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BOUNDS FOR DIFFERENTIAL PROBABILITIES IN
EVEN ORDER ABELIAN GROUPS

Jerzy Jaworski � Tomasz Tyksi«ski

ABSTRACT. The maximum di�erential probability for any abelian group of
even order is studied. The bounds for these probabilities for groups of order r with
O(
√

r) elements of order 2 were given in [T. Tyksi«ski: Bounds for di�erential
probabilities, Tatra Mt. Math. Publ. 29 (2004), 89�99]. In particular we complete
these results by deriving the bounds in the case when the number of elements
of order 2 is asymptotically much bigger than the square root of the order of
a group.

1. Introduction

Di�erential cryptanalysis is a well known attack on symmetric cryptosystems.
It was introduced by B i h am and S h am i r for DES [2, 3, 4] and it in still
serves as a base for many similar attacks, e.g., rectangle attack [1]. Di�erential
cryptanalysis uses pairs of plaintexts with a carefully chosen di�erence. The pri-
marily used notion of di�erence was bitwise XOR. A more general de�nition of
di�erence was introduced later: the di�erence between two texts from an abelian
group G = (G,⊗) is de�ned as ∆(X, X∗) = X ⊗ (X∗)−1. Another important
structure in di�erential cryptanalysis is a di�erential - a pair of di�erences (α, β).
These di�erences as well as texts are elements of G; usually α is a di�erence of
plaintexts and β is a di�erence of inputs to the last round of a cipher. Since 1994
H a w k e s and O 'C o n n o r [5, 6, 7, 8] analysed the behaviour of di�erentials
in commonly used abelian groups and under the assumption of ideal cipher, i.e.,
a random permutation of texts. We present here new results based on this analy-
sis. First in the next section we introduce the notation and give results obtained
by H a w k e s , O 'C o n n o r [5, 6] and T y k s i « s k i [9]. Then we present the
main result of this paper. Finally the last section gives the sketch of proof of the
obtained bounds.
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2. Bounds in abelian groups

Let G = (G,⊗) be an abelian group of order r, with a neutral element e. Let π̃
be a random permutation selected uniformly from the symmetrical group Sr.
Let us de�ne the random variable DPG(α, β, π̃) describing the number of pairs
of di�erence α, that after the permutation π̃ give a di�erence β.

DPG(α, β, π̃) :=

∣∣∣∣∣

{
(
X,X ⊗ α−1

) ∈ G×G : ∆
(
π̃(X), π̃

(
X ⊗ α−1

))
= β

}∣∣∣∣∣.

The probability distribution of DPG(α, β, π̃) is therefore based on the uniform
random permutation idealizing the behaviour of a cipher with a randomly chosen
key. Moreover we consider the maximum value of DPG(α, β, π̃) de�ned as

DPG(π̃) := max
α 6=e,β 6=e

DPG(α, β, π̃).

This random variable describes the most probable di�erential, that can be used
in a di�erential cryptanalysis, based on some de�nition of di�erence of texts.
H a w k e s and O 'C o n n o r wrote a series of papers [5, 6, 7, 8] devoted to the
bounds of DPG(π̃).

The di�erential probability depends on the notion of di�erence. The results
by O 'C o n n o r and H a w k e s from [5, 6] apply to XOR and modular addition.
T y k s i « s k i in [9] expanded the method and achieved a bound for any abelian
group of odd order. Later in [10] T y k s i « s k i tightened a bound in XOR
operation abelian groups.
Theorem 1 ([10]). Let G = (G,XOR) be an abelian group of order r = 2n.
If π̃ is a random permutation (selected uniformly from Sr), then

Pr
(

4 ln r

ln ln r
≤ DPG(π̃) <

4 ln r

ln ln r
+ ω(r)

4 ln ln ln r · ln r

(ln ln r)2

)
∼ 1,

where ω(r) is any function that goes to in�nity arbitrarily slowly as r →∞.
An analogous result for abelian groups of odd order was also given in [10].

Proofs were based on the Poisson approximation and tail bounds derived for
groups of order 2n in [5, 6, 7, 8] and for groups of odd order r = pk1

1 pk2
2 . . . pkt

t ,
where pi are odd prime numbers for all i = 1, 2, . . . , t in [9].

In this paper we extend the result for abelian groups of odd order to any
abelian group of even order r containing o(

√
r) elements of order 2.

Theorem 2. Let G = (G,⊗) be any abelian group of even order r containing
o(
√

r) elements of order 2. If π̃ is a random permutation (selected uniformly
from Sr), then

Pr
(

2 ln r

ln ln r
≤ DPG(π̃) <

2 ln r

ln ln r
+ ω(r)

2 ln ln ln r · ln r

(ln ln r)2

)
∼ 1,
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where ω(r) is any function that goes to in�nity arbitrarily slowly as r →∞.

Note that, in fact Lemma 5 implies that the lower bound holds for O(
√

r)
elements of order 2.

We also extend Theorem 1 to any even order abelian group. The new bounds
are additionally expressed in terms of a parameter d � a number of elements of
order 2 in the group G.
Theorem 3. Let G = (G,⊗) be any abelian group of even order r, di�er-
ent from (G, XOR), containing d elements of order 2, where r = o(d2). If π̃ is
a random permutation (selected uniformly from Sr), then

Pr
(

4 ln d

ln ln r
< DPG(π̃) <

(4 + ε(r)) ln d

ln ln r

)
∼ 1,

where ε(r) is any function that goes to 0 as r →∞ and such that

ε(r) >
4 ln ln r − 4 ln ln d + 4 ln ln ln r

ln ln d− ln ln ln r
.

Proof of the results is presented in the following section. Note that using the
same approach as in the proof of Theorem 2.5 in [10] one can easily get the
upper bound in Theorem 2.

3. Proof of the main results

3.1. Poisson approximation
Graph notation of di�erences allow us to state the following lemma describing

the Poisson approximation for the distribution of random variable DPG(α, β, π̃).

Lemma 1 ([5, 6, 9]). Let G = (G,⊗) be an abelian group of order r, let t =
o( 3
√

r). If ord α = ord β = 2, then

Pr
(
DPG(α, β, π̃) = 2t

)
=

e−1/2

2t · t!

(
1 + O

(
t3

r

))
,

for all other cases (i.e., ord α 6= 2 or ord β 6= 2), we have

Pr
(
DPG(α, β, π̃) = t

)
=

e−1

t!

(
1 + O

(
t3

r

))
.

It follows from Lemma 1 that, in general, the distribution of DPG(α, β, π̃)
depends only on the number of elements of order 2 in the group G.
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3.2. Upper bounds
To show a more precise upper bound in abelian groups of order r we use the

Poisson approximation derived in [6] for groups of order 2n and in [9] for groups
of odd order.

Let G = (G,⊗) be an abelian group of order r, let π̃ be a random permutation
(selected uniformly from Sr). De�ne an indicator random variable

ΩG(α, β, π̃, t) :=

{
1 if DPG(α, β, π̃) = t,

0, in all other cases.

We are interested in a random variable ΩG(π̃, t), that counts the number of
di�erentials ful�lled by exactly t pairs, i.e.,

ΩG(π̃, t) :=
∑

α,β 6=e

ΩG(α, β, π̃, t).

Notice that there can be 2j − 1 elements of order 2 in a group for some non-
negative j and therefore the following holds.

Lemma 2. Let G be an abelian group of even order r = q · 2n (q is odd) with
2j−1 elements of order 2 and let t = o( 3

√
r). Then the expected value of ΩG(π̃, t)

is approximated by

E
(
ΩG(π̃, t)

) ∼ (2j − 1)2 · e−1/2

2t/2
(

t
2

)
!
+

(
(q2n − 1)2 − (2j − 1)2

) · e−1

t!

if t is even, and by

E
(
ΩG(π̃, t)

) ∼ (
(q2n − 1)2 − (2j − 1)2

)e−1

t!

if t is odd.

In the case of the group G = (G,XOR) of order 2n the above expectation is
equal to

E
(
ΩG(π̃, 2t)

)
= (2n − 1)2 · e−1/2

2t · t!

(
1 + O

(
t3

2n

))
,

since t can only be even. For odd t the expectation is zero, hence the upper
bound of DPG(π̃) can now be given by the lemma below, which describes the
case when a group contains d elements of order 2 and r = o(d2). As it was
already mentioned (see the comment before Theorem 2) an upper bound in the
case, where d = O(

√
r), can be shown in the same manner as for groups of odd

order (see [10]).
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Lemma 3. Let G = (G,⊗) be an abelian group of order r = q · 2n (q is odd),
containing d elements of order 2. Moreover let us assume that r = o(d2). If π̃ is
a random permutation (selected uniformly from Sr), then

Pr

(
DPG(π̃) <

(
4 + ε(r)

)
ln d

ln ln r

)
∼ 1,

where ε(r) is a function that goes to 0 as r →∞ , but

ε(r) >
4 ln ln r − 4 ln ln d + 4 ln ln ln r

ln ln d− ln ln ln r
.

P r o o f. We will show that for

B =

(
4 + ε(r)

)
ln d

ln ln r
,

where ε(r) is an arbitrarily small positive number, such that

ε(r) >
4 ln ln r − 4 ln ln d + 4 ln ln ln r

ln ln d− ln ln ln r
,

we have
lim

r→∞
Pr

(
DPG(π̃) > B

)
= 0.

Let us de�ne a function
k(r) :=

⌊
3
√

r

ω̄(r)

⌋
,

where ω̄(r) goes to in�nity arbitrarily slowly, as r tends to in�nity. For the
random variable DPG(π̃) we have

Pr
(
DPG(π̃) ≥ B

)
=

k(r)∑

t=B

Pr
(
DPG(π̃) = t

)
+ Pr

(
DPG(π̃) > k(r)

)

≤
k(r)∑

t=B

∑

α,β 6=e

E
(
ΩG(α, β, π̃, t)

)
+ Pr

(
DPG(π̃) > k(r)

)

=
k(r)∑

t=B

E
(
ΩG(π̃, t)

)
+ Pr

(
DPG(π̃) > k(r)

)
.

Lemma 2 implies that

Pr
(
DPG(π̃) ≥ B

) ≤
k(r)∑

t=B
t is even

d2 · e−1/2

2t/2 · (t/2)!
·
(
1 + O

(
t3

r

))

+
k(r)∑

t=B

(
(r − 1)2 − d2

) · e−1

t!
·
(
1 + O

(
t3

r

))
+ Pr

(
DPG(π̃) > k(r)

)
.
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From Markov inequality we obtain

Pr
(
DPG(π̃) > k(r)

) ≤ E
(
DPG(π̃)

)

k(r)
.

Since we estimate probabilities in an abelian group G = (G,⊗) containing at
most as many elements of order two as in the group G∗ := (G,XOR), therefore
by Theorem 3.1 from [8]

E
(
DPG(π̃)

) ≤ E
(
DPG∗(π̃)

) ≤ 2 ln r

ln 2
.

Hence

Pr
(
DPG(π̃) ≥ B

) ≤ d2

k(r)∑

t=B
t is even

e−1/2

2t/2 · (t/2)!
· (1 + O(t3/r)

)

+
(
(r − 1)2 − d2

) k(r)∑

t=B

·e
−1

t!
· (1 + O(t3/r)

)
+

2 ln r

k(r) ln 2
.

By Stirling's formula we have

Pr
(
DPG(π̃) ≥ B

) ≤ d2

√
eπ

k(r)∑

t=B
t is even

(e

t

)t/2 1√
t
· (1 + O(t3/r)

)

+
(r − 1)2 − d2

e
√

2π

k(r)∑

t=B

(e

t

)t 1√
t
· (1 + O(t3/r)

)
+

2 ln r

k(r) ln 2
,

and therefore we obtain the following bound for the above probability
(

d2

√
eπB

( e

B

)B/2

+
(r − 1)2 − d2

e
√

2πB

( e

B

)B
) (

1 + O

(
k(r)3

r

))
+ O

(
ln r

k(r)

)
.

First we will estimate the logarithm of the �rst summand of this bound

ln
(e/B)B/2 · d2

√
eπB

=

((
4 + ε(r)

)

2 ln ln r

(
1− ln

(
4 + ε(r)

)− ln ln d + ln ln ln r
)

+ 2

)
· ln d

− 1
2
− 1

2
ln π − 1

2
ln

((
4 + ε(r)

)
ln d

ln ln r

)
.

Note that

−1
2

ln

((
4 + ε(r)

)
ln d

ln ln r

)
→ −∞ as r →∞ .
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Therefore if we show that the coe�cient of ln d is negative, then the whole
considered expression would tend to −∞ as r →∞ . Since r = o(d2) and ln r =
o(
√

r),
(
4 +ε(r)

)

2 ln ln r
−

(
4 +ε(r)

) · ln(
4 + ε(r)

)

2 ln ln r
−

(
4 +ε(r)

) · ln ln d

2 ln ln r

+

(
4 +ε(r)

) · ln ln ln r

2 ln ln r
+ 2

≤ − (4 + ε(r)) · ln ln d

2 ln ln r
+

(
4 + ε(r)

) · ln ln ln r

2 ln ln r
+ 2 .

Hence if (
4 + ε(r)

) · ln ln ln r <
(
4 + ε(r)

) · ln ln d− 4 ln ln r ,

which is true whenever

ε(r) >
4 ln ln r − 4 ln ln d + 4 ln ln ln r

ln ln d− ln ln ln r
,

the coe�cient of ln d is negative and

lim
r→∞

(e/B)B/2 · d2

√
eπB

= 0 .

Similarly one can show that

lim
r→∞

(e/B)B · ((r − 1)2 − d2
)

e
√

2πB
= 0 ,

since ln r/k(r) tends to 0 as r →∞ and the lemma is proven. ¤

3.3. Lower bounds
The lower bound for XOR has been calculated by H a w k e s and O 'C o n n o r

in [6]. Now we take a closer look at the lower bound for other abelian groups.
First we prove the following result.

Lemma 4. Let
B :=

4 ln d

ln ln r
.

If 0 ≤ d = d(r) = o(
√

r), then

d2e−1/2

2B/2(B/2)!
= o

((
(r − 1)2 − d2

)
e−1

B!

)
.

On the other hand if r = o(d2), then
(
(r − 1)2 − d2

)
e−1

B!
= o

(
d2e−1/2

2B/2(B/2)!

)
.
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P r o o f. Note that by Stirling's formula we have
d2 · e−1/2

2B/2 · (B/2)!
· B!(

(r − 1)2 − d2
) · e−1

∼
√

2e · d2 · (B/e)B/2

(r − 1)2 − d2
. (1)

The logarithm of the right side is equal to
1
2

+
1
2

ln 2 +
B

2
ln B − B

2
− ln

(
(r − 1)2 − d2

d2

)
.

Substituting B := 4 ln d
ln ln r we obtain

1
2

+
1
2

ln 2 +
2 ln d · ln 4

ln ln r
+

2 ln d · ln ln d

ln ln r

− 2 ln d · ln ln ln r

ln ln r
− 2 ln d

ln ln r
− ln((r − 1)2 − d2) + 2 ln d .

For d = o(
√

r) the last two elements can be estimated by − ln r. The rest can be
estimated by 1

2 + 1
2 ln 2+2 ln d. Hence, for such d the logarithm of the right side

of (1) tends to −∞. That concludes the �rst part of our Lemma. Assume that
d = r

1+ε
2 and note that the logarithm of the right side of (1) is asymptotically

equal to

(1 + ε) ln r

(
ln 4

ln ln r
+ 1− ln ln ln r

ln ln r
− 1

ln ln r

)
− ln(r2) + (1 + ε) ln r

∼ ln r

(
2ε− (1 + ε) ln ln ln r

ln ln r

)

and tends to in�nity, under the assumption that

ε >
ln ln ln r

2 ln ln r − ln ln ln r
.

¤

Now we can show two lemmas about lower bound in any abelian group of even
order.
Lemma 5. Let G = (G,⊗) be an abelian group of order r = q · 2n (q is odd),
containing d elements of order 2, where 0 ≤ d = O(

√
r). If π̃ is a random

permutation (selected uniformly from Sr), then

Pr
(
DPG(π̃) >

2 ln r

ln ln r

)
∼ 1.

P r o o f. By Chebychev's inequality for all B we have

Pr
(
DPG(π̃) < B

) ≤ Pr
(
ΩG(π̃, B) = 0

) ≤ Var
(
ΩG(π̃, B)

)

E
(
ΩG(π̃, B)

)2 .
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Suppose that B = o( 3
√

r). For such B the square of the expected value of the ran-
dom variable ΩG(π̃, B) can be approximated in the following way using Lemma 2.
For even t = o( 3

√
r),

E
(
ΩG(π̃, t)

)2 =

(
d2 · e−1/2

2t/2
(

t
2

)
!

+

(
(r − 1)2 − d2

) · e−1

t!

)2

·
(
1 + O

(
t3

r

))
,

and for odd t = o( 3
√

r),

E
(
ΩG(π̃, t)

)2 =
((

(r − 1)2 − d2
) · e−1

t!

)2

·
(
1 + O

(
t3

r

))
.

Since we are interested in the lower bound for the random variable DPG(π̃) we
will use the smaller one, i.e., the case when t is odd. Now for the variance of
ΩG(π̃, B) we will need

E
(
ΩG(π̃, B)2

)
= E




( ∑

α,β 6=e

ΩG(α, β, π̃, B)

)2



=
∑

α,β 6=e

E
(
ΩG(α, β, π̃, B)2

)

+
∑

α,β,δ 6=e
δ 6=β

E
(
ΩG(α, β, π̃, B)ΩG(α, δ, π̃, B)

)

+
∑

α,β,γ 6=e
γ 6=α

E
(
ΩG(α, β, π̃, B)ΩG(γ, β, π̃, B)

)

+
∑

α,β,γ,δ 6=e
γ 6=α,δ 6=β

E
(
ΩG(α, β, π̃, B)ΩG(γ, δ, π̃, B)

)
.

For the �rst sum we have
∑

α,β 6=e

E
(
ΩG(α, β, π̃, B)2

)
=

∑

α,β 6=e

E
(
ΩG(α, β, π̃, B)

)

=
∑

α,β 6=e

Pr(DPG(α, β, π̃) = B).

Let us divide it into two parts
∑

α,β 6=e
ord α=ord β=2

e−1/2

2B/2 · (B/2)!
(
1 + O(B3/r)

)
+

∑

α,β 6=e
ord α 6=2 or ordβ 6=2

e−1

B!
(
1 + O(B3/r)

)
.
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They can be bounded by
(√

r−1
)2 e−1/2

2B/2 · (B/2)!
(
1+O(B3/r)

)
+

(
(r−1)2−(

√
r−1)2

)e−1

B!
(
1+O(B3/r)

)
.

All the other sums we estimate like in [5, 6, 9] using di�erence graphs. Let us
consider

E
(
ΩG(α, β, π̃, B) · ΩG(α, δ, π̃, B)

)
,

for B = o( 3
√

r). Now, depending on the orders of each di�erence, we can have:
• For α, β, δ such that ord α = ord β = ord δ = 2 we have

E
(
ΩG(α, β, π̃, B) · ΩG(α, δ, π̃, B)

)
=

(
e−1/2

2B/2 · (B/2)!

)2 (
1 + O(B3/r)

)
.

• For α, β, δ such that ord α = 2 and exactly one of β or δ has order 2 we
have

E
(
ΩG(α, β, π̃, B) · ΩG(α, δ, π̃, B)

)
=

(
e−1/2

2B/2 · (B/2)!
· e−1

B!

) (
1 + O(B3/r)

)
.

• For α, β, δ such that ord α = 2 and ord β 6= 2, ord δ 6= 2 we have

E
(
ΩG(α, β, π̃, B) · ΩG(α, δ, π̃, B)

)
=

(
e−1

B!

)2 (
1 + O(B3/r)

)
.

• For α, β, δ such that ord α 6= 2 we have

E
(
ΩG(α, β, π̃, B) · ΩG(α, δ, π̃, B)

)
=

(
e−1

B!

)2 (
1 + O(B3/r)

)
.

The same way one can show the approximations for the expectation
E

(
ΩG(α, β, π̃, B) · ΩG(γ, β, π̃, B)

)
.

Let γ 6= α, δ 6= β , then
• For α, β, γ, δ such that none of them is of order 2 or such that exactly one

of them is of order 2 as well as such that exactly two of them are of order 2,
either α and γ or β and δ or α and δ or β and γ we have

E
(
ΩG(α, β, π̃, B) · ΩG(γ, δ, π̃, B)

)
=

(
e−1

B!

)2 (
1 + O(B3/r)

)
.

• For α, β, γ, δ such that exactly two of them are of order 2, either α and β
or γ and δ or such that exactly three of them are of order 2 we have

E
(
ΩG(α, β, π̃, B) · ΩG(γ, δ, π̃, B)

)
=

(
e−1/2

2B/2 · (B/2)!
· e−1

B!

) (
1 + O(B3/r)

)
.
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• And �nally, for α, β, γ, δ such that ord α = ord β = ord γ = ord δ = 2 we
have

E
(
ΩG(α, β, π̃, B) · ΩG(γ, δ, π̃, B)

)
=

(
e−1/2

2B/2 · (B/2)!

)2 (
1 + O(B3/r)

)
.

All the above calculations hold for B = o( 3
√

r). Using the following notation

p1 :=
e−1

B!
(
1 + O(B3/r)

)
, p2 :=

e−1/2

2B/2(B/2)!
(
1 + O(B3/r)

)
,

we get the inequality
Pr

(
DPG(π̃) < B

) ≤ L

M
,

where L�the numerator�is of the form

p2
2

(
d4 + 2d3 − 3d2

)
+ p1p2

(
2d2r2 − 2d4 − 6d2r + 2d3 + 4d2

)

+ p2
1

(−r2 + d2 + 2r − 1
)

+ p2d
2 + p1

(
r2 − d2 − 2r + 1

)
, (2)

and the denominator M is equal to
p2
1(r

2 − d2)2 = p2
1

(
d4 − 2d2r2 + r4

)
.

Recall that d2 = O(r) and let us take

B :=
2 ln r

ln ln r
.

Let us consider the summands of the sum in the numerator. Notice that
p2
2

(
d4 + 2d3 − 3d2

)

p2
1(r2 − d2)2

∼ p2
2 · d4

p2
1 · r4

and
p2
2 · d4

p2
1 · r4

≤ p2
2

p2
1 · r2

∼
(

e−1/2

2B/2 · (B/2)!

)2

·
(

B!
e−1

)2

· 1
r2

.

By Stirling's formula the right side of the above inequality is asymptotically
equal to

2e(B/e)B

r2
.

Therefore, since

ln
(

2e(B/e)B

r2

)
= 1 + ln 2 + B ln B −B − 2 ln r

= 1 + ln 2 +
2 ln r · ln 2

ln ln r
− 2 ln r · ln ln ln r

ln ln r
− 2 ln r

ln ln r
→ −∞ ,

as r →∞ we obtain that
p2
2

(
d4 + 2d3 − 3d2

)

p2
1(r2 − d2)2

= o(1).
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Similarly
p1p2

(
2d2r2 − 2d4 − 6d2r + 2d3 + 4d2

)

p2
1(r2 − d2)2

∼ p2 · 2d2r2

p1 · r4
≤ p2

p1 · r = o(1),

p2
1

(−r2 + d2 + 2r − 1
)

p2
1(r2 − d2)2

∼ −r2 + d2

r4
= o(1).

Moreover, we have
p2d

2

p2
1(r2 − d2)2

≤ p2

p2
1 · r3

and by Stirling's formula
p2

p2
1 · r3

∼ 2e3/2(B/e)3B/2
√

πB

r3
.

The logarithm of the right side is equal to

ln

(
2e3/2(B/e)3B/2

√
πB

r3

)

=
3
2

+ ln 2 +
3
2
B ln B − 3

2
B +

1
2

ln π +
1
2

ln B − 3 ln r

=
3
2

+ ln 2 +
3 ln r · ln 2

ln ln r
− 3 ln r · ln ln ln r

ln ln r
− 3 ln r

ln ln r

+
1
2

ln π +
1
2

ln
(

2 ln r

ln ln r

)
.

The leading term in the above sum is equal to

−3 ln r · ln ln ln r

ln ln r
,

which tends to −∞ as r →∞. Hence p2/(p2
1 ·r3) = o(1). Similarly one can show

that
p1

(
r2 − d2 − 2r + 1

)

p2
1(r2 − d2)2

∼ 1
p1 · r2

∼ B!
e−1 · r2

∼
√

2πB

e−1 · r2
·
(

B

e

)B

= o(1).

This implies that Pr (DPG(π̃) < B) = o(1). ¤

The above lemma is used to prove Theorem 2. Our next lemma is needed to
prove Theorem 3. In the case of a group that contains d elements of order 2 and
r = o(d2) we prove the following lemma.
Lemma 6. Let G = (G,⊗) be an abelian group of order r = q · 2n, where q is
odd. Furthermore suppose that there are d elements of order 2 in this group, and
that r = o(d2). If π̃ is a random permutation (selected uniformly from Sr), then

Pr
(
DPG(π̃) >

4 ln d

ln ln r

)
∼ 1.
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P r o o f. We can repeat the reasoning from the previous proof up to the point
of de�ning

p1 :=
e−1

B!
(
1 + O(B3/r)

)
, p2 :=

e−1/2

2B/2(B/2)!
(
1 + O(B3/r)

)
.

From Lemma 4 we can see that now p2 is of order larger than p1. Factoring out
d2p2 in the variance we get

d2p2 +
(
(r − 1)2 − d2

)
p1 = d2p2

(
1 +

(
(r − 1)2 − d2

)
p1

d2p2

)
→ d2p2 ,

as r →∞. It implies that

Pr (DPG(π̃) < B) ≤ L

d4p2
2

.

The numerator L for B = 4 ln d
ln ln r is equal to

L = p2
2(2d3 − 3d2) + p1p2(2d2r2 − 6d2r − 2d4 + 2d3 + 4d2)

+ p2
1(r

4 − 2d2r2 + 5r3 + d4 + 4d2r − d2 − 2r)

+ p1(r2 − d2 − 2r + 1) + p2d
2.

We have
p2
2(2d3 − 3d2)

d4p2
2

∼ 1
d

= o(1),
p1p2(2d2r2 − 6d2r − 2d4 + 2d3 + 4d2)

d4p2
2

∼ p1r
2

p2d2
,

for r = o(d2). Moreover,

ln
(

p1r
2

p2d2

)
= 2 ln r − 2 ln d +

B

2
− B

2
ln B,

which for B = 4 ln d
ln ln r and d ≥ r

1+ε
2 is equal to

(
1

ln ln r
− ln 4

ln ln r
− ln ln d

ln ln r
+

ln ln ln r

ln ln r
− 1

)
· 2 ln d + 2 ln r.

Since d > ln r, we can rewrite the leading terms, for d = r
1+ε
2 in the form

2 ln r − (1 + ε) ln r ln ln d

ln ln r
− (1 + ε) ln r.

The limit of this expression is equal to −∞ for any ε > 0. Hence we have
p1r

2

p2d2
= o(1) and, equivalently, p2

1r
4

p2
2d

4
= o(1).

Since the other terms are insigni�cant we obtain
Pr

(
DPG(π̃) > B

)
= o(1).

¤
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