
Tatra Mt. Math. Publ. 41 (2008), 93–106

tm
Mathematical Publications

SINGLE TRANSFERABLE VOTE ANALOGUE OF

DESMEDT-KUROSAWA VOTING PROTOCOL

Joanna Boroń — Marek Klonowski

ABSTRACT. During Information Security Conference 2005, Yvo Desmedt and
Kaoru Kurosawa presented an electronic voting scheme that allows to point the
winner, without revealing the final tally — that is, no information is disclosed
except for the name of the winner(s). In particular, even the number of votes
for every single candidate remains hidden. It can be important in practice, since
these numbers can reveal sensitive information about voters’ preferences in some
scenarios, especially in closed, small communities. In some sense, this scheme
meets stronger privacy requirements than any voting protocol before.

The main contribution of our paper is a version of Desmedt-Kurosawa scheme
that supports Single Transferable Vote (STV) used among others in Republic of
Ireland and Australia.

The presented solution has the main properties of Desmedt-Kurosawa scheme,
however we had to solve several subtle problems in order to implement the idea
of SVT that is much more complicated than the regular voting. For example, we
have even to hide the number of rounds that does not need to be constant. As in
the original scheme, every step can be publicly verified.

1. Introduction

Idea of voting using electronic devices and/or electronic networks gained re-
cently considerable attention in both research community as well as in state
authorities in many countries. Most of designed schemes are focused either
on providing additional features to hand-counted ballot procedure (see, e.g.,
[2, 6, 3, 14, 15]), securing voting machines (see, e.g., [10]) or designing schemes,
where voting is possible over electronic networks (see, e.g., [11]). One of the most
important features is verifiability — possibility to check that each vote has been
counted and that the results are correctly computed. Desirable are solutions
wherein any party can verify correctness of the result using published data.

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60, 11T71.
Keyword s: e-voting, single transferable vote.
Partially supported by Polish Ministry of Science and Higher Education, grant N206 2701 33.

93

JOANNA BOROŃ — MAREK KLONOWSKI

While the papers mentioned above can be regarded as electronic versions of
traditional voting scenarios, D e s m e d t and K u r o s a w a proposed slightly
different approach [5]. Namely, they designed the very first voting scheme that
reveals noting except the name of the winner. In practice it means, that after
the execution of the procedure no one knows the number of votes cast for the
winner or names of the candidates with the second, the third etc. position.

Spirit of these scheme is in some sense similar to electronic-auctions protocols.
Paper [5] presents situations, for which information such as the number of votes
supporting the winner are quite sensitive. In some sense Desmedt-Kurosawa
scheme meets possibly most demanding privacy requirements — i.e., the name
of the winner is revealed and nothing more. Thereby, only the information that
MUST be revealed in order to accomplish the goal of the voting procedure is
published. Security of this scheme as a whole has not been proved, but it is based
only on provably secure cryptographic primitives.

In this paper we present an extension of the Desmedt-Kurosawa scheme for
Single Transferable Vote procedures. Single Transferable Vote (STV) is a voting
system designed in order to reduce the effect of wasted votes (e.g., the votes cast
for parties that finally do not pass the threshold necessary to get any seat in the
parliament). The goal of STV is to provide proportional representation while
ensuring that votes are cast for candidates rather than party lists [17]. STV
is currently used during some elections in Australia, Scotland and Northern
Ireland.

Aside Desmedt-Kurosawa’s idea, we also reuse several techniques presented
in their paper [5]. However, our task is more challenging, since STV system is
conceptually much more complicated than a regular voting scheme. STV proce-
dure executes several phases and only the number of phases reveals information
about voting statistics. In particular, the number of necessary phases is unknown
beforehand.

Of course, our scheme, exactly like the original one, does not use any trusted
third party. With a help of a TTP building such scheme would be a trivial task,
but then the fundamental principle of leaking no additional information to any
protocol participant would be obviously violated.

1.1. Paper organization

In Section 2 we present details of STV procedure. In Section 3 we introduce
all cryptographic primitives and procedures used in the scheme description that
is set forth in Section 4. We estimate the efficiency of our scheme in Section 5.

94

SINGLE TRANSFERABLE VOTE ANALOGUE

2. Single transferable vote

2.1. Why STV?

In commonly used voting systems a voter often votes tactically and chooses
just one of the two leading candidates even if none of them is his or her favorite
one. A vote cast for a candidate who is not very popular and is likely to loose
the election can be often considered wasted.

In STV voters have to rank all candidates by the order of their preference
rather than to choose only a single candidate. The voters’ preferences are con-
sidered in a wider scope, so one can say that election results more accurately
express electors’ will.

In this paper we consider a single-winner SVT election. This variant of STV
is also known as Instant-runoff voting (IRV) or Alternative Vote (AV).

2.2. STV algorithm

A voter ranks all candidates according to his or her preferences. Each ballot
contains then a permuted list of all candidates with the most favoured candidate
in the first position, the second favourite candidate in the second one, and so on.
When all ballots are collected in the ballot-box, the following steps are executed:

(1) The first position in each ballot is taken into account. If there is a candidate
who gets the majority, he is declared to be the winner and the procedure
is terminated.

(2) The candidate with the lowest number of votes is eliminated and deleted
from all ballots. If there are two or more candidates who get the lowest
number of votes, one of them is chosen according to some further rules.

(3) Go to step 1.

One can easily see that during each round either the winner is pointed or one
candidate is eliminated. For that reason the number of possible rounds is smaller
than the number of the candidates. Let us also stress that the number of rounds
executed during single election cannot be determined in advance and is strongly
dependent on submitted ballots.

Example. We show on an example how STV works. Assume that there are 24
voters and 4 candidates: A, B, C, D. The first table shows how many voters
marked specific order of candidates in their ballots.

95

JOANNA BOROŃ — MAREK KLONOWSKI

Votes
6 6 2 7 3

1st D A B C B
2nd A B A A C
3rd C C C B A
4th B D D D D

The second table shows process of counting the result round by round.

round 1: round 2 : round 3 :

Current ballots

6 6 2 7 3
1st D A B C B
2nd A B A A C
3rd C C C B A
4th B D D D D

6 6 2 7 3
1st D A A C C
2nd A C C A A
3rd C D D D D

6 6 2 7 3
1st A A A C C
2nd C C C A A

votes for A 6 8 14
votes for B 5
votes for C 7 10 10
votes for D 6 6

At the first round candidate B received the fewest number of votes and is
eliminated. His votes are transferred to other candidates, in this case 3 votes go
to C and 2 votes go to A. In consequence in the second round D becomes the
weakest candidate and gets eliminated. After the third round candidate A gains
14 votes which gives him majority and counting terminates.

2.3. Tie breaking

A tie can occur when selecting a candidate to eliminate. There are many
methods to break the tie using not only information from the current round. One
can take into account the result of previous rounds or, which is more complicated,
try to simulate eliminating each of the candidates in question and take into
account later rounds.

If a tie can be broken with established rules, we call it a weak tie. But some-
times the tie remains not broken, even after the tie-breaking rules have been
applied. In that case it is a strong tie. When a strong tie occurs, it is impossible
to choose between two or more candidates. In such case it is better to break
a strong tie by lot and eliminate always only one candidate instead of removing
several candidates (see example below).

Our scheme uses backwards tie-breaking method. In this approach, if there
are two or more candidates who have the minimal number of votes, we choose
among them the candidate who had fewer votes during the previous round.

96

SINGLE TRANSFERABLE VOTE ANALOGUE

If the number of votes is also equal in previous round, the latest point in the
count where they had unequal number of votes is taken into account.

The strong tie occurs when candidates have equal number of votes in all
previous rounds. Our scheme breaks strong ties by lot, but it can be adapted in
obvious manner to most of the rules for breaking a strong tie considered so far.

A comparison of some tie-breaking methods and advantages of backwards
tie-breaking can be found in [13].

Example. We show an example of a strong tie such that choosing a candidate
for elimination at random is better then rejecting more than one candidate. The
following table presents distribution of votes:

Number of Votes
10 10 6 6

1st B A C C
2nd A B A B
3rd C C B A

In the first round there is a tie between candidates A and B. What is more,
these candidates have the smallest number of votes from first preferences, which
qualifies them for elimination. After rejecting both A and B only, the candidate C
remains and becomes the winner. On the other hand, from among 32 voters
20 voters prefer whichever A or B rather than C so this result definitely does
not express voters’ will well. In this case, it is better to eliminate only one of
A and B and thus to let B or A win. Since here A and B received exactly the
same number of votes, even taking into account all preferences, the only method
to choose between them is a lot.

3. Cryptographic tools

To implement the idea of STV in electronic form, we will need several cryp-
tographic tools described in this section.

Private keys used in the scheme are shared by N authorities. For all operations
mentioned below we need robust threshold versions, i.e., when at most t of
authorities (where N ≥ 2t + 1) are malicious, the protocol still works correctly.
In some sense authorities jointly simulate a trusted third party. Let us stress
that there are many cryptographic schemes meeting this requirement.

97

JOANNA BOROŃ — MAREK KLONOWSKI

3.1. Encryption functions

The most important building block for our scheme are two efficient, prob-
abilistic public-key encryption functions with homomorphic property. We have
two types of data to encrypt: candidates and numbers. “Candidate” means here,
for example, a result of a hash function on the candidate’s name representing
real person.

For encryption of these values we use function F . Other data are numbers and
we use function E to encrypt it. The reason why we use two different functions
is that the encryption algorithm used for numbers must satisfy some additional
requirements, but on the other hand, we can assume that plaintext can be only
a number from a relatively small set.

Let us use the following notation:

• E(m), F (m) are the sets of possible ciphertexts for a plaintext m, for
functions E and F, respectively.

• E0(m), F0(m) are ciphertexts of m using the random parameter set to 0.
We call these ciphertexts standard ciphertexts of m. Let us note that ev-
eryone can easily check if a particular ciphertext is the standard ciphertext
of a message m.

• e1 =E e2, e1 =F e2 mean that e1 and e2 are ciphertexts of the same
plaintext using function E and F , respectively.

The functions E and F must meet additional requirements. Namely, they
must provide homomorphic property:

There are computationally efficient operations −1 and ¯, such that

(1) if e ∈ F (m), then e−1 ∈ F (m−1),
(2) if e1 ∈ F (m1) and e2 ∈ F (m2), then e1 ¯ e2 ∈ F (m1m2).

Function E has additive homomorphic property: there exist effectively com-
putable operations ª and ⊕, such that

(1) if e ∈ E(m), then ª e ∈ E(−m mod q),
(2) if e1 ∈ E(m1) and e2 ∈ E(m2), then e1 ⊕ e2 ∈ E(m1 + m2 mod q)

for some large q. Let us note that the second property allows to sum up the
encrypted number of votes without decryption of the corresponding ciphertexts.
Indeed — product of ciphertexts of two values is a ciphertext of the sum of these
values.

Such properties allow also to perform re-encryption. Given e ∈ E(m) (or e ∈
F (m)) one can compute e′ such that e =E e′ (or e =F e′, respectively) where e′ is
uniformly distributed over E(m) (respectively, F (m)). It can be done easily by
computing a ciphertext of the neutral element in appropriate underlying group
and applying homomorphic operation on this ciphertext and e.

98

SINGLE TRANSFERABLE VOTE ANALOGUE

Candidates for functions F and E. Let us note that regular ElGamal encryption
scheme over a group of order q can be used as the function E. As pointed in [5]
modified ElGamal may play a role of the function F , i.e.:

Fr(m) = (gr, gmyr) mod p,

where p is a large prime, y is a public key and g is a group generator. Further
details can be found in [5].

3.2. Plaintext Equality Test

We use Plaintext Equality Test (PET) on ciphertexts of E and F . Using
PET procedure, N authorities given two ciphertexts e1 and e2 can jointly check
whether e1 =E e2 (or e1 =F e2, respectively) without revealing any other in-
formation. For this purpose one can use, for instance, the procedure from [7].
Protocol presented in this paper is based on ElGamal encryption. However, one
can build PET procedure for any function F with properties mentioned above.

3.3. 1-out-of-n re-encryption proof

During 1-out-of-n re-encryption proof a prover shows that for an encrypted
message e and a set of ciphertexts e1, e2, . . . , en, there exists an index 1 ≤ i ≤ n,
such that e =E ei (or e =F ei) without revealing any other information. In
particular, the index i remains secret. It is assumed that the prover knows ran-
domness used for re-encryption.

Description of such a proof can be found for example in [4].

3.4. MIX protocol

In our protocol we extensively use MIX protocol on ciphertexts computed
with function E or F. Using the MIX protocol, N authorities can jointly compute
permutation

(
e′π(1), . . . , e

′
π(n)

)
of ciphertexts list (e1, . . . , en), such that e′π(i) is

a re-encryption of ei for every i. The validity of this operation can be publicly
verified, but the whole procedure does not reveal any unnecessary information.
In particular, the permutation π remains hidden. In our scheme (as well as
in [5]) we need a version of MIX which allows to permute and re-encrypt list of
pairs of ciphertexts but without breaking particular pairs. That is, for given list(
(e1, f1), . . . , (en, fn)

)
the authorities compute a list of permuted re-encryptions(

(e′π(1), f
′
π(1)), . . . , (e

′
π(n), f

′
π(n))

)
. Such a MIX protocol can be built, for example,

using algorithms from papers [8, 9]. Let us stress that this protocol is jointly
perforemed by N authorities in such a way that any cooperating coalition of t
(for N ≥ 2t + 1) entities is not able to learn π.

3.5. Pairwise comparison protocol

In the scheme (called PCP) described in the next section we need very often
to compare two numbers encrypted with function E without decrypting them.

99

JOANNA BOROŃ — MAREK KLONOWSKI

D e s m e d t and K u r o s a w a proposed in [5] a way to compare two encrypted
numbers in such way that it can be publicly verified and nothing more than
comparison result is revealed.

Given A ∈ E(a) and B ∈ E(b) the protocol decides whether a ≤ b or a > b.
The numbers a and b must satisfy 0 ≤ a ≤ M , 0 ≤ b ≤ M for some M .
For the sake of efficiency, M should be as small as possible. In our scheme
we use comparison for number of votes multiplied by number of candidates, so
0 ≤ a, b ≤ vk, where v is the number of voters and k is the number of candidates.

4. Voting scheme

There are N authorities representing for example political parties or particular
candidates. Let us also assume that at most t of them are malicious (where
N ≥ 2t+1). So in particular, majority of authorities operates exactly according
to the protocol. We assume that their public keys are widely known.

All operations are preformed jointly by authorities. It means in some sens that
they simulate a trusted third party that performs some operations on behalf of
them. Thanks to this property some details of protocols execution remain hidden
for single authorities or even coalition of cardinality less or equal t.

We also need a bulletin board — it is a shared memory, that everyone can read,
and also can append some information (without deleting the previous notes). We
assume that transcript of all subprocedures are placed there. Let us also stress
that it is a standard requirement in such a type of protocols.

We assume that there are v voters and k candidates, say C1, C2, . . . , Ck.
The whole voting process is divided into two stages. During the first one all

voters prepare their electronic ballots. In the second stage during k − 1 steps
authorities are pointing the winner.

4.1. Votes casting
(1) A voter i sort the list of candidates with respect to his own preference:

Ci
1, C

i
2, . . . , C

i
k, where Ci

1 is the best candidate in ith voter’s opinion.
(2) He computes ciphertexts ci

1 ∈ F (Ci
1), . . . , c

i
k ∈ F (Ci

k) and posts them on
the bulletin board.

(3) Validity of ci
1, . . . , c

i
k is shown as follows:

• The voter proves that each of ci
1, . . . , c

i
k encrypts one of the candidates

C1, C2,. . . ,Ck by performing k times 1-out-of-k re-encryption proof.
• The authorities jointly check whether ci

1, . . . , c
i
k are ciphertexts of dis-

tinct values using plaintext equality test.
After this step, authorities can be sure that the tuple ci

1, . . . , c
i
k is cor-

rectly prepared — it represents an encrypted list of all, distinct candidates.

100

SINGLE TRANSFERABLE VOTE ANALOGUE

(4) The tuple ci
1, . . . , c

i
k is transformed to the electronic ballot:

Vi =
((

E0(1), ci
1

)
, . . . ,

(
E0(k), ci

k

))
.

4.2. Computing election result

Counting proceeds in rounds as for STV but there are always k − 1 rounds.
Admittedly, sometimes a majority is achieved after less than k − 1 rounds and
the procedure in the real world scenario may terminate, but we want to hide the
number of rounds. This has no impact in our algorithm on pointing the winner,
since once a candidate achieves majority he will never be eliminated and will
remain in the game until the end of the last round.

4.2.1. Round

During each round, the votes from the first preference in each ballot are taken
into account. Then the candidates are sorted according to the number of votes
and the candidate with the fewest votes is eliminated from every ballot. After
that in every ballot from the remaining preferences the highest one is marked as
the first preference.

Computation operates on a list L and lists Vi (electronic ballots) for every
voter i. The list L is initialized in every round afresh, when Vi’s are modified
in each round. The list L stores pairs (candidate, number of votes for this can-
didate), where both values are encrypted. Additionally, the number of votes is
stored not as the exact value but is multiplied by the number of candidates,
because this value modulo number of candidates contains information about po-
sition in the previous round. In general, one can think of it as a number of votes
for the candidate because the position from previous round is significant only in
case of a tie.

As stated above, the list Vi is a ballot of voter i. It contains pairs (index of
preference, candidate) as at the last step of vote casting. In every round one
candidate is removed and order of all Vi is changed.

At the beginning of this stage authorities jointly permute and re-encrypt at
random the list F0(C1), F0(C2), . . . , F0(Ck) and let c1, c2, . . . , ck be the resulting
list of ciphertexts.

The authorities execute the following steps for r = 1, . . . , k− 1. At the begin-
ning of round r there are p = k − r + 1 candidates left and exactly one of them
will be eliminated in the round. The procedure starts with all k candidates and
before the last round there are only 2 candidates.

101

JOANNA BOROŃ — MAREK KLONOWSKI

(1) Let c1, c2, . . . , cp be ciphertexts of the candidates in the order from the
previous round. (Note that p = k − r + 1). Initiate L as

MIX
(
c1, E0(p− 1)

)
,
(
c2, E0(p− 2), . . . ,

(
cp, E0(0)

))
.

In this way candidates are strictly and randomly ordered before counting
votes for this round and this prevents the risk of a tie. If there is a method
to break a strong tie, the candidates could be ordered according to special
rules also before the first round.

(2) For every voter i:
• Let c be the second element of the first pair of Vi. The first pair is the

first preference, so c is a ciphertext of the most preferred candidate
(of those that remain in the game) of voter i.

1: Find on the list L element (c′, t) such that c =Fc′.
2: Increase votes for candidate c by changing the pair (c, t) to a pair(

(c, t⊕ E0(p)
)
.

3: Mix L up before considering the next ballot.
The first step is implemented by trying plaintext equality test on each

element of the list. Let us note that the votes are counted p-fold because
initially every candidate gains a number of “votes” corresponding to the
position immediately after the previous round. This trick solves of a tie.
Indeed, in case of a tie in particular round position from previous round(s)
decides about the order. The third step is implemented by the MIX pro-
tocol.

(3) Sort the list L by the second element of every pair. The pairwise comparison
protocol (PCP) is used here. Sorting can be implemented by any algorithm
that is based on comparing pairs of elements to be sorted only.

(4) Let e be the first element of the last pair on list L. Then e is a ciphertext
of the candidate to be eliminated. Remove from L the pair containing e.
Retain the current ordering of the candidates for the next round.

(5) For every voter i
1: Mix Vi up.
2: Find in Vi a pair (p, c) such that c =Fe and remove this pair from Vi.
3: Find in Vi a pair (p′, c′) with the smallest first element and move it

to the first position of Vi.
In the first point MIX protocol is used. The second point is based on
plaintext equality test. The pairwise comparison protocol is used for finding
the minimum value in the third point. Let us note that there is no need to
sort whole Vi, since only the highest preference are counted.

102

SINGLE TRANSFERABLE VOTE ANALOGUE

Since at each round exactly one candidate is removed, after k−1 rounds there
is only one candidate and this one is the winner. The authorities jointly decrypt
the ciphertext containing his name and announce it.

Let us note that this protocol is oblivious — i.e., from observer’s point of
view its execution looks exactly the same, independently of voters’ preferences.
On the other hand, at the end of the protocol, only one candidate is on the list.

5. Efficiency

Efficiency of the scheme depends on many parameters, but here we consider
only the number of voters (denoted by v) and candidates (denoted by k). We
assume that the remaining parameters, e.g., the number of authorities and the
length of keys using for encryption are predetermined.

Since our scheme uses many cryptographic operations, we first introduce sym-
bols for the time complexity of these operations:

• Tenc — encryption using E or F,
• T◦ — homomorphic binary operation on ciphertexts,
• TPET — plaintext equality test (PET),
• T1-of(n) — 1-out-of-n re-encryption proof,
• TMIX(n) — MIX protocol on a list of the length n,
• TPCP(n) — pairwise comparison protocol on numbers less or equal to n.

Most functions and protocols that we use are commonly known and can be
found in different versions with different time complexities so we do not use
specific values. We only mention efficiency of comparison algorithm proposed
by D e s m e d t and K u r o s a w a in [5]. For 0 ≤ a, b ≤ n the protocol decides
whether a ≤ b using n homomorphic operations, applying n + 1 times PET
procedure and performing MIX on list of length n + 1. Thus

TPCP(n) = O(n)× (T◦ + TPET) + TMIX(n).

Roughly estimated complexities of particular steps of vote casting are listed
below:

• step 1: O(1),
• step 2: O(k)× Tenc,
• step 3: O(k)× T1-of(k) + O

(
k2

)× TPET,
• step 4: O(k)× Tenc.

103

JOANNA BOROŃ — MAREK KLONOWSKI

Let us note that T◦, Tenc and TPET do not depend on number of candidates and
voters so we can consider them as constant time operations. Validation of a vote
(step 3) is the most consuming step so efficiency of the whole vote casting stage
is equal to

O(k)× T1-of(k) + O
(
k2

)

and this operation must be done for every voter.
The second stage of the scheme is computing the result which proceeds in O(k)

rounds. Below we list time complexities of particular steps of one round:

• step 1: O(k)× Tenc + TMIX(k),
• step 2: v ×O(k)× TPET + O(1)× (T◦ + Tenc) + TMIX(k),
• step 3: O(k log k)× TPCP(vk),
• step 4: O(1),
• step 5: v × TMIX(k) + O(k)× TPET + O(k)× TPCP(vk).

So the final cost of this stage is

O
(
vk2

)× TPCP(vk) + O
(
k2 log k

)× TPCP(vk) + O(vk)× TMIX(k).

Hence, the overall time of the protocol is

O
(
vk2

)×TPCP(vk)+O
(
k2 log k

)×TPCP(vk)+O(vk)×TMIX(k)+O(k)×T1-of(k).

Assuming

TPCP(vk) = O(vk), TMIX(k) = O(k), T1-of(k) = O(k),

we get the final asymptotic complexity of the protocol equal to

O
(
v2k3 + vk3 log k

)
.

6. Open problems and closing remarks

We presented a scheme that should work well for small communities. We are in
quite convenient situation, since motivation for hiding absolutely all information
except the name of the winner is mostly desirable for small and closed groups
of people, wherein some details can reveal preferences of individuals. However,
it seems interesting to propose a scheme that could be much more efficient and
applicable for grater number of voters even for the price of revealing some details.

Another open problem is to build a similar scheme that could support multi-
seat as well as “write-in” elections.

Acknowledgements. We would like to express thanks to Professor MirosÃlaw
K u t y Ãl o w s k i and Professor PrzemysÃlaw B Ãl a ś k i e w i c z for their valuable
comments.

104

SINGLE TRANSFERABLE VOTE ANALOGUE

REFERENCES

[1] CHAUM, D.: Untraceable electronic mail, return addresses, and digital pseudonyms Com-

mun. ACM 24 (1981), 84–90.

[2] CHAUM D.: Secret-ballot receipts and transparent integrity,

http://www.vreceipt.com/article.pdf.

[3] CHAUM, D.—RYAN, P.—SCHNEIDER, S.: A practical voter-verifiable election scheme,

in: Computer Security—ESORICS ’05, Lecture Notes in Comput. Sci., Vol. 3679, Springer-

-Verlag, Berlin, 2005, pp. 118–139.

[4] CRAMER, R.—GENNARO, R.—SCHOENMAKERS, B.: A secure and optimally effi-

cient multi-authority election scheme, in: Advances in Cryptology—EUROCRYPT ’97

(W. Fumy, ed.), Lecture Notes in Comput. Sci., Vol. 1233, Springer-Verlag, Berlin, 1997,

pp. 103–118.

[5] DESMEDT, Y.—KUROSAWA, K.: Electronic voting: starting over? in: Information Se-

curity Conference—ISC ’05 (J. Zhou et al., eds.), Lecture Notes in Comput. Sci., Vol. 3650,

Springer-Verlag, Berlin, 2005, pp. 329–343.

[6] HOSP, B.—POPOVENIUC, S.: An introduction to punchscan, in: Workshop on Rating

Voting Methods—VSRW ’06, 2006, http://vote.cs.gwu.edu/vsrw2006/papers/9.pdf.

[7] JAKOBSSON, M.—JUELS, A.: Mix and match: secure function evaluation via cipher-

texts, in: Advances in Cryptology—ASIACRYPT ’00 (T. Okamoto, ed.), Lecture Notes

in Comput. Sci., Vol. 1976, Springer-Verlag, Berlin, 2000, pp. 162–177.

[8] JAKOBSSON, M.—JULES, A.: An optimally robust hybrid mix network, in: Proc. of

the 20th Annual ACM Symposium on Principles of Distributed Computing—PODC ’01,

ACM, New York, 2001, pp. 284–292.

[9] JAKOBSSON, M.—JUELS, A.—RIVEST, R. L.: Making mix nets robust for electronic

voting by randomized partial checking, in: Proc. of the 11th USENIX Security Symposium

(D. Boneh, ed.), USENIX Association, Berkeley, CA, USA, 2002, pp. 339–353.

[10] KLONOWSKI, M.—KUTYÃLOWSKI, M.—LAUKS, A.—ZAGÓRSKI, F.: A practical vot-

ing scheme with receipts, in: Information Security—ISC ’05 (J. Zhou et al., eds.), Lecture

Notes in Comput. Sci., Vol. 3650, Springer-Verlag, Berlin, pp. 490–497.

[11] KUTYÃLOWSKI, M.—ZAGÓRSKI, F.: Verifiable internet voting solving secure platform

problem, in: 2nd International Workshop on Security—IWSEC ’07 (A. Miyaji et al., eds.),

Lecture Notes in Comput. Sci., Vol. 4752, Springer-Verlag, Berlin, 2007, pp. 199–213.

[12] NEFF, C.A.: A Verifiable secret shuffle and its application to E-voting, in: Proc. of the 8th

ACM Conference on Computer and Communications Security—ACM CCS ’01 (P. Sama-

rati, ed.), ACM Press, New York, USA, 2001, pp. 116–125.

[13] O’NEILL, J.: Tie-breaking with the single transferable vote, Voting matters 18 (2004),

14–17.

[14] RIVEST, R. L.: The threeballot voting system, Draft Version 10/1/06 2006.

[15] RIVEST, R. L.—SMITH, W.: Three voting protocols: ThreeBallot, VAV, and Twin,

in: Proc. of USENIX/ACCURATE Electronic Voting Technology Workshop—EVT ’07,

USENIX Association, Berkeley, CA, USA, 2007.

105

JOANNA BOROŃ — MAREK KLONOWSKI

[16] VAN DE GRAAF, J.: Adapting Chaum’s voter-verifiable election scheme to the Brazilian

system. http://www.ppgia.pucpr.br/~maziero/pesquisa/ceseg/wseg04/2958.pdf.

[17] COLOMER, J. M. (ed.): Handbook of Electoral System Choice. Palgrave-Macmillan,

London, 2004.

Received September 29, 2007 Joanna Boroń
Brains on Wings
Pl. Strzelecki 20
PL-50–224 WrocÃlaw
POLAND

E-mail : asia@gorska.net

Marek Klonowski
Institute of Mathematics and
Computer Science
WrocÃlaw University of Technology
ul. Wybrzeże Wyspiańskiego 27
PL-50–370 WrocÃlaw
POLAND

E-mail : marek.klonowski@im.pwr.wroc.pl

106

