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THE PROPERTIES OF BI-IDEALS IN THE

FREQUENCY TEST

Edmunds Cers

ABSTRACT. We explore the properties of bi-ideals in the frequency test. We
prove that the properties of bi-ideals in this test are determined by the base words
which generate the bi-ideal. We also show a method for base word selection, which
guaranties that the generated bi-ideal will pass the frequency test.

Introduction

Periodic sequences have found a wide application in cryptography. Most no-
tably pseudorandom bit generators and stream ciphers make heavy use of such
sequences with very long periods [9].

We want to find out whether we could use non-periodic sequences instead.
In particular, we explore the possibility to use some classes of bi-ideals. Bi-
ideal sequences have been considered under different names in both algebra
and combinatorics [1, 3, 10]. Bi-ideals are a superclass of the class of periodic
sequences [5]. We are most interested in non-periodic subclasses of bi-ideals and
their possible applications in cryptography.

It must be noted, that bi-ideals and their subclasses are still an actively
researched topic. For some recent results, see for example [2, 4]. There is also
an active interest in the statistical properties of sequences, as it is exemplified
by [8].

Our approach is to look for a subclass of non-periodic bi-ideals, that would
resemble independent and identically-distributed (i.i.d.) sequences. In this paper
we explore the behavior of bi-ideals in the frequency test, and look for possible
subclasses, that would behave “well enough”.

We will prove two theorems. One shows, that bi-ideals are stable in the fre-
quency test, in a sense, that will be evident later. After that, we show a method of
selecting a subclass of bi-ideals, that is indistinguishable from i.i.d. bit-sequences
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using the frequency test. We prove a theorem showing that bi-ideals generated
this way are, indeed, indistinguishable from i.i.d. bit-sequences using the fre-
quency test.

1. Preliminaries

1.1. Bi-ideals

If A is an alphabet, then let A∗ denote all finite words of this alphabet, and Aω

all infinite words of this alphabet. And finally, A∞ = A∗ ∪ Aω. Also, we will
denote the zero-length word with λ.

Let a#b or simply ab denote word concatenation. We will also use |a| to
denote the length of the word a.

Definition 1.1. A word x ∈ Aω is called recurrent if each finite sub-word
occurs in the word an infinite number of times. A word uy, where u ∈ A∗ and
y ∈ Aω, is called almost recurrent if y is recurrent.

Definition 1.2. A sequence of finite words v0, v1, . . . , vn, . . . is called a bi-ideal
sequence if ∀i vi+1 ∈ viA

∗vi.

Or, alternatively,

Definition 1.3. A sequence of finite words v0, v1, . . . , vn, . . . is called a bi-ideal
sequence, if there exists a sequence of finite words u0, u1, . . . , un, . . ., such that

v0 = u0 , vi+1 = viui+1vi .

Definition 1.4. Suppose, that we have a sequence of the words (ui)i∈N, where
∀i ui ∈ A∗, and u0 6= λ, that generates a bi-ideal sequence (vi)i∈N as in Defini-
tion 1.3.

The limit of the sequence limi→∞ vi = x is called a bi-ideal. We say that the
sequence (ui) generates the bi-ideal x or that x is the bi-ideal generated by the
sequence (ui). If ∀i |ui| ≤ l, then x is called an l–restricted bi-ideal. We call the
bi-ideal x restricted if such a number l exists, that x is an l–restricted bi-ideal.

Alternatively, the word x ∈ Aω is a bi-ideal, if and only if it is a recurrent
word.

For a more in depth coverage of the topic see, e.g., [6].
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1.2. The frequency test

Let us look at the prefix of a bit sequence {xn},
x = (x1, x2, . . . , xN+ν−1).

This prefix has N = |x| − ν + 1 overlapping sub-sequences of length ν.
Consider a specific bit sequence of the length ν,

s = (s1, s2, . . . , sν).

We can denote the event of the mth sub-sequence of {xn} being equal to s
with

DmAs(x) =
{
(xm, xm+1, . . . , xm+ν−1) = s

}
.

If {xn} is indistinguishable from an i.i.d. bit-sequence, then

E
(
I
(
DmAs(x)

))
= 2−ν,

where I is the indicator function and E denotes the expected value. Or, if we
denote the number of occurrences of the sequence s in x with |x|s ,

E(|x|s) = 2−νN.

For a broader coverage see [7].

2. The properties of bi-ideals in the frequency test

2.1. The stability of bi-ideals in the frequency test

Let u and w be finite words. Then we denote :

(i) |w|u =
∣∣{(u′, u, u′′)|u′uu′′ = w

}∣∣. |w|u is the count of different ways u is
contained in w.

(ii) We will call the number α(w, u) =
|w|u

|w| − |u|+ 1
the relative frequency of u

in w. By this definition 0 ≤ α(w, u) ≤ 1.

Suppose, x is a bi-ideal generated by the sequence (ui), then we can denote :

(iii) αn(u) = α(vn, u), where vn is the n-th element of the bi-ideal sequence
from Definition 1.4, where x = limi→∞ vi.

(iv) Let Pref w denote the set of all finite prefixes of the word w.

Lemma 2.1. If x is a restricted bi-ideal, then

∀l ∈ N ∀ε > 0 ∃δ ∈ N ∀u ∈ A∗
[
|u| = l ⇒ ∀n ≥ δ |αn(u)− αδ(u)| ≤ ε

]
.
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P r o o f. Suppose, the sequence (ui), generates an lx–restricted bi-ideal x. Let
us consider the bi-ideal sequence (vi) generated by (ui) as per Definition 1.3.
Then from Definition 1.4 each vi is a prefix of the bi-ideal x, and |vj | > |vi|,
when j > i.

Let us denote :

li = |vδ+i|u i ≥ 0, l′i = li − 2li−1, i ≥ 1;
mi = |vδ+i| − l + 1, i ≥ 0, m′

i = mi − 2mi−1, i ≥ 1;

αi = α(vδ+i, u) =
|vδ+i|u

|vδ+i| − |u|+ 1
=

|vδ+i|u
|vδ+i| − l + 1

=
li
mi

, i ≥ 0,

where l = |u|.
We will choose δ, such that lx+l−1

m0
< ε, (m0 = |vδ| − l + 1).

Let us assess αi, i ≥ 1:

αi =
li
mi

=
2li−1 + l′i

2mi−1 + m′
i

=
2li−1

2mi−1 + m′
i

+
l′i

2mi−1 + m′
i

= αi−1
2

2 + m′
i

mi−1

+
l′i

2mi−1 + m′
i

= αi−1
1

1 + m′
i

2mi−1

+
l′i

2mi−1 + m′
i

.

From Definition 1.3
vi+1 = viui + 1vi, i ≥ 1,

therefore,
|vi+1| = 2|vi|+ |ui+1| ≥ 2|vi|, (1)

and
|vδ+i| ≥ 2i|vδ|.

From here

mi−1 = |vδ+i−1| − l + 1 ≥ 2i−1|vδ| − l + 1 ≥ 2i−1(|vδ | − l + 1) = 2i−1m0. (2)

Now consider,

m′
i = mi − 2mi−1 = |vδ+i| − l + 1− 2(|vδ+i−1| − l + 1)

= |vδ+i| − l + 1− 2|vδ+i−1|+ 2l − 2,

from (1)
|vδ+i| − |vδ+i−1| = |uδ+i|,

therefore,
|vδ+i| − l + 1− 2|vδ+i−1|+ 2l − 2 = |uδ+i|+ l − 1.
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But because the bi-ideal is lx restricted, |uδ+1| ≤ lx, and m′
i ≤ lx + l − 1

therefore, also considering (2):

m′
i

2mi−1
≤ lx + l − 1

2im0
≤ ε

2i
.

Now we can remember that 1 ≥ 1− a2 = (1− a)(1 + a), and if 1 + a > 0,
1

1 + a
≥ 1− a

so that we can write

αi = αi−1
1

1 + m′
i

2mi−1

+
l′i

2mi−1 + m′
i

≥ αi−1

(
1− m′

i

2mi−1

)

≥ αi−1

(
1− ε

2i

)
= αi−1 − αi−1ε

2i
≥ αi−1 − ε

2i
.

Now, let us look at l′i :

l′i = li − 2li−1 = |vδ+i|u − 2|vδ+i−1|u.

But by Definition 1.3 vδ+i = vδ+i−1uδ+ivδ+i−1, and in vδ+i−1 there are li−1

subsequences equal to u. We know, that of the 2mi−1 subsequences with the
length l corresponding to the vδ+i−1 precisely 2li−1 are equal to u. This means,
that there can be at most li ≤ 2li−1 + mi − 2mi−1 sequences equal to u. And
thus,

l′i ≤ mi − 2mi−1 ≤ m′
i ≤ lx + l − 1.

Also, from (2):
2mi−1 + m′

i ≥ 2mi−1 ≥ 2im0.

From this

αi = αi−1
1

1 + m′
i

2mi−1

+
l′i

2mi−1 + m′
i

≤ αi−1 +
lx + l − 1

2im0

≤ αi−1 +
ε

2i
.

We have assessed
αi−1 − ε

2i
≤ αi ≤ αi−1 +

ε

2i
,

so that

α0 − ε

i∑

j=1

2−j ≤ αi ≤ α0 + ε

i∑

j=1

2−j .

And, because
∑∞

j=1 2−j = 1, we can write

α0 − ε ≤ αi ≤ α0 + ε.
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If we remember that α0 = αδ(u) and αi = αδ+i(u), we can conclude that the
lemma is proved. ¤

Theorem 2.2. If x is a restricted bi-ideal, and Vk denotes a prefix of x with
length k, then

∀l ∈ N ∀ε > 0 ∃K ∈ N ∀u ∈ A∗ [|u| = l ⇒ ∀k ≥ K |α(VK , u)− α(Vk, u)| ≤ ε].

P r o o f. We will use denotations similar to those, used in the proof of the lemma:

li = |vi|u, i ≥ 0,

mi = |vi| − l + 1, i ≥ 0,

αi = α(vi, u) =
li
mi

, i ≥ 0,

where l = |u|, and (vi) is the bi-ideal sequence associated with x as by Defini-
tion 1.4. Also, we assume that the bi-ideal is lx restricted.

We select a parameter n, such that:

|αn+i(u)− αn(u)| < ε

4
, ∀i ≥ 1, (3)

lx + l

mn
<

ε

4
. (4)

Note, that the first condition can be satisfied according to Lemma 2.1.
Then we select a parameter g > n, such, that

mn + lx + l

mg
<

ε

4
, (5)

According to Lemma 2.1 and the way n and g were chosen

αn(u)− ε

4
< αg(u) < αn(u) +

ε

4
.

We introduce a function j : N× N→ N, and denote
vg,h,n = vguj(g,1)vnuj(g,2)vn . . . uj(g,h)vn ,

such that
vg,h,n ∈ Pref x .

Now we can introduce corresponding denotations :

lg,h,n = |vg,h,n|u ,

mg,h,n = |vg,h,n| − l + 1,

αg,h,n =
lg,h,n

mg,h,n
= α(vg,h,n, u) .

Considering the construction of vg,h,n and that the bi-ideal is lx restricted,

mg + hmn ≤ mg,h,n ≤ mg + hmn + hlx + hl.
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Let us assess lg,h,n. It is obvious from the construction that

lg,h,n ≥ lg + hln.

To assess the upper bound of lg,h,n, we have to remember that the word vg,h,n

has a total number of mg,h,n subsequences with length l, however the words vg

and vn have correspondingly mg and mn subsequences with length l. This means,
that the word vg,h,n has a maximum of

mg + hmn + hlx + hl −mg − hmn = h(lx + l)

subsequences of length l, such that we do not know if they are equal to u or not.
Therefore,

lg,h,n ≤ lg + h(ln + lx + l).

Now we can asses αg,h,n. We will start with the lower limit :

αg,h,n =
lg,h,n

mg,h,n
≥ lg + hln

mg + hmn + hlx + hl
=

αgmg + hαnmn

mg + hmn + hlx + hl

according to condition (3)

αgmg + hαnmn

mg + hmn + hlx + hl
≥ (αn − ε

4 )mg + hαnmn

mg + hmn + hlx + hl

= αn
1

1 + hlx+hl
mg+hmn

− ε

4
mg

mg + hmn + hlx + hl
,

according to condition (4)
hlx + hl

mg + hmn
≤ ε

4
,

therefore,

αn
1

1 + hlx+hl
mg+hmn

− ε

4
mg

mg + hmn + hlx + hl
≥ αn

1
1 + ε

4

− ε

4
≥ αn − ε

2
,

and
αg,h,n ≥ αn − ε

2
. (6)

We now have to asses the upper limit of αg,h,n :

αg,h,n =
lg,h,n

mg,h,n
≤ lg + hln + h(lx + l)

mg + hmn
=

αgmg + hαnmn + h(lx + l)
mg + hmn

.

We can again use the condition (3)

αgmg + hαnmn + h(lx + l)
mg + hmn

≤ (αn + ε
4 )mg + hαnmn + h(lx + l)

mg + hmn
=

= αn +
ε

4
mg

mg + hmn
+

h(lx + l)
mg + hmn

.
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According to the condition (4)

h(lx + l)
mg + hmn

≤ ε

4
,

and, therefore
αg,h,n ≤ αn +

ε

2
. (7)

Finally, let us look at Vi — a prefix of x with a length of i > |vg|. We can
find such an h that Vi = vg,h,nw, where w ∈ Pref(uj(g,h+1)vn).

Let us assess α(Vi, u) = |Vi|u
|Vi|−l+1 .

It is clear from the way we selected i (and implicitly h) that

mg,h,n ≤ |Vi| − l + 1 ≤ mg,h,n + mn + lx + l,

also, it is obvious, that

lg,h,n ≤ |Vi|u ≤ lg,h,n + mn + lx + l.

We can assess the lower limit for α(Vi, u) :

α(Vi, u) ≥ lg,h,n

mg,h,n + mn + lx + l
= αg,h,n

1
1 + mn+lx+l

mg,h,n

according to the condition (5), and considering that mg,h,n ≥ mg ,

mn + lx + l

mg,h,n
≤ ε

4

therefore,

αg,h,n
1

1 + mn+lx+l
mg,h,n

≥ αg,h,n
1

1 + ε
4

≥ αg,h,n − ε

4
.

Using (6) and (3)

α(Vi, u) ≥ αg,h,n − ε

4
≥ αn − 3ε

4
≥ αg − ε .

The last thing we have to do is to assess the upper limit of α(Vi, u) :

α(Vi, u) ≤ lg,h,n + mn + lx + l

mg,h,n
= αg,h,n +

mn + lx + l

mg,h,n
.

According to the condition (5)

mn + lx + l

mg,h,n
≤ ε

4
,

therefore,

αg,h,n +
mn + lx + l

mg,h,n
≤ αg,h,n +

ε

4
,
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and using (7) and (3)

α(Vi, u) ≤ αg,h,n +
ε

4
≤ αn +

3ε

4
≤ αg + ε .

So we can write:
αg − ε ≤ α(Vi, u) ≤ αg + ε .

If we examine the conditions of the theorem, we see that it is proved, and
that K = |vg| . ¤

2.2. Making bi-ideals indistinguishable from i.i.d. bit-sequences in the
frequency test

For a bit-sequence to be indistinguishable from i.i.d bit-sequences, each of the
test words of a given length ν have to appear an equal number of times. Some
deviations are, of course, permitted, depending on the statistical test we use to
check this property.

The suggested method is as follows :

1. Choose any word of length ν− 1. This word, denoted by a, will be a prefix
for the generated base words.

2. The base words are found in the form ab, such that all of the test words
of the length ν would appear an equal number of times in the word aba.

We will call the base words yielded by this method good base words for a test
length of ν.

For example :
101︸︷︷︸

a

0010110000111︸ ︷︷ ︸
b

101︸︷︷︸
a

We can see that each of the test words of the length 4 (0000, 0001, 0010, . . . , 1111)
appear in the word aba exactly once. In this case ab = 1010010110000111 is
a good base word for the test of the length 4. Although we do not currently have
a precise estimate of the number of good test words, a full search reveals that
there are 32 good base words with this prefix for the test of the length 4 that
contain each of the test words exactly once, and 209952 that contain each of the
test words exactly twice.

Lemma 2.3. A restricted bi-ideal, generated from good base words for a test
length of ν, will be indistinguishable from an i.i.d. bit-sequence, using test words
with a length of ν, given a long enough bit-sequence.

P r o o f. Let us consider the bi-ideal x. It can be written as:

x = u0u1u0u2u0u1 . . .

If we introduce a function j : N→ N, such that j(i) is the index of the ith base
word in the bi-ideal x. Then j(0) = 0, j(1) = 1, j(2) = 0, j(3) = 2, and so on.
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Let us denote :

xi = u0u1u0 . . . uj(i)#Prefν−1(uj(i+1)) ,

where Prefn(u) denotes the prefix of the word u, of length n. Using the notation
of the definition, if the word u would be expressed as ab, where a is a prefix of
the length ν − 1, it is clear, that ∀i, Prefν−1(ui) = a.

Let us consider x0, x1, and so on.
According to our definition of the good base words, and considering

∀ui, uj Prefν−1 ui = Prefν−1 uj ,

each test-word with a length of ν, will appear in x0 an equal number of times.
Let us compare x1 and x0. It is obvious that each test word with the length ν

will appear in x1 the same number of times as it appears in x0, plus as many
times as it appears in the word u1# Prefν−1 u2. But considering

∀ui, uj Prefν−1 ui = Prefν−1 uj ,

and that u1 is a good base word as well. It becomes obvious that each of the
test-words appears in x1, and equal number of times as well. It is clear that this
can be shown for any xk in a similar fashion.

It is clear that any deviation from this occurs only when the prefix does
not equal to one of the values of xi. However, the maximum deviation for any
given test-word will never exceed the maximum number of times the test-word
appears in the longest base word of the bi-ideal. And thus, if we look at the
relative frequency of the test-word, we see that it is inversely proportional to the
length of the bi-ideal. This means, for a sufficiently long prefix of x, the bi-ideal
will not be distinguishable from an i.i.d. bit-sequence using the frequency test
with a test-word length of ν. ¤
Lemma 2.4. A good base word for a test-length of ν is a good base word for all
test-lengths smaller then ν.

P r o o f. Suppose, we have a good base word for the test-length of ν. Obviously,
|u| = 2νk.

It is clear from the definition of the good base words that each of the test
words with a length of ν appears in the word u#Prefν−1(u) exactly k times.

Let us consider test-words with a length of ν−1. If our assumption is correct,
each of these test-words have to appear in u# Prefν−2(u) exactly 2k times. Let
us assume the opposite, then there must be at least one test word v with a length
of ν − 1 that will appear in u#Prefν−2(u) at least 2k + 1 times.

Let us examine each of the occurrences of v in u#Prefν−2(u). Considering
that u#Prefν−1(u) is one bit longer then u#Prefν−2(u) we can look at each v
plus the next bit. It is clear that this way we have constructed a word of the
length ν, for each occurrence of v, will be a sub-word of u#Prefν−1(u).
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But considering that we can only have a 0 or 1 following v, it is clear that
either v#0, or v#1 will appear in the word u#Prefν−1(u) at least k + 1 times.
But this would mean that u is not a good base word for the length ν. Thus we
have a contradiction.

It is clear, similarly, we can show the same for the lengths ν − 2, ν − 3, and
so on. ¤
Theorem 2.5. A restricted bi-ideal generated from good base words for the
length ν will be indistinguishable from an i.i.d. bit-sequence using test words
with a length of up to ν, given a long enough bit-sequence.

P r o o f. The proof of the theorem obviously follows from the Lemmas 2.3, 2.4.
¤
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