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ABSTRACT. KeeLoq is a lightweight block cipher that is massively used in the
automobile industry [12, 13, 31, 32]. KeeLoq has two remarkable properties: it
is periodic and has a very short block size (32 bits). Many different attacks on
KeeLoq have been published in recent years [8, 15, 9, 10, 5]. In this paper we study
a unique way of attacking KeeLoq, in which the periodic property of KeeLoq is
used in to distinguish 512 rounds of KeeLoq from a random permutation. Our
attacks require the knowledge of the entire code-book and are not among the
fastest attacks known on this cipher. However one of them works for 100 % of
all keys, including so called “strong keys”, see [15]. In general, it is important to
show how many different attacks are possible on a weak cipher such as KeeLoq.

1. Introduction

KeeLoq was designed in the 1980’s by Willem S m i t from South Africa [36].
It is a block cipher used in wireless devices that unlock the doors of cars manu-
factured by Chrysler, Daewoo, Fiat, GM, Honda, Jaguar, Toyota, Volvo, Volk-
swagen, etc. . . [12, 13, 31, 32]. In 1995 KeeLoq was sold to Microchip Technology
Inc. for more than 10 million US dollars (which is documented in [12]). Following
Microchip, [33], the specification of KeeLoq is “not secret” but is patented and
was released only under license. The question whether one can really break into
cars, and how, is a secondary one in a scientific paper. The main question is
what ciphers could be broken, how, due to what properties, and how to design
better ciphers.

KeeLoq operates with 32-bit blocks and 64-bit keys. Compared to the typ-
ical block ciphers which have a few carefully-designed rounds, this cipher has
528 extremely simple rounds with extremely few intermediate variables (in our
formulation one per round). Also, only one bit of the state is modified in each
round. As a result, KeeLoq can be implemented very efficiently in hardware.
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Sometimes is conjectured, that ciphers which require a small number of gates,
will be vulnerable to algebraic cryptanalysis, see [24, 18]. Indeed, several “di-
rect” algebraic attacks are studied in [15] and the simplicity of KeeLoq makes
it breakable by simple algebraic attacks for up to 10 rounds. More generally, we
wonder what key recovery attacks are possible for KeeLoq? We believe that all
attacks on this unusual cipher are interesting, not merely the fastest attacks, as
they should also be applicable to other similar ciphers.

An important observation allows really efficient attacks on KeeLoq: the cipher
has a periodic structure with a period of 64 rounds. This allows several rather
successful attacks on KeeLoq, in spite of the fact that it has 528 rounds. In
general, the complexity of many attacks simply does not depend on the number
of rounds of the cipher.

This paper is organised as follows. In Section 2 we discuss the unusual prop-
erties of ciphers with small blocks and the known plaintext requirements of our
attacks. In Section 3 we describe the cipher. In Section 4 we introduce some
useful results. In Section 5 we present a slide-algebraic attack that uses the pe-
riodicity of KeeLoq and SAT solvers. The first step of this attack is reused in
Section 6, where we present a correlation attack with the same complexity, that
works for more keys but requires the entire code-book (as opposed to 60 % of
it). In Section 7 we discuss strong keys in KeeLoq. In Appendix we present some
experimental results which justify claims made in the text.

1.1. Notation

We will use the following notation for functional iteration:

f (n)(x) = f
(
f
(· · · f(

︸ ︷︷ ︸
n times

x) · · ·)
)

2. On the philosophy of block ciphers with small blocks

Abstractly, a block cipher is a function E : K × P → C, where K is the
keyspace, P is the plaintext-space and C is the ciphertext-space. In most cases
in practice, these are bit strings, and one can rewrite this as E : {0, 1}`K

× {0, 1}`P → {0, 1}`C . The stereotype is that `P = `K = `C , but this is al-
most never the case in practice, as shown by the following examples.

• IDEA `P = `C = 64, `K = 128.
• DES `P = `C = 64, `K = 56.
• Two-key triple DES `P = `C = 64, `K = 112.
• Blowfish `P = `C = 64, `K ∈ {0, . . . , 448}.
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• RC5 `P = `C ∈ {32, 64, 128} , `K ∈ {0, . . . , 2040}.
• AES, Mars, RC6, Serpent, Twofish `P = `C = 128, `K ∈ {128, 192, 256}.
• KeeLoq `P = `C = 32, `K = 64.

The ciphers with `P < `K have several interesting properties not shared by
those with `P ≥ `K . This question has not received much attention in the
cryptographic community so far, and the particularities of the case `P < `K

become really very important when `P is small, for example in KeeLoq. We
believe that it is important to understand this somewhat curious situation better.

Let the code-book of a cipher E under a key k be the set of all 2`P pairs (P,C)
such that E(k, P ) = C. If 2`P ¿ 2`K , it takes less time to compute the entire
code-book than to do the exhaustive key search. Therefore, a natural question
would be why, precisely, would one want to recover the key if it is possible to have
the entire code-book? From the point of view of theory and security model, this
question was recently studied by P o r n i n and G r a n b o u l a n in Section 5 of
[27]. In this paper we look at it in a similar way but from the point of view of
practical real-life applications and their security. We will give several examples
of such applications.

2.1. Brute-force generic attacks on ciphers with small blocks

Key recovery attack on block ciphers with very small blocks are more or less
interesting depending on the circumstances. We see three distinct scenarios.

Scenario 1—Theoretical. From a theoretical perspective, we can assume that
the adversary is very powerful and has chosen-plaintext oracle access to the
cipher and a very large (usually unrealistic) quantity of memory. Then if the
block size is small, one can judge that the security of block cipher is 2min(`K ,`P ),
and once the adversary recovers and is able to store the entire code-book, one
can consider that the adversary has no interest in actually recovering the original
key. From a scientific point of view, of course, the key-recovery process remains
interesting in its own right. Moreover, in practice, even in this extreme scenario,
the actual key can be very valuable because it may lead to a master key—having
one is a very common practice in the industry—which key would compromise
the security on a much wider scale.

Scenario 2—Practical. This is a known-plaintext attack, and even if the
block size is very small the known-plaintext attack is not equivalent to a chosen-
plaintext attack, not only because storage may be limited, but more importantly
because not all plaintexts actually arise in real life (there is some padding and
a specific probability distribution of possible data). Here the adversary can re-
cover a number of plaintext-ciphertext pairs that can be, for example up to 50 %
of all possible pairs, but he cannot hope to recover all pairs. Importantly, the
value of pairs he does not have may be very large, while the value of pairs he
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already has, is (by definition) very small. Here the key recovery allows the ad-
versary to have all possible pairs, some of which potentially very valuable, or to
recover a master key, even more valuable.

To summarize, in the first (theoretical) scenario the security of the block
cipher is 2min(`K ,`P ), while in the second more practical scenario, the security is
2`K whatever is the block size. In the next section we present several practical
application scenarios which illustrate the importance of key recovery for ciphers
with small blocks and a larger key size. This is meant to motivate further detailed
study of key recovery in ciphers such as KeeLoq.

Scenario 3—Even more realistic. In many real-life situations, the code-
book can be noisy, and contain errors. This can be because of transmission
errors, human errors such as selecting the wrong encryption key, inadvertent
interference with another system or another (active) attacker, or a defensive
voluntary injection of dummy messages to frustrate the attackers. Then again,
the key recovery, as long as it can tolerate a certain number of errors, will be
the only way to know which messages were genuine.

2.2. Key recovery vs. applications of ciphers with small blocks

Scenario 1—Military code book. Ciphers with small blocks can be used
to generate code-books for old-style but very practical military or diplomatic
communication methods that do not require any machine to encrypt messages.
We can note that the question how these code-books are generated is generally
ignored, yet humans cannot be trusted to produce randomness “off-the-cuff”,
an the traditional military solution of using octahedral dice to produce bits,
three at a time is too slow to be practical for code-books beyond a certain size.
Therefore, using a block cipher with small blocks seems to be a default and very
sensible solution to this problem. In particular, a good code-book will be also
a polymorphic cipher, one with several ciphertexts per each plaintext. Then, it
can be used in such a way that the same code-words are rarely or never re-used.
Then even if we know 99.9 % of the code-book, and only two values are not
known, the practical “value” of the missing information can be very, very high.

A practical scenario is as follows: imagine that the CIA has reconstructed
60 % of the code-book of the most dangerous terrorists on the planet. The
code-book is short and used to encrypt short messages over the phone and very
few messages are ever sent. In theory, for a short random message, they have
a 40 % chance to understand nothing. In addition it could be a polymorphic
code-book so that every message has several versions. With such a system, the
terrorist can communicate with his sergeants with the security of a one-time
pad, if he thinks about never re-using the same code-word twice to send the
same message, knowing that after-the-fact a detailed enquiry about the terrorist
attack will always allow one to determine both the plaintext and the ciphertext,
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each used only once. We can imagine that the code-book was generated using
a cipher like KeeLoq and the source code is known.1 Then no new message
can ever be decrypted, and key recovery is the only option. This holds even if
the block size is very small, for example one can use 8-bit blocks to command
a series of attacks (e.g., in ASCII). We have here an example of a cipher, with
its prescribed usage mode, that is in fact a perfectly secure system (in the sense
of information-security) except if the recovery of the master key can be done.

A similar method can be used to design computer viruses that spread unno-
ticed and later use a perfectly secure communication method to make a coordi-
nated world-wide large scale cyber-attack that can hardly be detected by looking
at communications on the network (messages are random strings). Here finding
the initial source code and then recovering the master key would be, perhaps,
the only way to prove the origin of the attack.

Scenario 2—LORI-KPA/LORI-CPA. Consider the notion of Left-or-Right-
Indistinguishability in either Known-Plaintext Attack, or Chosen-Plaintext At-
tack [4]. There are two plaintexts, either known to the attacker, or chosen by the
attacker, which we will denote as “active”. The attacker can then make “poly-
nomially many” queries, and submit plaintexts of his choice for encryption. We
can translate this definition to a “concrete security” treatment when the security
parameter (key length) is fixed, and allow the attacker to request, in fact, the
encryption of any plaintext, except the two which are active. Therefore one can
consider that the code-book is actually known to the adversary, for all but two
values. Such a scenario is also explicitly considered in Section 5 of [27].

We note that if a message has been transmitted and it is not found in the code-
book, then it is clearly one of the remaining two. This message can be of vital
importance, yet it might not be possible to determine which of the remaining
two it is. Key recovery would accomplish this.

If the reader doubts the practicality of this scenario, where most of a code-
book is known and only a few values remain, consider the following. According
to David K a h n [29], in 1942, the United States decrypted many messages en-
crypted with the famous “Purple” cipher, forecasting an attack at “AF.” There
were only a few possible targets, and so a very short list of candidates was made
and Midway Island seemed the most reasonable choice. The Americans needed
however a confirmation to be 100 % confident, because they planned to strike
with every available aircraft carrier, and a mistake would be a tremendous waste
of scarce resources. The US Navy decided to send a message about water supply
on Midway, using their own code that they knew to be broken be the Japanese.
Very soon another message about “AF” was sent over Japanese channels, de-
scribing the problem with the water. Consequently, overwhelming force was sent

1Perhaps, it was generated using a commercial implementation of a cipher, or somebody found
the source code on an old hard drive, and either way of everything is known except the key.
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Midway and Japan’s offensive power at sea was castrated, which had a pivotal
impact on winning the World War II.

Scenario 3—Manufacturer sub-keys. One usage of KeeLoq in automobiles
could be to take a 32-bit string called a “manufacturer key”, and a 32-bit string
called a “per-automobile” key, and concatenate them to form a key for each au-
tomobile. This means that the automobile manufacturer can produce a machine
to recover the key for this particular vehicle in 232 operations, but all other
attackers cannot, if the key remains unknown for every automobile. If the code-
book is known for one automobile, then that specific automobile can be stolen.
But if a key recovery is then performed, both keys are recovered and thus every
automobile of that manufacturer could then be much more easily stolen, using
232 rather than 264 test encryptions.

Incidentally, a more secure way of accomplishing the above is to generate
a “manufacturer key” kM randomly, and let the per automobile key be ks =
E(kM , s), where s is the serial number of the car. There would be no obvious
attack.

Scenario 4—Short but private data. Suppose short strings must be en-
crypted with high security. In the USA, social security numbers (SSN’s) are
9 digits, and this can be encoded in Binary Coded Decimal (BCD) with 36 bits.
Of course, one can use AES (E with `K = `P = `C = 128) and encrypt the 36
bits padded with 92 bits of zeroes or a fixed padding, or even with a padding that
is a function of the SSN. But then this defines an induced E′ with `K = 128,
`P = 36 and `C = 128. This is related to the idea of “nuggets” as presented
in [1].

Scenario 5—Fast shuffing and anonymity. Given a random permutation
σ on the set of n elements, one can trivially shuffle a list of n objects. This is
needed in many areas, most notably in scrambling data to preserve the privacy
of patients in medical research. Note that sending each item i to the spot σ(i) is
sufficient for a random shuffle and takes Θ(n) time total; for a large n this is much
better than assigning a random number to each item and then sorting, which
would take Θ(n log2 n) time. One can do this by using σ(i) = E(i, k) mod n.
But, especially if n is a power of 2, this induces a block cipher with high `K (to
protect anonymity) but with small block size `p = `c = log2 n.

Scenario 6—Assigning account numbers to people. A bank or a stock-
broker can assign random-looking account numbers to their unique identifiers
such as their name plus date of birth or their social security number. In these
applications every single new plaintext-ciphertext pair is valuable to the attacker,
and one single pair can be worth much more than any other pair (a particularly
wealthy customer can be targeted).
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Scenario 7—Scratch cards and software serial numbers. Block ciphers
with small blocks are used by the industry to generate so called scratch cards,
that are used for example to obtain calling credit on a mobile phone. The permu-
tation is used to associate random-looking and unique (hard to forge) numbers
on scratch cards, to unique account identifiers that are typically the numbers
0, 1, 2, 3, 4, . . . The same method is sometimes used to obtain unique serial num-
bers for software. This avoids keeping a database of all existing serial numbers
which can be replaced by a short piece of code (not very secure) or a secure
cryptographic hardware or token with embedded key (much more secure).

2.3. KeeLoq code-book—practical considerations

We have not touched upon the issue of how the code-book can be obtained in
the case of Keeloq and automobile applications. Either it can be obtained from
a remote encryption oracle, or simply harnessing the circuitry without being
able to read the key in order to clone the device. While this may sound like
a practical attack scenario, in practice the devices are simply too slow to obtain
this. It is also noteworthy that since each plaintext is 25 bits long, and there are
232 of them, the entire code-book is 237 bits or 16 Gigabytes. This amount of
RAM is already available on high-end PC’s at the time of writing.

Oddly, the 64-bit key size implies that the exhaustive search is actually feasible
in practice, and hackers and car thieves implement it with FPGA’s [12]. Such
an attack requires only 2 known plaintexts (one known plaintext alone does not
allow one to uniquely determine the key, which is another consequence of the
unusually small block size). We note that while 232 encryptions is difficult to
obtain with the original chips that are quite inexpensive and slow, with FPGA’s
as much as 264 encryptions is feasible. This is because the FPGA’s are faster
and do a great deal of parallel processing.

3. The cipher description

The specification of KeeLoq can be found in [12, 13, 32, 8, 2, 15]. Initially,
the specification found in [12, 13] was mistaken, as opposed to [32, 8], but now
all available sources agree on the updated specification.

The KeeLoq cipher is a strongly unbalanced Feistel construction in which the
round function is “compressing” and has only one bit of output. Consequently,
in one round, only one bit in the “state” of the cipher is changed. Alternatively,
it can viewed as a modified shift register with non-linear feedback, in which the
fresh bit computed by the Boolean function is additionally XORed with (only)
one key bit in each round. The cipher has a total of 528 rounds. The encryption
procedure is periodic with a period of 64 and it has been “cut” at 528 rounds,
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with 528 = 512 + 16 = 64 × 8 + 16. The fact that 528 is not a multiple of 64
prevents a direct application of “slide attacks” [28, 7, 6]. However more advanced
slide attacks remain possible as we will see in this paper and in other known
attacks on KeeLoq [8, 15, 9, 10, 5].

Let k63, . . . , k0 be the key. In each round, it is bitwise rotated to the right,
with wrap around. Therefore, during rounds i, i + 64, i + 128, . . ., the 64-bit key
register is the same. If we denote the first 64 rounds by fk(x), then KeeLoq is

Ek(x) = gk

(
f

(8)
k (x)

)

with g(x) being a 16-round final step, and Ek(x) being all 528 rounds. The last
“extra” 16 rounds of the cipher use the first 16 bits of the key (by which we
mean k15, . . . , k0) and gk is a functional “prefix” of fk.

The main (and only) non-linear component is a Boolean function with the
truth table given in Table 11 of [32]. This truth table is encoded by “3A5C742E”
in [12] which should be read as follows: operatornameNLF (a, b, c, d, e) is equal
to the ith bit of that hexadecimal number, where i = 16a + 8b + 4c + 2d + e.
Thus (a, b, c, d, e) = (0, 0, 0, 0, 0) gives i = 0 and the function outputs the least
significant (rightmost) bit of of “3A5C742E”. With (1, 1, 1, 1, 1) we get the most
significant leftmost) bit number of “3A5C742E”, i.e., i = 31. The corresponding
algebraic normal form (ANF) of this function is given by [8]:

NLF(a, b, c, d, e) = d⊕ e⊕ ac⊕ ae⊕ bc⊕ be⊕ cd⊕ de⊕ ade⊕ ace⊕ abd⊕ abc.

The main shift register has 32 bits, (unlike the key shift register with 64 bits),
and let Li denote the leftmost or least-significant bit at the end of round i, with
L0 being its initial value. At the end of round 528, the least significant bit is
thus L528, and then let L529, L530, . . . , L559 denote the 31 remaining bits of the
shift register, with L559 being the most significant. Let k63, k62, . . . , k1, k0 be the
key and the initial content of the key register. The complete KeeLoq encryption
process is fully described on Fig. 1 (this corresponds to the decryption process
that is described by Fig. 12 in [32]).

4. Useful combinatorial facts

4.1. Random functions, random permutations and fixed points

Given a random function from n-bits to n-bits, the probability that a given
point has i pre-images is ∼ 1/(i!e), in the limit when n → ∞. (Furthermore,
as a random variable, the number of pre-images has a Poisson distribution with
the average number of pre-images being λ = 1).

This distribution can be applied to derive statistics on the expected num-
ber of fixed points of a (random) permutation. It is also expected to work
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(1) Initialize with the plaintext: L31, . . . , L0 = P31, . . . , P0.

(2) For i = 0, . . . , 528− 1 do
Li+32 = ki mod 64 ⊕ Li ⊕ Li+16 ⊕NLF(Li+31, Li+26, Li+20, Li+9, Li+1).

(3) The ciphertext is C31, . . . , C0 = L559, . . . , L528.

Figure 1. KeeLoq encryption.

for ‘not exactly random’ permutations that we encounter in cryptanalysis of
KeeLoq. In particular, let fk(x) be the first 64 rounds of KeeLoq. Assuming that
fk(x)⊕ x is a pseudo-random function, we look at the number of pre-images of
0 with this function. This gives immediately:

Proposition 4.1. The first 64 rounds of KeeLoq have 1 or more fixed points
with probability 1− 1/e ≈ 0.63.

Proposition 4.2. The first 64 rounds of KeeLoq have 2 or more fixed points
with probability of 1− 2/e ≈ 0.26.

Experiments to verify this were performed, some of which are described in
Appendix.

4.2. On the expected number of cycles in a random permutation

It is well known (for example, see [36]) that:
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Proposition 4.3. The expected number of cycles in a decomposition of permu-
tation on n bits into disjoint cycles is equal to H2n , where Hk =

∑k
i=0 1/i is the

kth Harmonic Number. We have Hk ≈ ln k + γ, where γ ≈ 0.577216 . . . is the
Euler-Mascheroni constant.

For example, when n = 8, we expect to have 6 (disjoint) cycles on average,
and when n = 32, we expect to have 23 cycles on average.

5. Algebraic and slide attack on KeeLoq

Several direct algebraic attacks on KeeLoq have been proposed and studied
in [15], in this paper we will recall and re-use essentially one of them.

5.1. Pure algebraic attacks

The goal of an algebraic attack, is to recover the key of the cipher by solving
a system of multivariate equations given a small quantity of known, chosen or
random plaintexts, as in [18]. Unlike for stream ciphers [19], very few such attacks
are actually very efficient on real-world block ciphers. For example, DES can be
broken for up to 6 rounds out of 16, see [24]. For KeeLoq, on the other hand,
many more rounds can be directly attacked, due to its simplicity.

One method is to write KeeLoq as a system of equations, and is described
in [15]. The same paper studies to what extent these equations can be solved
in practice by two families of methods. With Gröbner bases (and similar but
simpler) techniques, it is possible to break up to 128 rounds of KeeLoq. Another
family of techniques are attacks with conversion of the MQ problem to a well-
known logical CNF-SAT problem using the methods of [25], and solving the
resulting satisfiability problem by one of the existing SAT solver packages, for
example, MiniSat 2.0. [34]. In this way, and with modern SAT solvers, it is
possible to break as many as 160 rounds of KeeLoq, we refer to [15] for more
details and in [2] there is a chapter that explains how SAT solvers actually work.

It can be seen that, with the conversion of [25] and modern SAT solvers, when
the number of rounds is not too large, the key can be obtained almost instantly.
In this paper we will only use the following fact:

Proposition 5.1 (Example 6 of [15]). For 64 rounds of KeeLoq and 2 known
plaintexts, the full 64-bit key is recovered by conversion to SAT and MiniSat 2.0.
in about 0.3 s.

Several complete working examples of equations can be downloaded from [14]
and with MiniSat 2.0. being freely available [34] it is easy to check these results.
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5.2. Comparing algebraic attacks on KeeLoq to brute force

Fact 5.1. An optimised assembly language implementation of r rounds of
KeeLoq is expected to take about 4r CPU clocks. For justification, see foot-
note 4 in [8].

Thus, the complexity of an attack on r rounds of KeeLoq with k bits of the
key should be compared to 4r × 2k−1, which is the expected complexity of the
brute force key search. For example, for full KeeLoq, the reference complexity
for the exhaustive key search is about 275 CPU clocks.

Assuming that the CPU runs at 2.5 GHz, one can execute about 243 CPU
clocks per hour (if only one CPU core is used). Thus a brute force attack on
KeeLoq requires 232 hours per core, or 0.5 millions of CPU-years.

5.3. Our combined slide and algebraic attack A

In this attack we will guess the first 16 bits of the key namely k0, . . . , k15, and
construct a distinguisher between f

(8)
k and a random permutation.

Preliminary remarks

We assume that there are at least two fixed points for fk(x), which happens
with probability 0.26 (cf. Proposition 4.2). In the remaining cases this attack
fails (but one can apply the Attack B). Under this assumption, we expect that
there will be about 6 fixed points for f

(8)
k (·). We did computer simulations to

confirm this figure, see Appendix 8
Recall f

(8)
k consists of the first 512 rounds of KeeLoq. The attacker will try

to guess which, out of the 6, are fixed points for fk(·). The probability that the
guess is correct is about

(
6
2

)−1≈ 1/15. Instead of guessing, the attacker will try
all subsets of 2 out of 6 points (6 plaintexts) until the right pair is used, which
requires about 15 tries and about 15/2 on average.

Stage 1—recover 16 key bits with a distinguisher

Let B be a permutation on 32 bit words. From Proposition 4.3, assuming that it
behaves as a random permutation, we expect that B has about 23 cycles. Half of
them should have even sizes, and half odd—or 11.5 each. When we compose B
with itself, all cycles that are of even size split into two pieces, that can be of
either even or odd size depending on whether the initial cycle size was congruent
to 0 or 2 modulo 4. All cycles of odd size remain intact (but points are permuted).
Thus, we expect that the number of even cycles will be divided by 2. In summary
we would expect to see 17.75 odd cycles and 5.75 even cycles.

Consider what happens when this composition operation is repeated 3 times:

B → B2 → B4 → B8.
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Table 1. Pseudocode for stage 1 used in attacks A and B.

(1) Assume that the entire code-book is stored in 16 Gigabytes of RAM.
(2) Guess 16 bits of the key.

(a) Apply g−1
k (·) to the entire code-book, get a complete table for

f (8)(·). This may require another 16 Gigabytes of RAM (or in-
stead, one can notice that here the code-book is read sequentially
so a very fast hard drive can also be used for the code-book).

(b) Check the cycle lengths: start from a random not-yet-used point,
cycle through the whole cycle and mark each point as used. This
requires extra 2 Gigabytes of RAM. There is an early abort so
that there is no need to compute the exact number of cycles,
namely:

(i) If there are 6 or more even length cycles, go back to Step 2.
(We note that before this early abort happens, about 12
(larger) cycles are found with expected sizes decreasing
roughly by a factor of (2/3) each time. So a time of about

11∑

i=0

(
(1/3) · ·(2/3)i

)−1≈ 770

is spent on random sampling through the whole space look-
ing for a random not-yet-used point, which is truly negli-
gible.)

(ii) With probability 2−16 the guess of 16 bits of the key is
good, and only in this exceptional case we do not have an
early abort. If there are only 5 or fewer even length cycles,
we will consider that the guessed 16 bits of the key are
correct.

We expect that B8 has 11.5 7→ 5.75 7→ 2.8 7→ 1.4 which is about 1 cycle of
even size left. Note that a cycle of B must be of length 0 mod 16 to be of even
length for B8. Otherwise, if it is of length 1, 2, . . . 15 mod 16, then it will be
of odd length for B8. This property allows one to distinguish between f

(8)
k and

a random permutation that should have about 11–12 even length cycles.
The proposed distinguisher works as follows. If there are 6 or more even-length

cycles, we say it is the wrong key-prefix. Otherwise, we say that k0, . . . , k15 is
correct.

The probability of a false positive is equal to the probability that some 6 cycles
in B have length, that are multiples of 16, as only such cycles can still be of even
size after splitting into two 3 times. This probability is p = 16−6 = 2−24.
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Our distinguisher has a very low threshold, only 6, yet the resulting prob-
ability of a false positive p = 2−24 is clearly sufficient to be able to uniquely
determine which 16-bit key is the right key. At the same time, since the expected
number of even cycles in a random permutation is about 11.5, the probability of
the right key being not detected—a false negative—which requires having only 5
or fewer even-sized cycles for a random permutation is extremely low and will
be neglected. But as an approximation, suppose that there were exactly 23 cy-
cles. Then the probability of having less than six even length cycles is identical
to having exactly zero, or exactly one, or exactly two, up to exactly five, and
thus can be computed from the binomial distribution. These cases are mutually
exclusive and collectively exhaustive. Since a cycle is expected to be even or odd
with probability one-half, this comes to

i=5∑

i=0

(
23
i

)(
1
2

)i (
1
2

)23−i

= 2−23 · 44552 ≈ 2−7.56≈ 0.0053 . . .

The success rate of this part of the attack is close to 1 and we expect that
exactly one 16-bit key will be found.

In order to implement the distinguisher, we need to compute the sizes of
all cycles for a permutation on 232 elements. Since we assumed that plaintext-
-ciphertext pairs are stored in a table, and the access time is 16 CPU clocks,
this will take time roughly equal to 236 CPU clocks, For each point not pre-
viously used, we explore the cycle and count how many elements it has. Then
we start with a random point not previously used. The total memory used is
16+2 Gigabytes with an extra 2 Gigabytes needed to remember which points
were already used. The fact that we can reject a key when 6 even-size cycles
are already found, avoids systematically computing all cycles, only the biggest
ones, and allows for an early abort. A pseudo-code with additional explanations
is given in Table 1.

The complexity of an optimised version of this attack should be 236 CPU
clocks per guessed 16-bit key, or 216+36 total in the worst case, and 215+36 total
on average. To summarise, given about 60 % of the entire code-book of 232

known plaintext (this is explained in Appendix), at Stage 1 of the attack gives
us 16 bits of the key k0, . . . , k15 with the workfactor of about 251 CPU clocks on
average which is about 240 KeeLoq encryptions.

Stage 2—recover the missing 48 bits

The first idea would be to use brute force. The complexity is, however, 248+11

which is already too much in comparison to our Stage 1. Instead we proceed
exactly as in Proposition 5.1 except that we now actually know 16 bits of the
key, and know the resulting approximately 4 fixed points of f

(8)
k . Here again we
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Table 2. Pseudocode for the whole attack A.

(1) Assume that the entire code-book is stored in 16 Gigabytes of RAM.
(2) With Stage 1 recover 16 bits of the key.

(3) Determine the fixed points of f
(8)
k (·) using the code-book, and call this

set F .
(4) For each possible pair (pi, pj) ∈ F , with i < j:

(a) Assume that f(pi) = pi and also f(pj) = pj .
(b) Write equations accordingly.
(c) Solve them (this takes about 0.3 seconds, cf. Proposition 5.1).
(d) If a key results, see if it is correct and if so, terminate.
(e) Otherwise repeat for the next pair.

will assume that there are two fixed points for fk. This is true for 26 % of the
keys. We need to guess which (out of these approximately 4 points) are the fixed
points of fk, see pseudocode in Table 2, and then we solve a system of equa-
tions corresponding to 64 rounds of KeeLoq and 2 known plaintexts. This takes
0.2 s ≈ 228 CPU clocks with MiniSat 2.0.

The probability of correctly guessing which two fixed points of f
(8)
k are fixed

points for fk is
(
6
2

)−1
= 1/15, it was explained earlier. Thus the total complexity

of this stage is in expectation about 15/2 · 228≈ 231 CPU clocks, and we expect
that for the wrong pair of fixed points no solution will be found (there are 48
bits of key left to be found determined by the 64 bits of the two fixed points).
The first stage that requires about 251 CPU clocks dominates the attack.

Summary of attack A

Given about 60 % of the entire code-book (see Appendix) this attack succeeds
with probability 0.26, i.e., for 26 % of keys (cf. Proposition 4.2). The running
time is about 251 CPU clocks which is about 240 KeeLoq encryptions. This
attack is also described in [2].

6. Attack B: A correlation attack on KeeLoq

In this attack we will replace Stage 2 by another attack that works for all
possible keys, not only 26 % of keys. However it requires the entire code-book
(as opposed to 60 % of it). The attack uses the following basic facts.

The used NLF can be approximated by a linear combination of two input
variables, since it is 1-resilient but not 2-resilient.
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Proposition 6.1. For the nonlinear KeeLoq function NLF and uniformly dis-
tributed x4, x3, x2 ∈ GF (2):

Pr
{
NLF(x4, x3, x2, x1, x0) = 0 | x0 ⊕ x1 = 0

}
=

Pr
{
NLF(x4, x3, x2, x1, x0) = 1 | x0 ⊕ x1 = 1

}
=

1
2

+
1
8
.

If four of five input bits are known, NLF is an affine function of one variable:

Proposition 6.2. For the nonlinear KeeLoq function NLF with x0, x1, x2, x3

known and x4 unknown:

NLF(x4, x3, x2, x1, x0) = c1x4 ⊕ c0,

where c1 and c0 are known constants dependent on x0, x1, x2, x3.

Proposition 6.3. Given (x, y) with y = hk(x), where hk represents up to 32
rounds of KeeLoq, one can find the part of the key used in hk in as much time
as it takes to compute hk.

Justification: This is because for [up to] 32 rounds, by looking forwards and
backwards, we see that all state bits inside the cipher are directly known, from
either the plaintext or the ciphertext. Thus the key bits are obtained directly:
we know all the inputs of each NLF, and we know the output of it, XORed with
the corresponding key bit.

Proposition 6.4. Given k0, . . . , k31 and (α, β) with β = fk(α), k32, . . . , k63

can be derived with a complexity of computing fk (64 rounds) with known k.

Justification: Follows directly from the previous proposition, with 32 fist key
bits known, we can remove the first 32 rounds.

Description of the attack B

Stage 1—recover 16 key bits

The same as in Attack A and Table 2.

Stage 2—recover extra 16 key bits with linear cryptanalysis

Now the first 16 key bits k0, . . . , k15 are known. As in Attack A, by applying
g−1

k ( ) to the entire code-book we get a complete table for f
(8)
k ( ) that is stored in

16 Gigabytes of RAM. This is a completely periodic cipher architecture E′
k(x) =

f
(8)
k (x) which is vulnerable to slide attacks. Now we proceed as follows :
(1) First we choose and fix a random 32-bit input α1 (can be the same in

the whole attack) and guess β1 = fk(α1) (average 231 and max. 232 pos-
sibilities to be checked). Now, as in classical slide attacks [7], we observe
that one such pair allows one to compute many other such pairs as follows:
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(αi+1, βi+1) =
(
f

(8)
k (αi), f

(8)
k (βi)

)
. For each guess of β1 a “slide group” is

defined as the set of couples Gα1,β1 =
{
(αi, βi) : βi = fk(αi)

}N

i=1
. We note

that from our formula above, a “slide group” of size N is generated with
2(N − 1) table lookups.

(2) Using Gα1,β1 the next 16 key bits k16, . . . , k31 can be obtained by applying
the correlation step outlined below. For the sake of simplicity we only show
how to obtain k16 and k32 here. All the further operations are very similar.
The least significant output bit L64 at the output of fk is equal to:

L64 = NLF(L63, L58, L52, L41, L33)⊕ L32 ⊕ L48 ⊕ k32

= NLF(L63, L58, L52, L41, L33)⊕NLF(L47, L42, L36, L25, L17)
⊕L16 ⊕ (k32 ⊕ k16),

where L32 was eliminated. Here all the Li, i < 48, are known (because
16 key bits are known) and the only nonlinear expression with unknown
variables NLF(L63, L58, L52, L41, L33) can be efficiently approximated by
the sum L41 ⊕ L33 of two known values using Proposition 6.1. By looking
at this equation just for few pairs from the “slide group”, we get k16⊕ k32

by majority voting.
The next output bit L65 of fk can be written as follows:

L65 = NLF(L64, L59, L53, L42, L34)⊕ L33 ⊕ L49 ⊕ k33

= NLF(L64, L59, L53, L42, L34)⊕ L33 ⊕ c0 ⊕ L17

⊕c1k16 ⊕ k17 ⊕ k33,

where L49 is expressed as an affine function on k16 and k17 using Propo-
sition 6.2 with known constants c0 and c1 dependent on the input. Statis-
tically, one half of the elements in Gα1,β1 give c1 = 0 which leads to the
recovery of k17 ⊕ k33 by majority voting as outlined above. The other half
of inputs gives c1 = 1 and recovers k16 ⊕ k17 ⊕ k33. Now k16 and k32 can
be directly computed.

By proceeding iteratively for the next 14 output bits Li, 65 <
i ≤ 79, of fk and using Propositions 6.1 and 6.2, one obtains all k16, . . . , k31.
Our experiments show that a “slide group” of size N = 28 is enough for
the whole correlation step to succeed with a high probability. Thus, the
complexity of Stage 2 of the attack (the first 16 key bits being known in
advance) is about 231(16(2N−2)+16N)/528 ≈ 235.5 KeeLoq encryptions,
if a single table lookup requires 16 CPU cycles.

Stage 3—recover remaining 32 key bits

The remaining 32 key bits are recovered using Proposition 6.4. Each 64-bit
key candidate corresponding to the current guess of β1 is tested using known
plaintext-ciphertext pairs for KeeLoq.
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Summary of attack B

Given 232 known plaintexts, this attack succeeds for all keys with probability
very close to 1. As in Attack A, the first stage still dominates the attack and
the running time is about 251 CPU clocks which is only about 240 KeeLoq
encryptions.

Remark 1. Though the Stage 1 of this attack, works given about 60 % of the
code-book (as in Attack A), the whole attack really needs more or less the whole
code-book. This is because we have to guess 32 bits of β1 and generate a slide
group of size 28 for each guess.

7. Strong keys in KeeLoq

Following [15], the manufacturer or the programmer of a device that contains
KeeLoq can check each potential key for fixed points for fk (232 plaintext have
to be checked). If it has any, that key can be declared “weak” and never used.
A proportion of 63 % of all the keys will be weak, and following [15], removing
these weak keys will change the effective key space from 64 bits to 62.56 bits.
This is a small loss, in many scenarios perfectly acceptable. Unfortunately, this
fix removes only our Attack A. The Attack B still works.

8. Conclusion

In this paper we presented two attacks on KeeLoq, a block cipher that is in
widespread use throughout the automobile industry and that is used by millions
of people every day. One particularity of this cipher is that the block size is
unusually small, only 32 bits. It is therefore feasible to compute and store the
entire code-book, which leads to many interesting attacks and considerations
that only occur for ciphers with small blocks.

In particular, the small block size combined with the periodic structure of
KeeLoq, allows one to distinguish 528 rounds of KeeLoq from a random permu-
tation, and this independently of the strength of the cipher and its key length.
This is quite interesting: iterating even an extremely strong cipher on small
blocks gives a cipher that will be distinguishable from a random permutation.
Starting from this fact, two cycling attacks on KeeLoq are proposed in this
paper.

Our Attack A uses an algebraic cryptanalysis step with SAT solvers. It re-
quires the knowledge of about 60 % of the entire code-book of 232 known plain-
texts, works for 26 % of keys and is equivalent to about 240 KeeLoq encryptions.
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Our attack B is a correlation attack that has the same complexity, it is better
in that it works for all keys, yet it requires the whole code-book. It is interesting
to note that attacks that use sliding properties can be quite powerful because
typically their complexity simply does not depend on the number of rounds of
the cipher. Very similar attacks can be designed for most iterated ciphers.

Nonetheless, due to the short key size in KeeLoq, and given that it is rather
difficult to obtain a large quantity of plaintexts, in practice the best attack on
KeeLoq remains the brute force that requires only two known plaintexts.
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Appendix. Simulations on fixed points and random
permutations

In this section we do some computer simulations to justify certain claims,
about permutations and fixed points, made in text. In Attack A, we need to
know how many fixed points, on average, do we expect for f8 when we assume
that f already has at least 2 fixed points. The answer is about 6 fixed points.

It is also interesting to know what is the percentage of the plaintext space that
must be searched, in order to find enough fixed points of f (8), such that at least
two of these are also fixed points for f . Our experiments show that η = 60 % of
the plaintext space must be explored on average.

Table 3. Fixed points of random permutations and their 8th powers.

Size of the domain 212 212 213 214 215 216

Experiments 1,000 10,000 10,000 10,000 10,000 100,000

Aborts (n1 < 2) 780 7,781 7,628 7,731 7,727 76,824

Good examples (n1 ≥ 2) 220 2,219 2,372 2,269 2,273 23,176

Average n1 2.445 2.447 2.436 2.422 2.425 2.440

Average n8 4.964 5.684 5.739 5.612 5.695 5.746

Average location 2,482 2,483 4,918 9,752 19,829 39,707

Percentage (η) 60.60 % 60.62 % 60.11 % 59.59 % 60.51 % 60.59 %

In our experiment, we generated random permutations f of domain size 212

through 216. We checked for fixed points by exhaustion. Indeed if that permu-
tation had zero or one fixed points, then we would denote this as an abort.
Then for those permutations that did not abort (i.e., those with two or more
fixed points), we iterated through the domain to see at what value the second
fixed point was found. We also counted the number of fixed points of f , and
the number of fixed points of f (8) and computed their average. For a random
permutation f the number of fixed points of f is denoted n1, and the number
of fixed points for f8 is denoted n8.
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The nomenclature “average location” indicates how many domain points of f
had to be tried before finding two points that are both fixed points of f and f8

as well.
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Horst Görtz Institute
for IT Security
Faculty of Electronics and
Information Technology
Ruhr University Bochum
Universität Straße 150
D-44780 Bochum
GERMANY

E-mail : abogdanov@crypto.rub.de

188


