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BOUNDS FOR DIFFERENTIAL PROBABILITIES IN
EVEN ORDER ABELIAN GROUPS

JERZY JAWORSKI — TOMASZ TYKSINSKI

ABSTRACT. The maximum differential probability for any abelian group of
even order is studied. The bounds for these probabilities for groups of order r with
O(4/T) elements of order 2 were given in [T. Tyksifiski: Bounds for differential
probabilities, Tatra Mt. Math. Publ. 29 (2004), 89-99]. In particular we complete
these results by deriving the bounds in the case when the number of elements
of order 2 is asymptotically much bigger than the square root of the order of
a group.

1. Introduction

Differential cryptanalysis is a well known attack on symmetric cryptosystems.
It was introduced by Biham and Shamir for DES [2, 3, 4] and it in still
serves as a base for many similar attacks, e.g., rectangle attack [1]. Differential
cryptanalysis uses pairs of plaintexts with a carefully chosen difference. The pri-
marily used notion of difference was bitwise XOR. A more general definition of
difference was introduced later: the difference between two texts from an abelian
group G = (G,®) is defined as A(X,X*) = X ® (X*)~!. Another important
structure in differential cryptanalysis is a differential - a pair of differences («, ).
These differences as well as texts are elements of G; usually « is a difference of
plaintexts and [ is a difference of inputs to the last round of a cipher. Since 1994
Hawkes and O’Connor [5, 6, 7, 8 analysed the behaviour of differentials
in commonly used abelian groups and under the assumption of ideal cipher, i.e.,
a random permutation of texts. We present here new results based on this analy-
sis. First in the next section we introduce the notation and give results obtained
by Hawkes, O’Connor [5, 6] and Tyksinski [9]. Then we present the
main result of this paper. Finally the last section gives the sketch of proof of the
obtained bounds.
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2. Bounds in abelian groups

Let G = (G, ®) be an abelian group of order 7, with a neutral element e. Let 7
be a random permutation selected uniformly from the symmetrical group S,.
Let us define the random variable DPg(«, 8,7) describing the number of pairs
of difference «, that after the permutation 7 give a difference .

DFg(, B, 7) =

{(X,X®a1) EGxG: A(%(X),%(X ®a*1)) = 5} :

The probability distribution of DPg(a, 3,7) is therefore based on the uniform
random permutation idealizing the behaviour of a cipher with a randomly chosen
key. Moreover we consider the maximum value of DPg(«, 5, 7) defined as

DPg(7) := max DFg(a,f,7).

This random variable describes the most probable differential, that can be used
in a differential cryptanalysis, based on some definition of difference of texts.
Hawkes and O’Connor wrote a series of papers [5, 6, 7, 8] devoted to the
bounds of DPg(7).

The differential probability depends on the notion of difference. The results
by O’Connor and Hawkes from [5, 6] apply to XOR and modular addition.
Tyksinski in [9] expanded the method and achieved a bound for any abelian
group of odd order. Later in [10] Tyksinski tightened a bound in XOR
operation abelian groups.

THEOREM 1 ([10]). Let G = (G,XOR) be an abelian group of order r = 2"
If 7 is a random permutation (selected uniformly from S,.), then

4Inr 4Inr 4Inlnlnr-Inr
P < DPg (7 —_ _— | ~1
' (lnlnr 5(7) < Inlnr +ulr) (Inlnr)? ) ’

where w(r) is any function that goes to infinity arbitrarily slowly as r — co.

An analogous result for abelian groups of odd order was also given in [10].
Proofs were based on the Poisson approximation and tail bounds derived for
groups of order 2" in [5, 6, 7, 8] and for groups of odd order r = p’flpg2 ...pft,
where p; are odd prime numbers for all ¢ =1,2,...,¢ in [9].

In this paper we extend the result for abelian groups of odd order to any

abelian group of even order r containing o(~/7) elements of order 2.

THEOREM 2. Let G = (G,®) be any abelian group of even order v containing

o(\/r) elements of order 2. If T is a random permutation (selected uniformly
from S,.), then

21 21 2Inlnlnr -1
Pr( U pPy(F) < STy 2R RTT ”>~1,

Inlnr Inlnr (Inlnr)?
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where w(r) is any function that goes to infinity arbitrarily slowly as r — co.

Note that, in fact Lemma 5 implies that the lower bound holds for O(y/r)
elements of order 2.

We also extend Theorem 1 to any even order abelian group. The new bounds
are additionally expressed in terms of a parameter d — a number of elements of
order 2 in the group G.

THEOREM 3. Let G = (G,®) be any abelian group of even order r, differ-
ent from (G,XOR), containing d elements of order 2, where r = o(d?). If 7 is
a random permutation (selected uniformly from S,.), then

- (4lnd < DPy(F) < (4+5(r))lnd) ~1,

Inlnr Inlnr

where €(r) is any function that goes to 0 as r — oo and such that

(r) > 4Inlnr —4Inlnd+4Inlnlnr
e Inlnd —Inlnlnr

Proof of the results is presented in the following section. Note that using the
same approach as in the proof of Theorem 2.5 in [10] one can easily get the
upper bound in Theorem 2.

3. Proof of the main results

3.1. Poisson approximation

Graph notation of differences allow us to state the following lemma describing
the Poisson approximation for the distribution of random variable DPg(«, 3, 7).

LEMMA 1 (|5, 6, 9]). Let G = (G,®) be an abelian group of order r, let t =
o(/r). If ord o = ord 8 = 2, then

PT(DPQ(O‘vﬁa%) = Qt) - o (1 +O<t:>>’

2t - ¢t

for all other cases (i.e., ord a # 2 or ord B # 2), we have

6_1 3
Pr(DPg(a, 0.7) = 1) = —- (1 + o<t>>.

r

It follows from Lemma 1 that, in general, the distribution of DFPg(«, 3, 7)
depends only on the number of elements of order 2 in the group G.
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3.2. Upper bounds

To show a more precise upper bound in abelian groups of order r we use the
Poisson approximation derived in [6] for groups of order 2" and in [9] for groups
of odd order.

Let G = (G, ®) be an abelian group of order 7, let 7 be a random permutation
(selected uniformly from S,.). Define an indicator random variable

1 if DPg(e, B,7) = t,
0, in all other cases.

Qg(a, B, T, t) = {

We are interested in a random variable Qg(7,¢), that counts the number of
differentials fulfilled by exactly ¢ pairs, i.e.,

Qg(7,t) == Y Qgla, B, 7,1).
o, BF#e

Notice that there can be 29 — 1 elements of order 2 in a group for some non-
negative 7 and therefore the following holds.

LEMMA 2. Let G be an abelian group of even order r = q- 2™ (q is odd) with
27 —1 elements of order 2 and let t = o(¥/r). Then the expected value of Qg (7, 1)
is approzimated by

e—1/2 -1

(2 1P @ -1 S

E(Qg(7,t)) ~ (27 —1)- W i

if t is even, and by
E(Qg(7,t)) ~ ((¢2" — 1)* — (27 = 1)*) —-
if tis odd.

In the case of the group G = (G, XOR) of order 2™ the above expectation is

equal to
_ , V2 £
E(Qg(7,2t)) = (2" - 1) o 1+0<2n) ,

since t can only be even. For odd ¢ the expectation is zero, hence the upper
bound of DPg(7) can now be given by the lemma below, which describes the
case when a group contains d elements of order 2 and r = o(d?). As it was
already mentioned (see the comment before Theorem 2) an upper bound in the
case, where d = O(,/7), can be shown in the same manner as for groups of odd
order (see [10]).
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BOUNDS FOR DIFFERENTIAL PROBABILITIES IN EVEN ORDER ABELIAN GROUPS

LEMMA 3. Let G = (G,®) be an abelian group of order r = q - 2™ (q is odd),
containing d elements of order 2. Moreover let us assume that r = o(d?). If 7 is
a random permutation (selected uniformly from S, ), then

Pr (ng(%) < (4”(”)1”) ~1

Inlnr

where €(r) is a function that goes to 0 as 1 — oo, but

4Inlnr —4Inlnd+4Inlnlnr
e(r) >

Inlnd —Inlnlnr
Proof. We will show that for

4 Ind
5_ (4+e(r))In
Inlnr
where £(r) is an arbitrarily small positive number, such that
4Inlnr —4Inlnd+4Inlnlnr
e(r) >

Inlnd —Inlnlnr

)

we have
lim Pr(DPg(7) > B) =0.

T—00
Let us define a function

3

k(r) = VF J ,
o(r)

where @(r) goes to infinity arbitrarily slowly, as r tends to infinity. For the

random variable D Pg(7) we have

Pr(DPs(7) > B) = ZPr(DPg( t) + Pr(DPg(7) > k(r))

k(r)

> E(Qg(e,8,7,1)) + Pr(DPg(7) > k(r))
t=B «,B#e
k(r)

= Y E(Q(7,1)) + Pr(DPg(7) > k(r)).

t=B

IN

Lemma 2 implies that

RO 2. om1/2 /3
Pr(DPg(7) > B) < ZE:; CEROPIE <1+O<r>)
k(r) 1S even e_ t3
+ Z (r—1)?—d?)- (1 + O( )) + Pr(DPg(7) > k(r)).
t=B
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From Markov inequality we obtain

E(DPg())

Pr(DPg(7) > k(r)) < o)

Since we estimate probabilities in an abelian group G = (G, ®) containing at
most as many elements of order two as in the group G* := (G, XOR), therefore
by Theorem 3.1 from [8§]

E(DP;(7)) < E(DPg- (7)) < 21:1“; :
Hence
k(r) o172
Pr(DPg(7) > B) < d* ) RO (1+0(#/r)
t=B
&) e ! . 2Inr
+((r—1)* — ) = (L4 0t /r)) +W.

By Stirling’s formula we have

2

Pr(DPs(7) > B) <

k(r) t/2
Z ()/ L1+ o@/m)

t 1s even

(r—172-d eyt 1 2lnr
* P > (3) 7 (L 0EM) + s

t=B

and therefore we obtain the following bound for the above probability

(o ()" i (5)") (e o (M) o ().

First we will estimate the logarithm of the first summand of this bound

Le/B)PR ((4 +e(r))

(1 —In(4+¢&(r)) —Inlnd + lnlnlnr) + 2) ‘Ind

et B 2Inlnr
4 Ind
,lfllnﬁflln M )
2 2 2 Inlnr
Note that
1 (4+e(r))Ind
——In|l———| - — as T — 0.
2 Inlnr
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Therefore if we show that the coefficient of Ind is negative, then the whole
considered expression would tend to —oco as r — oco. Since r = o(d?) and Inr =

o(vr),

(4+e(r))  (4+e(r)) -In(4+¢e(r)) (4+e(r)) -Inlnd

2Inlnr 2Inlnr B 2Inlnr

(4+(r)) - Inlnlnr Lo
2Inlnr
~ (4+e(r)) -Inlnd (4+5(r))-lnlnlnr+2

- 2Inlnr 2Inlnr

Hence if

(4+e(r)) -Inlnlnr < (44¢e(r)) -Inlnd —4Inlnr,

which is true whenever
e(r) >
the coeflicient of Ind is negative and

B/2 . 12
B

r—00 erB

4Inlnr —4Inlnd +4lnlnlnr

Inlnd —Inlnlnr

)

Similarly one can show that
(e/B)P - ((r —1)> — d?)

lim =0,

r—00 eV2rB

since lnr/k(r) tends to 0 as r — co and the lemma is proven. O

3.3. Lower bounds

The lower bound for XOR has been calculated by Hawkes and O’Connor
in [6]. Now we take a closer look at the lower bound for other abelian groups.
First we prove the following result.

LEMMA 4. Let
B 4Ind

" lnlnr

If 0<d=d(r)=o0(\r), then

d2e 12 (((r —1)2 d2)el>
7)! =0 .

2B/2(B/2 B!
On the other hand if r = o(d?), then

(r—1)2=d*)e ! B d2e=1/2
B! -0 (23/2(3/2)!> '
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Proof. Note that by Stirling’s formula we have

e\ B! V2e-d®- (B/e)B/?
2B/2.(B/2)! ’ ((r —1)2— d2) ce—1 ~ (r—1)2 — d2 ’ (1)

The logarithm of the right side is equal to

N2 2
1+;1n2+§lnB—B—ln((Tl>d).

2 2 d?
Substituting B := ﬁllﬁ‘l‘ir we obtain
1+11 2+21nd-ln4 2Ind-Inlnd
2 2 . Inlnr Inlnr
2Ind-Inlnlnr 2Ind 9 5
— oy _lnlnr_ln((r_l) —d°)+2Ind.

For d = o(+/7) the last two elements can be estimated by — Inr. The rest can be
estimated by % + % In2+21Ind. Hence, for such d the logarithm of the right side
of (1) tends to —oo. That concludes the first part of our Lemma. Assume that

d = r*+° and note that the logarithm of the right side of (1) is asymptotically
equal to

In4 Inlnlnr 1

Inlnr " Inlnr Inlnr

(1+¢)lnr —In(r?) + (1 +¢)lnr
( )

e (2 — (I+¢)lnlnlnr
Inlnr

and tends to infinity, under the assumption that

Inlnlnr
g >

2lnlnr —Inlnlnr

O

Now we can show two lemmas about lower bound in any abelian group of even
order.

LEMMA 5. Let G = (G,®) be an abelian group of order r = q- 2" (q is odd),
containing d elements of order 2, where 0 < d = O(\/r). If ™ is a random
permutation (selected uniformly from S, ), then

Pr (ng(a%) > 21”) ~1

Inlnr
Proof. By Chebychev’s inequality for all B we have
< Var (Qg(7, B))

Pr(DPg () < B) < Pr(Qg(7, B) =0) < B(0g(7 B))2 .
g\m,
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Suppose that B = o(¥/r). For such B the square of the expected value of the ran-
dom variable Q¢ (7, B) can be approximated in the following way using Lemma 2.
For even t = o( /1),

2
d2 —1/2 (r—1)2—d2) '6_1 t3
EQgﬂ't 2t/2 i 1+O(7‘> ,

and for odd t = o(/r),

sz’ (-5 (1+0(£))

Since we are interested in the lower bound for the random variable DPg(7) we
will use the smaller one, i.e., the case when ¢ is odd. Now for the variance of

Qg(7, B) we will need

E(QQ(%v B)2)

( > Qg(mﬁﬁﬁ))

«a,B#e

> E(Q¢(e, 8,7,B)?)

a,BF#e

+ > E((e. 8.7, B)Qg(a, 6,7, B))
a,3,0#e
0A£B

+ Y E(Qg(a, 8,7 B)Qg(y. 8,7, B))
a,B,v#e

+ Y E(Ql(a, 8.7 B)Qg(v,0,7, B)).

a,B,y,67#e
V#0706

For the first sum we have

> E(Q(e, 3,7 B)*) = Y E(Qg(a,p,7 B))
«a,BF#e a,B#e

= 3 Pr(DPs(a, ,7) = B).
a,B#e

Let us divide it into two parts

671/2 3 — 3
Y. E B B 1+o0B¥ )+ > B' (1 +O0(B%/r)).
a,B#e a,B#e
ord a=ord =2 ord a#2 or ordf3#2
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—1/2 -1

They can be bounded by
(ﬁ_1)2m(1+0(33/r))+((r—1)2_(f_1)2)%(1+0(33/r)).

All the other sums we estimate like in [5, 6, 9] using difference graphs. Let us
consider
E(Qg(a,ﬁ, 7, B) - Qg(a, 0,7, B)),
for B = o({/r). Now, depending on the orders of each difference, we can have:
e For a, 3,6 such that ord a = ord f = ord § = 2 we have
—1/2 2
M) (1+0(B*/r).

e For a, 3,0 such that ord @ = 2 and exactly one of 3 or ¢ has order 2 we
have

E(Qg(a,ﬂ,%,B) . Qg(a,&%,B)) = (

e—1/2 el

g B!) (1+0(B*/r).

e For a, 3,6 such that ord a = 2 and ord 8 # 2,0ord § # 2 we have

E(Qg(a. 4,7, B) - Qg(a, 6,7, B)) = (

—1\2
E(Qg(a, 8,7, B) - Qg(e, 6,7, B)) = (QB,> (14+0(B*/r)).
e For a, 3,6 such that ord a # 2 we have
—1\2
B(Qs(a, 0,7, B) Ol 8.7.5)) = (57 ) (1+ OB ).

The same way one can show the approximations for the expectation
E(Qg(o&,ﬂ7%, B) ' 99(7753%78))
Let v # «a, § # 3, then

e For «, 3,7,0 such that none of them is of order 2 or such that exactly one
of them is of order 2 as well as such that exactly two of them are of order 2,
either o and v or 8 and 0 or a and J or 8 and v we have

P_l

2
E(Qq(a, 8,7, B) - Qg (7,0, 7, B)) = (B') (1+0(B%/r)).
e For a, 3,7, 6 such that exactly two of them are of order 2, either o and (3
or v and § or such that exactly three of them are of order 2 we have

e—1/2 o1

E(Qg(a, 6,7, B) - Qg(7,0,7, B)) = (QB/Q(M), . B!> (14 O(B/r).
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e And finally, for «, 8,~,0 such that ord « =ord f =ord vy =ord § = 2 we
have

e~1/2 . .
E(Qqg(e, 3,7, B) - Q5(7,6, 7, B)) = (W) (1+0(B*/r)).

All the above calculations hold for B = o(/r). Using the following notation

o—1/2

P2 = e

-1
‘B!
we get the inequality

pr o= (1+0(B?/r)), 1+0(B?/r)),

~ L
Pr(DPg(7) < B) < 47

where L—the numerator—is of the form
p3 (d* 4 2d® — 3d®) + pips (2d°r® — 2d" — 6d°r + 2d° + 4d*)
+pf (= + P+ 2r = 1) +pad® +p (PP —d®—2r+1), (2)
and the denominator M is equal to
pi(r? —d*)? = p? (d4 —2d%r? + 7‘4).
Recall that d> = O(r) and let us take

o 2Inr

" lnlnr
Let us consider the summands of the sum in the numerator. Notice that

p3 (d* +2d° — 3d2)  p3 . d
RO T
2

p?ort = pior? 2B/2.(B/2)! et ) 12’

By Stirling’s formula the right side of the above inequality is asymptotically
equal to

and

2¢(B/e)B
=
Therefore, since
2¢(B/e)B
In (‘W) —1+Wm2+BWmB-B—2r
T

2Ilnr-In2 2lnr-Inlnlnr 2Inr
=14+In2+ —

Inlnr Inlnr “Inlnr
as r — 0o we obtain that

PP —sE)
Ae-ae
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Similarly
p1p2 (2d?r? — 2d* — 6d%r + 2d° + 4d?) ZE 2d°r? o P2 _ o(1)
pi(r? —d?)? piort Topier ’
p% (77"2 +d2+2r — 1) —r2 4 2
P2(r2 — d2)2 YT e T o(1).

Moreover, we have
pad? P2
P02 =) = 3

and by Stirling’s formula

D2 2¢3/2(B/e)*B/?\/1B

pi-r? rd

The logarithm of the right side is equal to

m(?e?’”(B/e)BB/?m)

r3

1 1
:g+ln2+gBlnB—gBJrilnﬂ'Jrilan?)lnr

:§ a2+ 3lnr-In2 B 3lnr-Inlnlnr B 3lnr
2 Inlnr Inlnr Inlnr
+11n7r+11n (21111“) .

2 2 Inlnr

The leading term in the above sum is equal to
3lnr-Inlnlnr
Inlnr

which tends to —co as r — oo. Hence pa/(p? -73) = o(1). Similarly one can show
that

pi(r? —d® —2r +1) 1 B! V2rB ([ B\’ W
~ ~ ~ . —_— =0 .
p2(r2 — d?)2 pror2 e l.p2  e1.p2

This implies that Pr (DPg(7) < B) = o(1). O

e

The above lemma is used to prove Theorem 2. Our next lemma is needed to
prove Theorem 3. In the case of a group that contains d elements of order 2 and
r = o(d?) we prove the following lemma.

LEMMA 6. Let G = (G,®) be an abelian group of order r = q - 2™, where q is
odd. Furthermore suppose that there are d elements of order 2 in this group, and
that r = o(d?). If @ is a random permutation (selected uniformly from S,.), then

Pr (DPQ(%) > 4lnd> ~1

Inlnr
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Proof. We can repeat the reasoning from the previous proof up to the point
of defining
-1 —-1/2
e 3 __ ¢
PLi= 5 (1+0(B’/r)), pa2:= 2B/Q(B/2)!(
From Lemma 4 we can see that now ps is of order larger than p;. Factoring out
d?ps in the variance we get

r—= 1)2 —d*)m
Ppa+ ((r = 1) = d?)p1 = d®py <1 + ( 0y ) — d’ps,

1+ O(B?*/r)).

as r — oo. It implies that

~ L
Pr(DPg(7) < B) < - -l
The numerator L for B = ﬂlllﬁl ‘i is equal to

L =p3(2d® — 3d%) + p1p2(2d®r? — 6d*r — 2d* + 2d> + 4d?)
+ p%(r4 —2d%r% + 513 4 d* + 4d%r — 4 — 2r)
+p1(r2 —d?—92r + 1) + pod?

We have
p3(2d® —3d?) 1 1) p1p2(2d®r? — 6d?r — 2d* + 2d3 + 4d*)  pir?
-~ - =0 ~
d*p3 d ’ d*p? pod?’

for r = o(d?). Moreover,

2
In pir :21117’72111d+§f§1n37
p2d2 2 2

which for B = % and d > s equal to

( 1 In4 Inlnd Inlnlnr

minr  Inlnr ooy | Inlnr 1> ‘2Ind 2.

Since d > Inr, we can rewrite the leading terms, for d = 7% in the form

1 Inrlnlnd
21n1"—( +e)lnrinln —(1+¢)lnr
Inlnr

The limit of this expression is equal to —oo for any € > 0. Hence we have

2.4
pir

p1r’ .
=o(1) and, equivalently, —— =o(1).
pad

pad?
Since the other terms are insignificant we obtain
Pr(DPg(7) > B) = o(1).
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