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ABSTRACT. The problem of subliminal channels in the signatures was already
studied in the previous literature. In this paper we focus on the problem of sublim-
inal communication through the public verification key. We show a construction
which derives a subliminal-free RSA public key. Along the construction we use
a computationally binding and unconditionally hiding commitment scheme. To
establish a subliminal free RSA modulus n, we have to construct the secret primes
p and q. To prove p and q are primes we use Lehmann’s primality test on the
commitments. We show our “public key subliminal free” signature scheme is in-
distinguishable from “regular” RSA signature schemes. When we combine our
key generation with the existing subliminal free RSA-PSS signature scheme then
we get a signature scheme which is subliminal free in the sense of public key and
signature.

1. Introduction

The history of subliminal channels in cryptography goes back to 1983 when
S i m m o n s published a paper with the title: The prisoners’ problem and the
subliminal channel [Sim84]. In the paper he introduces subliminal channels
through an example: A warden enables two prisoners to communicate through
signed messages, but the messages will be opened and read by him. Here the
question arises, is it possible for the prisoners to communicate secretly through
the non-secret channel; i.e., is it possible to establish a subliminal channel? The
answer was yes. The solution was they sacrifice some of their ability of authen-
tication to open a subliminal channel for secret communication through the
signature. The next question pops up; is it possible to obtain a subliminal-free
authentication and signature? D e s m e d t in [Des88] showed the existence of
subliminal free authentication system. He made the Goldwasser-Micali-Rivest
signature system subliminal free by using commitments on the random values.
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In [BS05] B o h l i and S t e i n w a n d t laid on a definition of subliminal chan-
nels in digital signatures. Here our goal is to avoid secret communication in
asymmetric signature schemes through the public verification key. In our contri-
bution we give a definition of signature scheme, where the public key contains
a subliminal channel and give a definition for a subliminal-free public key in
existentially unforgeable signature schemes. We show an example how to con-
struct a subliminal-free RSA public key, if we combine it with the subliminal-
-free deterministic RSA-PSS from [BS05], we get a version of RSA-PSS which is
subliminal-free in the sense of the public key and the signature.

At first let us see and discuss some examples for subliminal channels in the
public key. We can easily find narrow band channels in an RSA public key, for
example: choose p, q such that the product’s last few (binary) digits (of course
the very last one is always 1) encode the subliminal message. If we could factor
the RSA modulus with some extra information (subliminal secret key), then
we could easily establish a broadband subliminal channel, simple taking one of
the primes to be the encoded subliminal message. We could avoid broadband
subliminal channels by verifiable randomness [JG02]. In our set up we need more,
according to our (later established) definition we would like to have a public
key which does not contain one single bit subliminal message with more than
negligible probability.

2. Set up definitions

2.1. Preliminaries

Let us recall some definitions. First of all the definition of the negligible func-
tion [Gol01].

Definition 2.1.1. A function µ : N → R is called negligible in n if for every
positive polynomial p(·) and all sufficiently large n’s, it holds that µ(n) ≤ 1

p(n) .
We will use the notation negl(n) for these functions.

We will need the standard definition of the signature scheme.

Definition 2.1.2. A signature scheme S=(Gen, Sig, Ver) is a triple of algo-
rithms, where

– Gen is a probabilistic polynomial time (ppt) algorithm that takes the se-
curity parameter 1k as input and returns a pair of public and private key
(pk, sk).

– Sig is a ppt algorithm that takes a message M and the private key sk as
input and produces a valid signature σ for M under sk.
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– Ver is a deterministic polynomial time algorithm that takes a message M ,
a signature σ and the public verification key pk as input, and returns valid
if σ is a valid signature for M w.r.t. pk and invalid otherwise.

2.2. New definitions

We modify the above definition to set up the definition of a signature scheme
which contains a subliminal channel in the public key. To this aim we introduce
three new algorithms SGen, Embed and Extract. The SGen algorithm generates
the subliminal secret key (ssk) before the public key secret key pair generation is
done. The Embed algorithm embeds the subliminal message in the public key by
using the ssk. The subliminal message receiver by using the Extract algorithm
has to be able to recover the subliminal message with overwhelming probabil-
ity. We say the probability is overwhelming if it is 1 − negl(n). To establish a
subliminal channel we need the public key generation, where a public key con-
taining subliminal message is indistinguishable from the one which does not.
We also need the receiver to be able to recover the message with overwhelming
probability.

Definition 2.2.1. A signature scheme where a public key contains a subliminal
channel S = (Gen, Sig, V er, SGen, Embed, Extract) is a tuple of algorithms,
where Gen, Sig, Ver are as in Definition 1, and

– SGen is a ppt algorithm whose input is security parameter k and its output
is the subliminal secret key {ssk}.

– Embed is a ppt algorithm whose inputs are the subliminal message m and
subliminal secret key {ssk} and its output is a public/secret key pair.

– Extract is a ppt algorithm whose inputs are subliminal secret key {ssk} and
the public key Pk′ which contains the subliminal message and its output
is the embedded message with overwhelming probability.

For all values of k, the subliminal message space has to contain at least two
different messages, and for all ppt algorithms W (wardens) we require

∣∣∣P
[
Expward−ind−1(k) = 1

]
−

[
Expward−ind−0(k) = 1

]∣∣∣ ≤ negl(k), (1)

where for b ∈ {0, 1} the Experiment Expward−ind−b(k) is defined as a follows:

Experiment Expward−ind−1(k)
(st,m) ← W (1k); (st is a state information)
(pk, sk) ← Gen(1k);
d ← WSsk(.)(pk, st);
return d;
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Experiment Expward−ind−0(k)
(ssk) ← SGen(1k);
(st,m) ← W (1k); (st is a state information)
(pk∗, sk∗) ← Embed(m, ssk);
d ← WSsk∗(.)(pk∗, st);
return d;

with Ssk(·) an oracle which on input the message (M) returns the signature
σ ← Sig(M, sk) and Ssk∗(·) an oracle which on input the message (M) returns
the signature σ ← Sig(M, sk∗).

We get to the point to set up the definition of the public key subliminal free
signature scheme. In our definition we have an active warden who participates in
the secret/public key generation process. The so called warden task is to be sure
the public key does not contain any subliminal messages. Let us call Alice the
one who is establishing her secret/public key pair. In our definition we will have
an interactive key generation between Alice and the warden. At first Alice sends
the auxiliary information to the warden about her public keys. The warden sends
her an algorithm what kind of modification she has to do on her keys. After that
she sends the new public key with proof about the required modification which
has been made to the warden. The warden has to be able to verify the proof and
accept or deny the new public key based on the given proof. The proof is usually
a zero knowledge proof but in some case it could be omitted. For example, in EC-
-DSA, if the warden asks Alice to add the multiple of a base point to the public
key to make the public key subliminal free. The warden easily can check whether
the modification was made or not without some extra proof. In our model we
prefer to have signature schemes which are existentially unforgeable. We will
have this extra restriction on the signature schemes both the original signature
scheme and the subliminal-free variant have to be existentially unforgeable.

Definition 2.2.2. Interactively generated subliminal-free public key in exis-
tentially unforgeable signature schemes.

Let S = (Gen, Sig, V er) be an existentially unforgeable signature scheme
where Pk′ is a public key. We call the signature scheme public key (Pk′) sub-
liminal (message) free, if there exists a ppt algorithm Warden such that for all
ppt algorithms SGen, BadEmbed, Warden, BadExtract we have

∣∣∣P
[
Expsigner−1(k) = 1

]
− P

[
Expsigner−0(k) = 1

]∣∣∣ ≤ negl(k). (2)

The experiment Expsigner−b for b = 0, 1 is defined as follows:
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Experiment Expsigner−b

(ssk) ← SGen(1k)
(Pk∗, Sk∗, s) ← BadEmbed(b, ssk)
a ← A(s)
(WAlgorithm) ← Warden(a)
(Pk′, Sk′, proof) ← WAlgorithm(s)
d ← BadExtract(Pk′, ssk)
return d;

where
– SGen is a ppt algorithm whose input is security parameter k and its output

is the subliminal key ssk.
– BadEmbed is a ppt algorithm whose inputs are the subliminal bit b and

subliminal secret key (ssk) and its output are the public/secret key pair
and a state information.

– A is a ppt algorithm whose input is s and its output is auxiliary informa-
tion a.

– Warden is a ppt algorithm whose input is the auxiliary information and
its output is WAlgorithm.

– WAlgorithm is a ppt algorithm which gives instruction how to modify the
secret/public key pairs. Its input is the state information and its output
is a new secret key, a subliminal-free public key and a proof. By the use
of the proof it has to be verifiable if WAlgorithm was applied. We want
S = (Gen∗, Sig, V er), where Gen* is the algorithm which generates the
subliminal free-public/secret key pair, to be existentially unforgeable (like
the original signature scheme) even if we can use all the additional infor-
mation from the generation process.

– BadExtract is a ppt algorithm whose inputs are the modified public key
(Pk′), and the subliminal secret key and its output is 0 or 1 (guess for the
hidden bit).

3. Subliminal-free public key construction

3.1. The basic construction

We will show the construction of a subliminal-free RSA public key. The RSA
public key is a pair of the encryption exponent and the modulus (e, n), where n
is big enough to be infeasible to factor and e and ϕ(n) are relatively primes. We
suppose n is the product of two publicly unknown k bit prime numbers. The
subliminal-free public/secret key establishment is an interactive process between
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the person who needs this key pair, call her Alice, and the warden who is taking
care of the public key’s subliminal freeness. For this purpose the warden and
Alice will generate the public/secret key pair in the following way:

The public exponent e is a prime number and it is chosen by the warden. The
subliminal-free modulus generation is an interactive procedure between Alice
and the warden. Alice chooses a 2k−1 bit number y randomly and sends a com-
mitment on it to the warden. The warden chooses a 2k−1 bit random number z.
Alice has to add these two number (mod 2k) let x := y + z (mod 2k) and she
has to find the smallest prime p after x + 2k (2k is an initial value takes care p
and q has the right size). She has to prove with zero-knowledge proofs this is
the smallest prime in the row so there is not any number s ∈ [x + 2k, p) what is
prime. Alice and the warden have to repeat the above process to get the prime q,
which is the first prime after x∗ + 2k (x∗ = y∗ + z∗ (mod 2k), where y∗ and z∗

is chosen by Alice and the warden respectively). The product of p, q, call it n,
will be a subliminal-free RSA modulus, where a computation will be performed
on the commitment and later this commitment will be opened to reveal n.

3.2. Commitment scheme

Along the construction we will use the Pedersen commitment scheme. We
assume we have a large order group G =< g > of known order group Q and we
have a second generator of this group h whose discrete logarithm to the base g
is unknown. The discrete logarithm of y to base g is any integer x such that
y = gx. The commitment ca on a is gahr group element from G, where r is
randomly chosen from ZQ. The security of the commitment scheme depends on
the assumption computing discrete logarithm is infeasible. The infeasibility of
the computation of the discrete logarithm assures the computationally binding
property, the multiplication with the power of h takes care of the unconditionally
hiding property. We will adopt the notation from the paper [CM99].

We denote the protocol which proves the knowledge of:

• discrete logarithm x of the group element y to base g by PK
{
(x) : gx

}
,

• the representation of the element y to the bases g1 . . . gl by PK
{
(α1 . . . αl) :

y =
∏l

i=1 gαi
i

}
,

• equality of the discrete logarithms of elements y1 and y2 to the base g and
h, respectively by PK

{
(α) : y1 = gα ∧ y2 = hα

}
,

• (at least) one out of the discrete logarithms of the elements y1, y2 to base
g by PK

{
(α, β) : y1 = gα ∨ y2 = gβ

}
,
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• a discrete logarithm that lies in a given range (2l1−2l2 < logg y < 2l1 +2l2 ,
for some parameters l1 and l2) by PK

{
(α) : y = gα∧ 2l1 − 2l̈2 < α <

2l1 + 2l̈2
}
. 1

We denote the zero knowledge computation protocols:
• addition S+:= PK

{
(x, y, z, n, x̃, ỹ, z̃, ñ) : gxhx̃ ∧ gyhỹ ∧ gzhz̃ ∧ gnhñ ∧ z =

x + y (mod n)
}
,

• multiplication S∗:= PK
{
(x, y, z, n, x̃, ỹ, z̃, ñ) : gxhx̃∧gyhỹ ∧gzhz̃ ∧gnhñ∧

z = x · y (mod n)
}
,

• exponentiation Sexp := PK
{
(x, y, z, n, x̃, ỹ, z̃, ñ) : gxhx̃ ∧ gyhỹ ∧ gzhz̃ ∧

gnhñ ∧ z = xy (mod n)
}
,

• primality checking Sp := PK
{
(p, p̃) : gphp̃ ∧ p ∈ pseudoprimes(t)

}
, where

t is a security parameter.

3.3. Construction in details
As we mentioned earlier the public exponent e is chosen by the warden.

The modulus n will be the result of an interactive modulus generation pro-
cess between Alice and the warden. Alice chooses a random number y ∈ {0, 1,
2 . . . 2k−1} and sends a commitment cy on it to the warden. The warden chooses
a random number z ∈ {0, 1, 2 . . . 2k− 1} and sends it to Alice. The natural com-
mitment cz = gz on z is easily computable by both parties if z is known. We
can omit the multiplication by the power of the other (h) group generator ele-
ment because the hiding property is not needed here. She has to add z and y
modulo 2k let this sum be x := z + y (mod 2k) and the commitment on it cx.
Alice uses the addition protocol to prove she did the addition:

S+ := PK
{
(x, x̃) : cx = gxhx̃ ∧ x = y + z (mod 2k)

}
.2

To prove Alice found the next prime in the row after x + 2k and x∗ + 2k

we use zero knowledge proofs again. We need it because Alice want to reveal
neither x, x∗, nor p, q it would be the disclosure of her secret key. She has to
prove that p, q are primes generated by the given method but the only thing
what she publishes is n the product of them.

To prove p and q are primes, we use the Sp protocol which by using Lehmann’s
Primality Test, statistically proves the primality of a committed number. We give
a protocol to prove the numbers (s) in the interval [x + 2k, p) and [x∗ + 2k, q)
are not a primes. The protocol based on the Lehmann’s Primality Test.

1With the proving technique from [CM99] if α lies in the interval (2l1 − 2l2 , 2l1 + 2l2 ), we can

prove 2l1 −2εl2+2 < α < 2l1 +2εl2+2, where ε > 1 is a security parameter. We denoted εl2 +2

by l̈2 in the protocol.
2We omitted from the protocol the proof of commitment cy and cz , the commitment on y

and z respectively, because it was shown previously.
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Let us recall:

Theorem 3.3.1. Lehmann’s Primality Test [Leh82,CM99]: An odd integer s >
1 is prime if and only if

∀ a ∈ Z∗n a
s−1
2 ≡ ±1 (mod s) and ∃ a ∈ Z∗n a

s−1
2 ≡ −1 (mod s).

We use the contrapositive of a variation of this theorem.
Let us see a variation:
An odd integer s > 1 is prime if and only if

∀ a ∈ Zn\{0} a
s−1
2 ≡ ±1 (mod s) and ∃ a ∈ Z∗n a

s−1
2 ≡ −1 (mod s).

The contrapositive of it:

Corollary 3.3.2. An odd integer s > 1 is not a prime if and only if

∃ a ∈ Zs\{0} a
s−1
2 6= ±1 (mod s).

To prove s is not a prime, use the following protocols.

Sa 6=0 := PK
{
(a, ã, o, õ) : ca = gahã ∧ co = gohõ ∧ oa ≡ 1 (mod r)

}
.

The r is a publicly known prime number of size 2k+2 bit. It ensures all s ∈ (
(x, p)

or (x∗, q)
)

will be relatively prime to r.

Sexp := PK
{
(b, b̃, d, d̃) : cb = gbhb̃ ∧ cd = gdhd̃ ∧ ab ≡ d (mod s)

}
,

where s = 2b + 1 and cs = cb
2 · g.

Sd 6=±1 := PK
{
(z, z̃) : cz = gzhz̃ ∧ z(d− 1)(d + 1) ≡ 1 (mod r)

}
,

where cd−1 := cd/g ∧ cd+1 := cd · g.
We would like to prove for consecutive numbers they are not primes with the

above protocols. We know every other number is even, so it is enough to verify
only for the odd numbers they are not primes. The commitments on the odd
numbers s in the intervals [x + 2k, p) and [x∗ + 2k, q) are in the form

cs := cx · g2k · g2l if x is odd, or cs := cx · g2k · g2l+1 if x is even
and

cs := cx∗ · g2k · g2l if x∗ is odd, or cs := cx · g2k · g2l+1 if x∗ is is even,

where l ∈ N ∪ {0}.
Alice and the warden have to run the protocols Sa 6=0, Sexp, Sd 6=±1 on the odd
s ∈ (x, p) and s ∈ (x∗, q) to prove s is not prime, where cs is already given. If
Alice tries to fool the warden and proves for the even numbers, which are not
primes, instead of odd numbers, she never will get a prime number in the row, so
never could generate the RSA modulus. If she would manage to do it somehow
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when she sends n to the warden, he could immediately recognize n is even, so
the fraud would be detectable.

When Alice proved for all numbers in the given intervals [x + 2k, p′) and
[x∗ + 2k, q′) are not primes we derive a commitment on p and q, let them be
cp := gphp̃ and cq := gqhq̃. To prove p and q are prime numbers Alice uses Sp

protocol for p and q.

Sp := PK
{
(p, p̃) : gphp̃ ∧ p ∈ pseudoprimes(t)

}
.

We have to prove ϕ(p · q) and e are relatively primes what is equivalent to e is
relatively prime to p− 1 and to q− 1 so there exists an inverse of e (mod p− 1)
and (mod q − 1). The commitment on p − 1 and on q − 1 is easily computable
from the commitment on p (cp) and on q (cq).

To prove e and ϕ(n) are relatively prime use the following protocol:

Sp−1 :=PK
{
(k, k̃) : ck = gk · hk̃ ∧ k · e ≡ 1 (mod p− 1)

}

Sq−1 :=PK
{
(l, l̃) : cl = gl · hl̃ ∧ l · e ≡ 1 (mod q − 1)

}
.

Alice sends n = p · q, the RSA modulus to the warden, but she needs to prove n
is a product of the committed p and q.

Let us use S∗ protocol to prove the product of p and q is n.

S∗ := PK
{
(p, q, n, p̃, q̃, ñ) : gphp̃ ∧ gqhq̃ ∧ gnhñ ∧ n = p · q}.

4. Proof of subliminal freeness

4.1. Subliminal freeness of our RSA-PSS

Proposition 4.1.1. Our public key, where e is chosen by the warden and n
generated by the above method is subliminal free, in respect of our Definition
2.2.1, under the RSA and the discrete logarithm assumption.

P r o o f. We will prove it in three steps. In the first step we will prove our public
key subliminal-free signature scheme is indistinguishable from the original one.
In the second step we will prove the security of our scheme with the zk security
proofs is the same as the security of the original RSA-PSS. In the last step we
will prove our signature scheme is subliminal free.

Step 1: The proof that our public key subliminal-free signature scheme is indis-
tinguishable from the original one.
Because of the signing and verification algorithms have not been changed, we
only have to focus on our public key being indistinguishable from the honest
RSA-PSS public key.
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Claim. Experiment 1 is indistinguishable from Experiment 2.

Experiment 1 : Honest RSA prime generation: Generate a random k − 1 digit
number and add 2k initial value to this number and find the next prime in the
row [BD93].
Experiment 2 : Our RSA prime generation: Take the sum of two independently
generated random k−1 bit numbers (mod 2k), add 2k initial value to this random
number, and find the next prime in the row.
Proof: The random number from Experiment 1 is indistinguishable from our
random number from Experiment 2 if at least one of the numbers in the sum
(y + z) is a random number what is satisfied. It implies the product of two
above manner generated primes is indistinguishable from the honestly generated
RSA modulus. It also implies our public key subliminal free signature scheme is
EF-CMA secure because it is indistinguishable from the original scheme which
was supposed to be EF-CMA secure.

Handling the failure property of the above experiments:
The chance that indistinguishable Experiments will not be terminate, can be

computed by using the Gallagher conjecture:

]
{
integers x ≤ X : ϕ(x + λ ln x)− ϕ(x) = k

} ≈ e−λ λk

k!
X

for any fixed λ > 0 and integer k ≥ 0.

This implies the probability of [x, x + λ ln x] not containing any prime to be
at most e−λ. The ϕ(n) of a positive integer n is defined to be the number of
positive integers less than or equal to n that are coprime to n, where 1 is counted
as being relatively prime to all numbers.

Step 2: Our public key subliminal free scheme with the proof is as secure as the
original RSA-PSS.

The proof is unconditionally hiding zero knowledge so we cannot get any
useful information out of it. The only extra information we will get out from the
proof is the number of non-primes (call it l) between the random numbers and
first prime. Let us see how we can use this information to factor RSA modulus.
We know the gap between our prime and the previous prime is at least l. We
also know from the Gallagher conjecture the probability of the gap is greater
than λ ln x is less than e−λ. Let us fix the λ previously and if we cannot find
prime until x+λ ln x, then we begin the search again choosing an other random
value and try to find a next prime in the row, then we could maximize the size of
the gap and it would be polynomial in the size of the security parameter. If the
gap size is polynomial, then a probabilistic polynomial time adversary algorithm
could guess it. If it is possible to factor n with the knowledge of the gap size,
then it would be possible without it,too, with simply guessing the size.
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Step 3: Our signature scheme is subliminal free.
The public exponent is subliminal-free because it was chosen by the warden.

We claim our RSA modulus n is subliminal free. Let us see how could Alice hide
a subliminal message in the public key. If she tries to hide it in the generation
of y or y∗, the warden would add the random number to them so the probability
of the subliminal message would be recoverable and will not be overwhelming
anymore. If she tries to hide it by the addition or by proving she found the
next prime, she would have got again just a negligible probability (computa-
tionally hiding and the probabilistic primality proof). We can claim Alice has a
subliminal-free public key. ¤

We would like to have a subliminal free signature scheme in the sense of the
signature and the public key. If we combine a signature subliminal-free deter-
ministic RSA-PSS, see [BS05], with our public key subliminal free RSA, we will
derive a signature scheme which is subliminal free in the sense of the public key
and the signature as well.

5. The size of the proof

We will give an estimate of the zero-knowledge proofs space requirement. The
group in which we will perform zero-knowledge proofs, will be a prime order
group of order Q > 22ε(k+1)+5, where ε is a security parameter and the prime
factors p and q are less than 2k+1 .

5.1. Detailed protocols

We give a detailed variant some of the protocols from the construction to
estimate a size of the proof:

S+ := PK

{
(x, x̃, q) : cx = gxhx̃ ∧ − 2῭

< x < 2῭

∧ cx

cy · gz
=

(
g2k

)q

∧ − 2῭
< q < 2῭

}
,

Sa 6=0 := PK
{
(a, ã, o, õ, s, s̃) : ca = gahã ∧ − 2῭

< a < 2῭ ∧ co = gohõ

∧ − 2῭
< o < 2῭ ∧ g = ca

o · cr
shs̃

∧ −2῭
< s < 2῭

}
,
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Sexp := PK
{(

b, b̃, d, d̃
)

: cb = gbhb̃ ∧ − 2῭
< b < 2῭ ∧ cd = gdhd̃

∧ − 2῭
< d < 2῭ ∧ ab ≡ d (mod s)

}
,

Sd 6=±1 := PK
{(

z, z̃, f, f̃ , s, s̃, t, t̃
)

: cz = gzhz̃∧ − 2῭
< z < 2῭∧ cf = gfhf̃

∧ − 2῭
< f < 2῭∧ cf = cd+1

d−1 · cs
rh

s̃

∧ − 2῭
< s < 2῭ ∧ g = cz

f · cr
tht̃

∧ − 2῭
< t < 2῭

}
,

Sp−1 := PK

{(
k, k̃, r, r̃

)
: ck = gk · hk̃ ∧ −2῭

< k < 2῭∧ g = ce
k ·

(
cp

g

)r

hr̃

∧ − 2῭
< r < 2῭

}
.

5.2. The estimation with chosen parameters

Proving p and q are primes results in a communication costs of about

14t log(2k+1) log Q + 4t log(2k+1)εl = 14t(k + 1) log Q + 4t(k + 1)εl bit
for p and q separately.

Proving the number s is not a prime number costs about

2 log Q(3 + 7(k + 1) + 4) + εl · (3 + 4(k + 1) + 4) = 14(k + 2) log Q + (4k + 11)εl.

We have to prove about for k+1
2 numbers they are not primes until we find the

first prime p (or q) number in the row. The size of this proof is about

k + 1
2

· (14(k + 2) log Q + (4k + 11)εl
)

for both interval. The computation cost of the remaining operation is about

2 log Q(2 + 2 · 2 + 1) + (2 + 2 · 2)εl = 14 log Q + 6εl.

The full cost of the protocol is about

2
(
14t(k + 1) log Q + 4t(k + 1)εl +

k + 1
3

× (14(k + 2) log Q + (4k + 11)εl) + 7 log Q + 3εl
)
.

Let us see a concrete estimation: if we choose

k = 512, ε = 1 · 1√
80
≈ 1.11, t = 80, l = 80,
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then log Q will be about

log 22·1.11·513+5

≈ 1145, 2× (
79.86 + 1.76 +

513
2

(0.98 + 0.02) + 0.001
)
Mbyte

≈ 676 Mbyte.

Let us see the security of the full protocol with these chosen parameters. The
probability for the forgery from the primality test is about 1

280 .
To save space we can omit the numbers which are divisible by 3, 5, 7 . . . prime

numbers up to
√

k. In our case it is 19 (k = 512). We apply a little sieve for
the intervals. If we can omit one number, we can gain 1Mbyte. We can reduce
the size to 339 Mbyte. Here the size of the primality test is 163 Mbyte and the
proof that the numbers between the random number and the prime number, not
being primes, is 176 Mbyte.

Acknowledgements. I would like to thank to Rainer S t e i n w a n d t for valu-
able discussions and comments.
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[BGVS07] BOHLI, J.-M.—GONZÁLEZ VASCO, M. I.—STEINWANDT, R.: A subliminal-

free variant of ECDSA, in: 8th International Workshop—IH ’06 (J. Camenisch et

al., eds.), Lecture Notes in Comput. Sci., Vol. 4437, Springer-Verlag, Berlin, 2007,

pp. 375–387.

[BS05] BOHLI, J.-M.—STEINWANDT, R.: On subliminal channels in deterministic sig-

nature schemes, in: Security and Cryptology (Ch. Park et al., eds.), Lecture Notes

in Comput. Sci., Vol. 3506, Springer-Verlag, Berlin, 2005, pp. 182–194.

[CM99] CAMENISCH, J.—MICHELS, M.: Proving in zero-knowledge that a number is the

product of two safe primes, in: Adv. in Cryptology (J. Stern, ed.), Lecture Notes

in Comput. Sci., Vol. 1592, Springer-Verlag, Berlin, 1999, pp. 107–122.

[Des88] DESMEDT, Y.: Subliminal-free authentication and signature (Extended abstract),

in: Adv. in Cryptology (Ch. Günther, ed.), Lecture Notes in Comput. Sci., Vol. 330,

Springer-Verlag, Berlin, 1988, pp. 23–33.

[Gol01] GOLDREICH, O.: Foundation of Cryptography, Cambridge University Press, Cam-

bridge, 2001.

31
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