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ABSTRACT. A new type of public key cryptosystem, called MST3, has been
recently developed on the basis of logarithmic signatures and covers of finite
groups. The Suzuki 2-groups have been suggested for a possible realization of the
generic version of MST3. On one hand, due to their structure, the Suzuki 2-groups
allow one to study the security of the system, on the other hand they possess a
simple presentation allowing for an efficient implementation of the system. In this
paper we present a detailed study of the security of this realization of MST3. We
prove a new general lower bound for the work effort required to determine the
secret key in terms of the size of the underlying groups. This bound has size
q = 2m, where q is the order of the finite field Fq , on which the Suzuki 2-group
A(m, θ) is defined. Further, by exploiting properties of the group operation in the
Suzuki 2-groups, as well as a special property of canonical transversal logarithmic
signatures for elementary abelian 2-groups, we show that canonical transversal
logarithmic signatures are unfit to use in this realization of MST3.

1. Introduction and preliminaries

In recent times, asymmetric cryptography has become essential to many infor-
mation systems. New cryptosystems have been proposed, but only few of them
remain unbroken. Security analysis is critical in the design of a new cipher, and
all of its practical realizations.

The purpose of this paper is twofold. First we present a new, sharper bound
on the work effort required to determine the secret key in terms of the size of the
Suzuki 2-group A(m, θ) used for the realization of MST3. Secondly, we present
an attack on this realization when a special type of transversal logarithmic sig-
natures, called canonical, is used as a basis for the private key. These kinds of
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logarithmic signatures are easily constructed and allow for very efficient factor-
ization. However as we show in the present article, these transversal logarithmic
signatures are unfit for use in the MST3 realization based on the Suzuki 2-groups.
The attack exploits strongly the distinguished features of the group operation
of the Suzuki 2-groups and the structure of canonical logarithmic signatures.

In this section we briefly present definitions and some basic facts about log-
arithmic signatures, covers for finite groups and their induced mappings. For
more details the reader is referred to [H63, M89, MM92, MST2, MST3].

For G a finite abstract group, we define the width of G to be the positive
integer w = dlog |G|e. Denote by G[Z] the collection of all finite sequences of
elements in G and view the elements of G[Z] as single-row matrices with entries
in G. Let X = [x1, . . . , xr] and Y = [y1, . . . , ys] be two elements in G[Z]. We
define XY ∈ G[Z] by

XY = [x1y1, x1y2, . . . , x1ys, x2y1, x2y2, . . . , x2ys, . . . , xry1, xry2, . . . , xrys].

If X = [x1, . . . , xr] ∈ G[Z], we denote by X the element
∑r

i=1 xi in the group
ring ZG.

Suppose that α = [A1, A2, . . . , As] is a sequence of Ai ∈ G[Z], such that∑s
i=1 |Ai| is bounded by a polynomial in the width w of |G|. Let

A1 ·A2 · · ·As =
∑

g∈G
agg, ag ∈ Z

and let S be a subset of G, then we say that α is

(i) a cover for G (or S), if ag > 0 for all g ∈ G (g ∈ S),
(ii) a logarithmic signature for G (or S) if ag = 1 for all g ∈ G (g ∈ S).

Note that if α = [A1, . . . , As] is a logarithmic signature for G, then each
element y ∈ G can be expressed uniquely as a product of the form

y = q1 · q2 · · · qs for qi ∈ Ai. (1.1)

Of course, for general covers the factorization in (1.1) is not unique, and the
problem of finding a factorization for a given y ∈ G is, in general, intractable.

Let α = [A1, . . . , As] be a cover for G with ri = |Ai|, then the Ai are called
the blocks of α and the vector (r1, . . . , rs) of block lengths ri the type of α. We
define the length of α to be the integer ` =

∑s
i=1 ri.

We say that α is nontrivial if s ≥ 2 and ri ≥ 2 for 1 ≤ i ≤ s, otherwise α is
said to be trivial. A cover α is called tame if the factorization in equation (1.1)
can be achieved in time polynomial in the width w of G, otherwise, it is called
wild. In particular, a logarithmic signature is called supertame if the factorization
can be achieved in time O(w2).
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Suppose that α = [A1, . . . , As] is a cover. Let g0, g1, . . . , gs ∈ G, and consider
β = [B1, . . . , Bs] with Bi = g−1

i−1Aigi. We say that β is a two sided transform
of α by g0, . . . , gs. In the special case, where g0 = 1 and gs = 1, β is called
a sandwich of α. Notice that β is cover for G.

Let α = [A1, . . . , As], Ai = [ai,1, ai,2, . . . , ai,ri
], be a cover of type (r1, . . . , rs)

for G and let m =
∏s

i=1 ri. Let m1 = 1 and mi =
∏i−1

j=1 ri for i = 2, . . . , s. Let τ
denote the canonical bijection from Zr1 ⊕ · · · ⊕ Zrs

onto Zm, i.e.,

τ : Zr1 ⊕ · · · ⊕ Zrs
→ Zm,

τ(j1, j2, . . . , js) :=
s∑

i=1

jimi.

We define the surjective mapping α̌ induced by α,

α̌ : Zm → G,

α̌(x) := a1,j1 · a2,j2 · · · as,js
,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable, the
mapping α̌(x) is efficiently computable.

Conversely, given a cover α and an element y ∈ G, to determine any element
x ∈ α̌−1(y) it is necessary to obtain any one of the possible factorizations of
type (1.1) for y and determine indices j1, . . . , js such that y = a1,j1 · · · as,js .
This is possible if α is tame. Once a vector (j1, . . . , js) has been determined,
α̌−1(y) = τ(j1, . . . , js) can be computed efficiently.

Two covers (logarithmic signatures) α, β are said to be equivalent if α̌ = β̌.
Here we present definitions and some facts about the special type of logarith-

mic signatures for vector spaces over F2 used in the realization of MST3 based
on the Suzuki 2-groups.

Definition 1.1. Let V be a vector space of dimension m over the finite field F2.
Further, let P = C1 ∪ · · · ∪Cs, |Ci| = ki,

∑s
i=1 ki = m, be a random partition of

the set {1, . . . , m}. A logarithmic signature β = [B1, . . . , Bs] for V is said to be
canonical if for each i ∈ {1, . . . , s}, block Bi consists of all possible 2ki vectors
with bits set on the positions defined by the subset Ci and zeros elsewhere.

A canonical signature β for V of the type (r1, r2, . . . , rs), ri = 2ki, can be
created by the following algorithm:

Algorithm 1.1. (Construction of a canonical logarithmic signature β =
[B1, . . . , Bs] for V.)

1. Create a random partition P = C1 ∪ · · · ∪ Cs of the set {1, . . . , m} with
|Ci| = ki.

2. Now, for each i = {1, . . . , s}, construct the block Bi by taking all pos-
sible 2ki vectors in V having bits equal to 0 at positions with index not
in Ci.
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Definition 1.2. Let V be a vector space of dimension m over F2. We say
that a canonical logarithmic signature β = [B1, . . . , Bs] := (bi,j) for V is in
standard form, if it also fulfils the following conditions:

1. C1 = {1, . . . , k1}, C2 = {k1 + 1, . . . , k1 + k2}, . . . , Cs = {k1 + · · ·+ ks−1 +
1, . . . ,m}
(i.e., the lowest k1 bits are used for block B1, the next k2 bits for B2, etc.)

2. for all i, j1 < j2 : bi,j1 < bi,j2

(i.e., the vectors within Bi are sorted by their integer values).

It is clear that β forms a logarithmic signature for V.

Proposition 1.1. Canonical signatures are tame.

P r o o f. From Definition 1.1, the elements of block Bi act only on the bits
of Ci, and each Bi contains a complete set of 2ki vectors of dimension ki on the
positions of Ci. To “factorize” element y ∈ V in the form y = b1,j1b2,j2 . . . bs,js

we split the bits of y into vectors bi,ji with respect to partition P as follows. We
copy the bits of y on the positions determined by Ci to appropriate vector bi,ji

,
and set the rest of the bits of bi,ji

to zero. The position of such created vector bi,ji

within the block Bi then defines index ji.
If the vectors in each Bi are sorted in ascending order, then the integer value,

with respect to Radix 2, of the subvector ui constructed from bi,ji by concate-
nation of the bits on the positions of Ci is equal to the index of bi,ji within the
block Bi (starting with index 0). This factorization procedure has time complex-
ity O(1). ¤
Proposition 1.2. A canonical logarithmic signature β := (bi,j) for V can be
written as a linear transformation of the canonical signature ε := (ei,j) of
the same type for V in standard form. In other words, there exists a matrix
M ∈ GL(m, 2) such that β := (bi,j) = (ei,jM).

S k e t c h o f P r o o f. Any canonical logarithmic signature can be transformed
to standard form by permuting elements between subsets Ci and by sorting
vectors within each block Bi. Both transformations induce permutation matrices
acting on bits of block elements represented as binary vectors. ¤

The following statement follows naturally:

Proposition 1.3. Transforming a canonical logarithmic signature of V by
means of a non-singular linear transformation results in a tame logarithmic sig-
nature for V.

S k e t c h o f p r o o f. As this transformation is reversible, factorization is tame.
¤

Using this proposition we may construct tame logarithmic signatures.
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Algorithm 1.2. (Construction of tame logarithmic signature for V.)

1. Create a canonical logarithmic signature β := (bi,j) of a given type for V
over the field F2m (using Algorithm 1.1).

2. Generate a random matrix M ∈ GL(m, 2) and transform β to a tame
logarithmic signature β∗ := (b∗i,j) = (bi,jM).

The use of random matrices in Algorithm 1.2 for tame signature generation
introduces some level of randomness essential for the cryptography. However, as
we show in later sections, it does not prevent an attack that exploits the special
structure of canonical signatures used in this algorithm.

Proposition 1.4. Let β = [B1, B2, . . . , Bs] be a canonical logarithmic signature
for V. Let β∗ := (b∗i,j), where b∗i,j = bi,j+ di with di ∈ Bi, then β∗ is also
canonical for V.

P r o o f. From Definition 1.1, the blocks of β act on disjoint sets of bits Ci, and
every block Bi contains the complete set of 2ki vectors with bits set on the
positions of Ci. If we add a fixed element di ∈ Bi, to all elements of Bi, we
switch the bits in the positions of 1’s in di in each of 2ki possible vectors, so Bi

remains the same up to order, and β remains canonical for V. ¤

In general we have

Proposition 1.5. Let G be a finite group. Let β = [B1, B2, . . . , Bs] := (bi,j) be
a tame logarithmic signature for G. Let β∗ := (b∗i,j), where b∗i,j = bi,jdi, di ∈ G.
Then β∗ is tame, if one of the following conditions is fulfilled:

1. di ∈ Z(G) for i = 1, . . . , s;
2. di ∈ Gi−1 for i = 1, . . . , s, if β is exact-transversal for G with a chain of

subgroups γ : 1 = G0 < G1 < · · · < Gs = G, and Bi a complete set of right
(left) coset representatives of Gi−1 in Gi.

S k e t c h o f p r o o f. In Case 1., the elements bi,j and di commute, so we can
find logarithmic signature β′ = (b′i,j) equivalent to β∗ such, that

b′i,j =

{
bi,j for all i = 1, . . . , s− 1,

bs,jd where d = d1d2 . . . ds .

Then, if we are able to factorize in s blocks of β, we are able to factorize in the
first s− 1 blocks and find the last index js by exhaustive search.

In Case 2., suppose we are able to factorize g = b1,j1b2,j2 . . . bs,js with re-
spect to β, and trying to factorize g∗ = b∗1,j1

b∗2,j2
. . . b∗s,js

with respect to β∗. As
B∗

i = Bidi with di ∈ Gi−1, it follows that bi,j and b∗i,j are in the same coset of
Gi−1 in Gi.

We start the factorization of g∗ = b∗1,j1
. . . b∗s,js

with respect to the block B∗
s .
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Because b∗1,j1
. . . b∗s−1,js−1

∈ Gs−1, g∗ and b∗s,js
are in the same coset of Gs−1 in Gs.

This means we can identify the coset of g∗, say b∗s,js
Gs−1 uniquely. Thus, we have

found the first factor of g∗, namely b∗s,js
. We continue with the factorization of

g∗(b∗s,js
)−1 with respect to the block B∗

s−1 and identify element b∗s−1,js−1
, etc. ¤

2. Generic version of MST3

We presently describe cryptosystem MST3 in its generic form. Let G be a
finite non-abelian group with nontrivial center Z such that G does not split over
Z, i.e., there is no subgroup H < G with H ∩ Z = 1 such that G = Z · H .
Assume also that Z is sufficiently large so that exhaustive search problems are
computationally not feasible in Z.

The cryptographic hypothesis, which forms the security basis of cryptosystem
MST3, is that if α = [A1, A2, . . . , As] := (ai,j) is a random cover for a “large”
subset S of G, then finding a factorization

g = a1,j1 · a2,j2 · · · as,js

for an arbitrary element g ∈ S with respect to α is an intractable problem see
[MST3].

2.1. Setup

Alice chooses a large group G as described above and generates:

(1) a tame logarithmic signature β = [B1, . . . , Bs] := (bi,j) of type (r1, . . . , rs)
for Z.

(2) a random cover α = [A1, . . . , As] := (ai,j) of the same type as β for
a certain subset J of G such that A1, . . . , As ⊆ G \ Z.

She then chooses elements t0, t1, . . . , ts ∈ G \ Z and computes:

(3) α̃ = [Ã1, . . . , Ãs] := (ãi,j), where ãi,j = t−1
i−1ai,jti for i = 1, . . . , s and

j = 1, . . . , ri.
(4) γ := (hi,j) = (bi,j ãi,j).

Alice publishes her public key [α, γ], keeping
[
β, (t0, . . . , ts)

]
as her private key.

2.2. Encryption

If Bob wants to send a message x ∈ Z|Z | to Alice, he

(1) computes values y1 = α̌(x) and y2 = γ̌(x), and
(2) sends y = (y1, y2) to Alice.
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2.3. Decryption

Alice knows y, figures that

y2 = γ̌(x)
= b1,j1 ã1,j1 · b2,j2 ã2,j2 · · · bs,js

ãs,js

= b1,j1t
−1
0 a1,j1t1 · · · bs,jst

−1
s−1as,jsts

= b1,j1b2,j2 · · · bs,js
t−1
0 a1,j1a2,j2 · · · as,js

ts

= β̌(x) · t−1
0 α̌(x)ts

= β̌(x) · t−1
0 y1ts

and can therefore compute

β̌(x) = y2t
−1
s y−1

1 t0.

Alice then recovers x from β̌(x) using β̌−1 which is efficiently computable as β
is tame.

3. Realization of MST3

In this section we present details of the only known realization of the cryp-
tosystem MST3 described in [MST3].

Let q = 2m with 3 ≤ m ∈ N odd, and let θ be a nontrivial automorphism of
odd order of the field Fq. Now let G be the Suzuki 2-group A(m, θ) of order q2

as given in [H63]. G is a special 2-group of exponent 4 such that Z := Z(G) =
Φ(G) = G′ = Ω1(G), where Φ(G) denotes by definition the intersection of all the
maximal subgroups of G, and Ω1(G) =

〈
g ∈ G : g2 = 1

〉
. The groups Z and G/Z

are elementary abelian of order q. Moreover, o(g) = 4 for every g ∈ G \ Z.
Within each block Ai of cover α, elements are selected according to the fol-

lowing property: For every Ai, i = 1, . . . , s, if x 6= y, x, y ∈ Ai, then xy−1 is an
element of order 4 in G. This means that distinct elements x and y of Ai are
not in the same coset of Z.

Group G can be described as a subgroup of GL(3, q) as follows. Let a, b ∈ Fq

and define

S(a, b) =




1 0 0
a 1 0
b aθ 1


 .

Then
G =

{
S(a, b) | a, b ∈ Fq

}

and
Z = Z(G) = Φ(G) = G′ = Ω1(G) =

{
S(0, b) | b ∈ Fq

}
.
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It is easily verified that the multiplication of two elements in G is given by
rule

S(a1, b1)S(a2, b2) = S
(
a1 + a2, b1 + b2 + aθ

1a2

)
.

Particularly, if we store elements S(a, b) as a triple
(
a, b, aθ

)
and identify the

product S
(
a1, b1, a

θ
1

)
S

(
a2, b2, a

θ
2

)
with the triple

(
a1+a2, b1+b2+aθ

1a2, aθ
1+aθ

2

)
,

we are able to realize each group operation in just a single multiplication and
four additions in Fq.

For efficiency reasons, the Frobenius automorphism has been chosen for θ to
minimize the number of squaring operations needed to extend a group element
to its triple representation.

The reduced storage requirement and operation efficiency are significant for
the realization of MST3 using group G = A(m, θ).

An important requirement of the realization of MST3 is efficient factorization
with respect to tame logarithmic signature β.

Remark 3.1. As elements of the center Z are of the form S(0, b), we can identify
the center with the additive group of the field Fq, i.e., with a vector space V of
dimension m over F2.

Then we can use canonical logarithmic signatures for V as a basis for key
generation. In this realization of MST3, Algorithm 1.2 is used to generate a tame
logarithmic signature β which is a part of Alice’s private key. This reduces the
complexity of factorizing with respect to β to O(1).

4. Attack on MST3

In this section we present details of an attack on the realization of cryptosys-
tem MST3 described in the previous section.

4.1. Used notation

Here we define notation used below and note some facts resulting from the
usage of the Suzuki 2-group A(m, θ) in the realization of MST3.

If g = S(x, y) ∈ G, x, y ∈ Fq, we denote x by g.a, and y by g.b, that is, we
denote the projections of g ∈ G along the first and second coordinates by g.a

and g.b, respectively. Thus, we write g = S(g.a, g.b).
Accordingly, we denote the elements of the public key α := (ai,j), γ := (hi,j),

known to the adversary, by pairs S(a(i,j).a, a(i,j).b), and S(h(i,j).a, h(i,j).b), re-
spectively. Similarly, the private key elements β := (bi,j), (t0, . . . , ts) are denoted
by pairs S

(
b(i,j).a, b(i,j).b

)
, and S

(
t(i).a, t(i).b

)
.
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We define an action of GL(m, 2) on G as follows: If M ∈ GL(m, 2) and
g = S(g.a, g.b) ∈ G, we define a “transformation”

gM = S(g.a, g.b)M := S(g.a, g.bM).

Thus, M ∈ GL(m, 2) acts on the second coordinate, and fixes the first coordinate
of the elements of G.

The following lemma is quite easy to see:

Lemma 4.1. In terms of the notation introduced thus far we have:

i) The inverse of g = S(g.a, g.b) ∈ G is given by rule

S(g.a, g.b)−1 = S(g.a, g.b + g.a
θg.a) .

ii) Both operations, inversion and matrix transformation, keep the “.a-part”
of an element g invariant.

iii) Elements from the same coset of the center Z, have identical “.a-part”
projections, i.e., if tj ∈ tiZ then,

t(i).a = t(j).a .

We identify a canonical logarithmic signature ε := (ei,j) for V with a loga-
rithmic signature β := (bi,j) for Z, where bi,j := S(0, ei,j).

4.2. Attack on t0

In this attack, an adversary attempts to extract information about the private
key

[
β, (t0, . . . , ts)

]
from the knowledge of the public key

[
α, γ

]
. We will show

that if the adversary can determine the coset of t0Z, then he can construct an
alternative secret key

[
β∗, (t∗0, . . . , t

∗
s)

]
satisfying the equation

hi,j = b∗i,jt
∗−1
i−1 ai,jt

∗
i (4.1)

for all i = 1, . . . , s and j = 1, . . . , ri, such that
[
β∗, (t∗0, . . . , t

∗
s)

]
can be used to

decrypt any ciphertext correctly.

Assumption 4.1. Assume that the coset t0Z is known to the adversary.

In the following we prove that any choice of t∗0 ∈ t0Z provides enough infor-
mation to determine

[
β∗, (t∗0, . . . , t

∗
s)

]
satisfying equation (4.1).

Let t0 = t∗0z0 for some z0 ∈ Z (by Assumption 4.1). In this attack the
adversary will construct β∗ = (b∗i,j) with b∗i,1 = id (i.e. zero vector), for i =
1, . . . , s. Now let bi,j = b∗i,j di,j for some di,j ∈ Z. As b∗i,1 = id we have di,1 = bi,1

for every i = 1, . . . , s.
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Starting with the first block of γ we write equations:

h1,1 = b∗1,1 d1,1 t∗−1
0 z0 a1,1 t1

= b∗1,1 t∗−1
0 a1,1 (t1 d1,1 z0) ⇒ t∗1 = t1 d1,1 z0

(i.e., t∗1 and t1 are in the same coset of Z),

h1,j = b1,j t∗−1
0 z0 a1,j t∗1 d1,1 z0 for all j = 2, . . . , r1 ,

= (b1,j d1,1) t∗−1
0 a1,j t∗1 ,

b∗1,j = b1,j d1,j = b1,j d1,1 ⇒ d1,j = d1,1 = b1,1 .

Using t∗1 we compute t∗2 and d2,j from the second block:

h2,1 = b∗2,1 d2,1 t∗−1
1 d1,1 z0 a2,1 t2

= b∗2,1 t∗−1
1 a2,1 (t2 d2,1 d1,1 z0) ⇒ t∗2 = t2 d2,1 d1,1 z0

(i.e., t∗2 and t2 are in the same coset of Z),

h2,j = b2,j t∗−1
1 d1,1 z0 a2,j t∗2 d2,1 d1,1 z0 for all j = 2, . . . , r2 ,

= (b2,j d2,1) t∗−1
1 a2,j t∗2 ,

b∗2,j = b2,j d2,j = b2,j d2,1 ⇒ d2,j = d2,1 = b2,1 .

...

Continuing this process we determine all t∗1, . . . , t
∗
s. It follows that di,j =

di,1 = bi,1, for all i = 1, . . . , s. Denote di,j = di. Notice that t∗i = ti z0

∏i

k=1
dk,

i.e., t∗i and ti are in the same coset of Z in G, i = 1, . . . , s.
Now let (ᾰ(x), γ̆(x)) be a cipher of a message x ∈ Z|Z |, i.e.,

γ̆(x) = β̆(x) t−1
0 ᾰ(x) ts

= β̆(x) t∗−1
0 z0 ᾰ(x) t∗s z0

∏s

k=1
dk

=
(
β̆(x)

∏s

k=1
dk

)
t∗−1
0 ᾰ(x) t∗s .

Now if β̆(x) = b1,x1 b2,x2 . . . bs,xs and β∗ := (b∗i,j) where b∗i,j = bi,j di, then

β̆∗(x) = b∗1,x1
b∗2,x2

. . . b∗s,xs

= b1,x1 d1 b2,x2 d2 . . . bs,xs ds

= (β̆(x)
∏s

k=1
dk).
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And therefore

β̆∗(x) = γ̆(x) t∗−1
s ᾰ(x)−1 t∗0 .

This shows that factorization of β̆∗(x) with respect to β∗ provides the correct
message x. Moreover, as β∗ is tame, after Proposition 1.5 (1.), this factorization
can be done efficiently.

Conclusion 1. From the above, in the Suzuki 2-group realization of MST3,
it is sufficient for an adversary to obtain an element t∗0 ∈ t0Z. This knowledge
enables him to compute an alternative private key [β∗, (t∗0, . . . , t

∗
s)] , where β∗

is tame. With this key he can decrypt any message correctly and efficiently.
As there are q = |G/Z| possible choices for t∗0 in t0Z, the complexity of this
attack is q.

4.3. Attack on MST3 when canonical signature is used

In this section we show that if the canonical transversal logarithmic signature
is used in the realization of MST3 with the Suzuki 2-groups, then the system
can be broken.

Assume that the canonical signature β is used with the Suzuki 2-group G =
A(m, θ), where θ is a nontrivial automorphism of odd order of the field Fq,
q = 2m. (θ is not necessary the Frobenius automorphism.) We show how an
adversary can determine the correct coset t0Z, and hence can break the system
as described in Section 4.2.

In this attack, we have to step down from group G to underlying field Fq.

For the first block of γ:

h1,j = b1,j t−1
0 a1,j t1 .

Particularly, for each part

h(1,1).a = t−1
(0).a + a(1,1).a + t(1).a

h(1,j).b = b(1,j).b + t−1
(0).b + a(1,j).b + t(1).b +

(
t(0).a

)θ
a(1,j).a

+ (t(0).a)θt(1).a +
(
a(1,j).a

)θ
t(1).a .
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For an index set J yet to be determined, with |J | even
∑

j∈J

h(1,j).b =
∑

j∈J

b(1,j).b

∑

j∈J

a(1,j).b +
(
t(0).a

)θ ∑

j∈J

a(1,j).a

+ t(1).a
∑

j∈J

(
a(1,j).a

)θ

=
∑

j∈J

b(1,j).b +
∑

j∈J

a(1,j).b +
(
t(0).a

)θ ∑

j∈J

a(1,j).a

+
(
h(1,1).a + t(0).a + a(1,1).a

)∑

j∈J

(
a(1,j).a

)θ
.

We end up with trinomial:

A
(
t(0).a

)θ + B
(
t(0).a

)
+ C = 0, (4.2)

where

A =
∑

j∈J

a(1,j).a ,

B =
∑

j∈J

(a(1,j).a)θ,

C =
∑

j∈J

b(1,j).b +
∑

j∈J

h(1,j).b +
∑

j∈J

a(1,j).b

+
(
h(1,1).a + a(1,1).a

)∑

j∈J

(
a(1,j).a

)θ
.

The question here is how to choose J . The unknown in this trinomial is∑
j∈J b(1,j).b, i.e., the sum of elements of the first block of β. As it is part of the

private key, and to guess it is infeasible, we choose J such that
∑

j∈J b(1,j).b will
sum up to zero.

Here the special structure of the canonical logarithmic signature used as a ba-
sis for β can be exploited. As β := (bi,j) = (ei,jM), for some canonical signature
ε := (ei,j) and M ∈ GL(m, 2), it is true that

∑

j∈J

b(1,j).b =
∑

j∈J

e(1,j).bM =

( ∑

j∈J

e(1,j).b

)
M.

The block of canonical logarithmic signature ε consists of a complete set of 2ki

vectors, so we are always able to find J ⊆ {1, . . . , r1} such that
∑

j∈J

e(1,j).b = 0.
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From the structure of the canonical logarithmic signature we see that the
sum of all vectors in the block B1 is a zero vector. Therefore we can choose
J = {1, . . . , r1}, i.e., indices of all elements in the first block of β 1.

Now, breaking the system reduces to the problem of finding the root of the
trinomial in equation (4.2) over Fq. Well known results of B e r l e k a m p or
S h o u p solve the problem of factoring a polynomial of degree n over Zp[x] in
time polynomial in n and p [B70, S90].

Conclusion 2. From the above, if the canonical logarithmic signature is used in
the realization of MST3 with Suzuki 2-groups, then the adversary can determine
the coset t0Z with the complexity equivalent to that of finding the roots of a
trinomial over Fq. In particular, when θ is the Frobenius automorphism the
complexity of this attack is O(1).

4.4. Conclusions

We have studied the realization of MST3 using the Suzuki 2-groups. The main
contributions of this paper are twofold. First, we have sharpened the bound on
the security complexity of MST3. Our new bound provides a valuable estimate of
the strength of MST3. Secondly, we have proved that the canonical logarithmic
signatures are not suitable for use in this realization. From the proof we gain
a good insight into the structure of MST3 with the underlying Suzuki 2-groups.
Particularly, it becomes clear that the class of suitable logarithm signatures
for this MST3 realization has to possess certain additional properties. Further,
the results of the paper implicitly suggest a method of modifying the canonical
logarithmic signatures to be fit into a secure implementation of MST3. We will
present these methods in a future work.
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Ilkovičova 3
SK-812-19 Bratislava
SLOVAKIA

E-mail : pavol.zajac@stuba.sk

78


