieve region has B-smooth norm (for a fixed B). The
smoothness probability in the NFS thus depends on the smoothness bound B
and the sieving region. Larger sieving region means higher NFS output, but
requires more work in sieving. Furthermore, the norms of elements further from
origin are higher, and thus less likely B-smooth (with B fixed).

Another way to increase smoothness probability is to increase smoothness
bound B. However, this leads to an increased number of elements in the factor
base, increased sieving time, and increased size of the linear system respectively.
We also need to find even more equation, thus increasing B can lead even to
sieve deterioration.

A choice of the polynomial is the third possibility to influence the smoothness
probability. The number of irreducible polynomials we can choose from is large
enough to consider statistical effects of the polynomial choice on the smooth-
ness probability in a fixed sieve region with fixed smoothness bound B. Our
experimental results are described in [10]. The distribution of smoothness prob-
ability w.r.t. polynomial choice is almost normal. The polynomials with a higher
smoothness probability for some size of the sieving region and B tend to give
us higher smoothness probability for other choices of the region size and B.
If computing discrete logarithms for different p’s and fixed d, it is possible to
prepare a list of suitable polynomials sorted in descending order by smoothness
probability.

The standard deviation of smoothness probability distribution w.r.t. polyno-
mial selection is high in comparison to the sensitivity of smoothness probability

2Additional condition is that the group order q does not divide discriminant of f or g, but this
happens very rarely, so we can ignore this case.

83

PAVOL ZAJAC

Figure 1. The fraction of B-smooth algebraic numbers a + bαi + cα2
i ,

with 0 < a, b, c ≤ M, for M = 8, 9, . . . 24. The αi’s are roots of 100 distinct
degree 6 irreducible polynomials (over Z), with coefficients |ai| ≤ 2.

to the changed B. Experimentally, we can gain the same increase in smoothness
probability by changing the polynomial, as by increasing B four times (thus
increasing factor base correspondingly), as shown in Figure 1.

The smoothness probability w.r.t. polynomial selection seems to be positively
correlated with the number of first degree ideals in the factor base (with con-
stant B), as depicted in Figure 2. This could also mean that an increase in
smoothness probability is compensated by requiring a larger factor base. How-
ever, the correlation is small, and for any size of the factor base (with fixed B)
we have detected both better and worse polynomials (in terms of smoothness
probability) than average.

When choosing polynomial we can consider both maximizing the smoothness
probability and minimizing the number of ideals in the factor base to gain the
best results of the sieve.

3.2. A choice of g

Since we have only two polynomials g(x) = f(x)± p in the standard polyno-
mial selection, it is difficult to compare the effect of their selection statistically
(it mostly depends on p itself). Thus we should test the smoothness probability
in both possible fields, or just choose randomly one of them. It is also possible to
restrict selection according to other criteria, e.g., the discriminant of the finite
field.

84

REMARKS ON THE NFS COMPLEXITY

Figure 2. The fraction of B-smooth algebraic numbers a + bαi, with 0 <
|a|, b ≤ 32 as a function of factor base size. The αi’s are roots of 1000
distinct degree 6 irreducible polynomials (over Z), with coefficients |ai| ≤ 2.

Since the absolute coefficient of g(x) is significantly larger than other coeffi-
cients, norms of the principal ideals of

∑
aiβ

i are growing faster with increas-
ing ai with higher i (dimension). Thus it is usually a good idea to use a skewed
sieving region, longer along a0 axis.

4. Multiple polynomials

The two polynomials g(x) = f(x) ± p are not the only possible choice with
comparative size of the coefficients. We can consider the choice of any g(x) =
f(x)+ph(x), with deg h < deg f, where coefficients of h(x) are small in absolute
value (typically equal to ±1). On the other hand, the norms of algebraic numbers
in fields defined by h(x) with higher degree are larger (in absolute value).

However, these polynomials are useful to implement a multiple polynomial
variant of NFS. Classical multipolynomial NFS to solve discrete logarithms in Fp

is described in [1]. It is possible to adapt the method also for Fpd . General outline
of the new method is as follows:

(1) Let f(x) ∈ Z[x] be a monic polynomial of degree d irreducible over Fp. Let
K0 = Q(α), with α ∈ C, f(α) = 0.

(2) Let gi(x) = f(x) + phi(x), i = 1, 2, . . . with deg hi < deg f ; all hi’s are
distinct with small coefficients in absolute value. Let gi(βi) = 0, βi ∈ C,
and let Ki = Q(βi).

85

PAVOL ZAJAC

(3) For each i = 1, 2, . . . find points in the sieve region that correspond to
smooth algebraic numbers in field K0 as well as in the field Ki.

(4) If the number of smooth points accumulated using Ki is smaller than the
size of the factor base in this field (plus small constant for logarithmic
maps), the results of sieving Ki should be discarded.

(5) Create the system of equations similar to equation (3) with left-hand side
corresponding to factorization of elements from K0, and right-hand side to
factorization of corresponding elements from Ki’s which were not discarded
in step 4.

(6) After computing the solution of the system of equations, individual loga-
rithms of Fpd can be computed using descent method.

In the linear system of equations, unknowns correspond to prime ideals in K0

and in every Ki used plus O(1) logarithmic maps or virtual unit logarithms (we
need at most d of them). Let the size of factor base for Ki be ci and let ri points
(a0, . . . , at) correspond to elements

∑
ajα

j ,
∑

ajβ
j
i smooth in both K0 and Ki.

Then we can create ri new equations at the cost of ci+d unknowns. If ri < ci+d,
the NFS with the given Ki is unsuccessful. If for some k we get rk > ck +c0 +2d,
we do not need more Ki’s, just Kk. Thus using multiple polynomials is suitable
only if the expected NFS output is above maximal ci but below minimal ci + c0.

As it is difficult to precisely estimate the NFS output, we should start with
sieving K1 given by one of the g(x) = f(x) ± p. Using the number of smooth
found equations, we can estimate the number of required Ki’s. It should be taken
into account that for hi(x) with higher degree, the norms of algebraic numbers
are larger. Thus the expected number of found equations is lower. This can
be compensated by setting different smoothness bound B for each Ki, or K0,
respectively.

5. Sieving higher dimensions

A classical NFS sieves only a planar region, i.e., points (a0, a1) corresponding
to a pair of algebraic numbers (a0+a1α, a0+a1β). When p is small in comparison
with pd, norms of elements in sieving region get too high without enough of
smooth equations collected.

As described in [4], we can gain more equations by sieving (t + 1)-tuples
(a0, . . . , at) corresponding to pairs of algebraic numbers

(∑t
i=0 aiα

i,
∑t

i=0 aiβ
i
)
.

The norms can be bounded by (d+ t)(d+t)Md
a M t

f , where Ma is the upper bound
of absolute values of ai, and Mf is the upper bound of absolute values of coeffi-
cients of f, or g, respectively. As the polynomial g is skewed with large absolute

86

REMARKS ON THE NFS COMPLEXITY

coefficient, norms of elements with higher dimension are larger (for comparable
sizes of ai’s).

Besides problems with larger norms in higher dimensions, we encounter also
some new implementation problems. The prime ideals in corresponding factor-
izations can be of a degree as high as t. On the other hand, the higher degree
factors are very rare. A prime ideal over some pi of degree t has norm pt

i. The
chance of the factor with norm n to appear in factorization is ∼ 1

n . Thus an ideal
over pi of degree t has 1/pt−1

i smaller chance to appear than a degree one ideal
over pi. Usually only higher degree ideals over small primes appear in smooth
equations. As it is useful to exclude small primes from the sieve (for efficiency),
we can also exclude all higher degree prime ideals as well. Thus we sieve only
with degree one prime ideals.

In a multidimensional sieve we must check that a sieved element, when taken
as a polynomial

∑t
i=0 aix

i ∈ Z[x], is irreducible over Z. Otherwise we can take
the corresponding factors and write equations directly for them (if their product
is smooth, then they are certainly smooth as well). If we fix t, we can leave out
the irreducibility check at the expense of more equations required to be able to
solve the linear system.

There are two main types of the sieve used in the NFS, namely the line sieve
and the lattice sieve. The lattice sieve requires additional computation of the
base of prime ideals (from within some part of the factor base) within special-q
lattice. The complexity of this computation is growing with higher dimensions.
Within the lattice sieve, line sieve is used with recomputed ideal bases.

Algorithm described in [9] is a general outline of the line sieve algorithm for
any dimension and for any degree of used prime ideals. However, this algorithm
is ineffective for fixed t, when using degree one ideals only.

In this case we can use the Hermite Normal Form of the ideal base (either
in Z[α] or in special-q lattice). Excluding small finite number of cases, the bases
of (t + 1)-dimensional subspace have form (base vectors in rows):




pi 0 0 . . . 0
r1 1 0 . . . 0
r2 0 1 . . . 0
...

...
...

. . .
...

rt 0 0 . . . 1




.

Let some (a0, a1, . . . , at) lie in the ideal pi with the bases above. All points
(a0 + kpi, a1, . . . , at) lie also in pi. Thus we can mark positions on the single
line for fixed a1, . . . , at for various pi by finding the “starting point” and making
“jumps” of size pi. Consider the change of some aj to aj + 1. Then we must
certainly mark points (a0 + rj + kpi, a1, . . . , aj + 1, . . . , at). If the starting point
on the line given by a1, . . . , aj , . . . , at was m0 +s, then the new starting point on

87

PAVOL ZAJAC

a1, . . . , aj + 1, . . . , at is m0 + (s + rj)mod pi, where m0 is the smallest possible
a0-coordinate in the sieving region. Another speedup in the case of cuboid region
that can be used is to precompute the change of “starting point” from the line
M1, . . . , Mj , aj+1, . . . , at to m1, . . . , mj , aj+1 + 1, . . . , at, where mj , Mj is the
smallest, and highest coordinate in dimension j, respectively.

The algorithm can be summarized as follows:
(1) For every ideal pi compute starting point m0 + si on line a1 = m1, . . . , at

= mt.
(2) Sieve line a1, . . . , at by marking m0 + si + kpi within sieve region.
(3) If a1 < M1, update si = (si + r1)mod p1.
(4) If a1 = M1, find first ak < Mk, increment ak = ak +1, update si and reset

a1 = m1, . . . , ak−1 = mk−1.
(5) If at = Mt, stop sieve, otherwise, go to step 2.
The algorithm can be distributed by partitioning the sieve region into smaller

subregions. The size of each region along the a0 should be always the same and
equal to B (so that every prime appears at least once on each iteration).

We have used the sieve with t = 2 (using coordinate system x, y, z) in the NFS
computations in Fp6 with region [−M, M]×[−M, M]×[1, zmax]. The z coordinate
should not be negative, as multiplying the elements by −1 leads to the same
equation. Results of one of the experiments are summarized in Table 1. As
expected, the NFS output is the highest for z = 1. It decreases with the factor
of

(
1
2

)
log z. The NFS output is lower, when z has small prime factors, because

we have removed points with gcd(x, y, z) > 1. Interesting fact is that we get
significantly more equations for plane with z = 1 than for plane with z = 0, i.e.,
the classical 2D sieve. This could lead to some optimizations even in existing
sieves.

6. Using large primes

In the classical NFS we collect smooth equations using elements with
B-smooth norms with some precomputed fixed B. Smooth elements are identi-
fied by the sieve, i.e., we mark points in every prime ideal (of degree one) with
norm pi < B. Marking the point means that we add the logarithm of pi (or its
approximation) to some counter associated with the point. After marking points
in every prime ideal, we compare the counters with the estimated logarithm of
the norm. Thus we can easily see whether the associated algebraic number is
smooth.

In some cases we have “almost” reached the norm up to some large factor n. If
all primes below B were used in the sieve, then certainly n > B. If also n < B2,

88

REMARKS ON THE NFS COMPLEXITY

Table 1. NFS output by z. NFS parameters were: B = 80000, f(x) =
x6 − 2x + 2, g(x) = x6 − 2x− 529041. Sieving region was [−216, 216] ×
[−212, 212] × [1, 256], and for comparison corresponding (x, y)-halfplane
with z = 0, y > 0. Total NFS output was 29477 equations in 15642 un-

knowns.

z NFS output
0 303
1 1103
2 584
3 724
4 463
5 654
6 323

z NFS output
250 31
251 46
252 22
253 50
254 35
255 40
256 23

then it is clearly a prime. Let B < B1 ≤ B2. If B1 ≤ n < B2
1/B, then either n

is prime or n has two (not necessarily distinct) prime factors B < p1, p2 < B1.
We can thus identify some additional factors almost for free. Single large prime
requires one additional comparison. Composite factors require primality testing,
and factoring of relatively small number, which are both fast.

These large factors are obtained as a side effect almost for free, but their
effective use requires some further post-processing. Every large factor represents
one new unknown in the linear system. Thus only large factors that occur more
than once are usable. Large primes have been used in many known factoring
records using NFS. On the other hand, discrete logarithm records were computed
without large primes using larger factor bases than usual [3].

The method that combines both large primes variant and large factor base
is to use two-stage sieving. We use two smoothness bounds B, B1 < B2. First,
a classical sieve is applied for every (degree one) prime ideal over pi < B. Large
primes below B1 are identified (both single and double). If we do not have enough
B-smooth equations, large primes that occur at least twice are added to the
factor base, along with corresponding equations. If we still do not have enough
equations, we use special-q lattice sieve for every large prime. This means, we
construct a lattice corresponding to a prime ideal over large qi, and sieve elements
on this lattice. Norm of every algebraic number associated with points on this
lattice certainly has qi as its factor. We can even skip the medium step and
directly use special-q sieve for every prime B < qi < B1.

For an easy detection of large primes we should use B1 < B2 for single large
prime, or B2

1 < B3 for double large prime variant. Practical experiments show
that the upper bound is too large if we want to avoid special-q sieve. With
larger B1 we gain more partial equations, but most of them are useless, since

89

PAVOL ZAJAC

the corresponding prime ideals appear only in a single equation. Recommended
practical choice is B1.2 < B1 < B1.4 [6].

7. Conclusions

We presented several techniques that can influence the running time of the
NFS implementation and the size of the linear system we need to solve.

Choice of the polynomial have significant impact on the smoothness proba-
bility in the sieve region, thus influencing the NFS output and running time. An
effect of the best polynomial choice in comparison to the worst one is comparable
to increasing the factor base by a factor of four.

If the NFS output is comparable with factor base size on one side, but smaller
than required, we can create a solvable linear system by employing multiple
algebraic number fields. This leads to a larger linear system.

Use of large primes and partially smooth equations can lead to a significantly
higher NFS output, at the price of a larger linear system. An effective filter-
ing and a careful selection of parameters should be employed when using large
primes, otherwise the performance deteriorates.

A significant increase in the number of smooth equations can be obtained by
increasing the dimension of the sieve region. This however leads to an increased
sieve complexity, as we must sieve more points. However, using distributed com-
puting, the cost of sieving can be significantly smaller than the cost of solving
the linear system.

An interesting side result of higher dimensional sieve, is its possible applica-
tion to increase the effectiveness of classical NFS with two dimensional sieve.
Instead of mapping (a, b) ∈ Z2 to a pair of algebraic numbers (a + bα, a + bβ),
we can map them to a pair (a + bα + α2, a + bβ + β2). Norms of algebraic num-
bers in this sieving region are comparable to norms in the original sieving region
(depending on the region size and polynomial coefficients). We can however use
also points with gcd(a, b) 6= 1, and b ≤ 0, respectively. Thus we can increase
the number of equations that can be found by sieve without increasing the sieve
region. If we want to avoid (trivially) linearly dependent equations, we should
check whether b2 − 4a is a square in Z (in this case the equation can be split
according to the factorization of the polynomial a + bx + x2).

REFERENCES

[1] COMMEINE, A.—SEMAEV, I.: An algorithm to solve the discrete logarithm problem
with the number field sieve, in: Public Key Cryptography—PKC ’06 (Y. Moti et al., eds.),
Lecture Notes in Comput. Sci., Vol. 3958, Springer-Verlag, Berlin, 2006, pp. 174–190.

90

REMARKS ON THE NFS COMPLEXITY

[2] DODSON, B.—LENSTRA, A. K.: NFS with four large primes: an explosive experiment,
in: Advances in Cryptology—CRYPTO ’95 (D. Coppersmith, ed.), Lecture Notes in Com-
put. Sci., Vol. 963, Springer-Verlag, Berlin, 1995, pp. 372–385.

[3] JOUX, A.—LERCIER, R.: Improvements to the general number field sieve for discrete
logarithms in prime fields: a comparison with the Gaussian integer method, Math. Comp.
72 (2003), 953–967.

[4] JOUX, A.—LERCIER, R.—SMART, N.—VERCAUTEREN, F.: The number field sieve
in the medium prime case, in: Advances in Cryptology—CRYPTO ’06 (C. Dwork, ed.),
Lecture Notes in Comput. Sci., Vol. 4117, Springer-Verlag, Berlin, 2006, pp. 326–344.

[5] The Development of the Number Field Sieve (A. K. Lenstra, H. W. Lenstra, Jr., eds.),
Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin, 1993.

[6] LENSTRA, A. K.—LENSTRA, H. W., JR.—MANASSE, M. S.—POLLARD, J. M.: The
number field sieve, in: Lecture Notes in Math., Vol. 1554, Springer-Verlag, Berlin, 1993,
pp. 11–42.

[7] LENSTRA, A. K.—VERHEUL, E. R.: An overview of the XTR public key system, in:
Public-key Cryptography and Computational Number Theory (K. Alster et al., eds.),
de Gruyter, Berlin, 2001, pp. 151–180.

[8] SCHIROKAUER, O.: Virtual logarithms, J. Algorithms 57 (2005), 140–147.
[9] ZAJAC, P.: Generalized line sieve algorithm, in: Proceedings of ELITECH ’07, STU

Bratislava, 2007.
[10] ZAJAC, P.: Smoothness probability in degree six number fields, J. Electr. Engr. 57 (2007),

(to appear).

Received September 28, 2007 Department of Applied Informatics and IT
Slovak University of Technology
Faculty of Electrical Engineering and
Information Technology
Ilkovičova 3
SK-812 19 Bratislava
SLOVAKIA

E-mail : pavol.zajac@stuba.sk

91

