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INJECTIVE CONTINUOUS IMAGES OF HAMEL
BASES

ANDRZEJ NOWIK

ABSTRACT. Under the assumption L = V we construct a Hamel bases H; and
Hs of R and a continuous bijection f: H; — R\ Ha.

1. Notation

We use the abbreviation ND for “nowhere dense set”.

We write V;° and 37° to mean “for almost all n” and “there exists infinitely
many n”, respectively.

The symbol N denotes the Baire space w®.

We use the standard notation from descriptive set theory, namely 31 de-
notes the collection of analytic subsets of R (i.e., continuous images of the
Baire space N) and Il denotes the collection of all coanalytic subsets of R
(e, I} ={R\ A: A€ X1}).

Suppose that P is a family of pairwise disjoint sets. Denote by Sel(P) the
collection of all selectors of the family P, i.e., sets X C UP such that Vpep|X
NP|=1. Aset X CUP is called a partial selector of P iff Vpep|X N P| < 1.

2. Main result

The main theorem of this paper has been motivated by the following unsolved
problem:

ProBLEM 2.1 (I. Rect aw, private communication). Does there exist a Hamel
base H C R such that H is homeomorphic to R\ H?
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Also, we cannot even solve the following weaker problem which solution would
lead to the construction of 2-continuous Hamel function (i.e., a solution to the
problem from [PR]):

PROBLEM 2.2. Does there exist a Hamel bases H; and Hs of R and a continuous
bijection f: R\ H; — Hy?

The aim of this paper is to prove that the “reverse case” (under special set-
theoretic assumption) holds. Namely, we have:

THEOREM 2.3. Assume L = V. Then there exist a Hamel bases Hi, Hy of R
and a continuous bijection f: Hy — R\ H,.

Unfortunately, it does not solve the problem from [PR].

Let us formulate the main lemma on Hamel bases. Notice, that Hamel bases
as partitions were considered for example in [B], however, the author consid-
ered Hamel bases as selectors of partitions with small (countable) elements. In
contrast of this, here we need the large cardinality case:

LEMMA 2.4. Assume CH. Suppose that P is a family of pairwise disjoint subsets
of R with the following properties:
(1) Vpep|P|=2%;
(2) VpepP is nowhere dense;
(3) R\ UP is meager.
Then there exists a Hamel base H € Sel(P).

Proof. Let {P,}a<2~ be an enumeration of elements from P. Let {7y }o<2+ be
an enumeration of all real numbers and assume that r, = 0.

We will construct partial selectors (X)<2« by induction.

Suppose that we have constructed { X, }a<~ such that the set X = U(K7 X,

is: linearly independent over Q; partial selector of P, and, moreover, r, €
spang (Xi) .
Let ¥ = min{y’ > v: P,yN X7 = 0} and let 2, be any element of Py\spang (Xi)
Consider two cases:
CASE 1: 7, € spang (X* U {x,}). Define X, = X* U {z,}.
CASE 2: 7, ¢ spang (X* U {z,}). Let us denote
Z = spang (X2 U {z,}) U U{P eP: PN[XsU{z\}] # @}
and choose @ € R such that V, cq\{0}Vycqqa +q'ry € UP\ Z.

We will check that 7, — @ ¢ spanqg (X: U {xﬁy,d}). Indeed, suppose that
ry—a = pgﬁ—l—Zf:l piui, where u; € X3U {z}. Thenr, = (po—i-l)d—i—Zf:l Dill;.
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Let us consider two subcases:
SUBCASE 1: pg = —1. Hence r, € spang (X; U {z}) which is a contradiction.

SUBCASE 2: pg # —1. In this case @ = p0—1+1 . (r,y — Zle piui) € ﬁ (ry+2)
which is impossible by the choice of @.

Suppose by way of contradiction that V,cq\oyw(ry — @) € P*, where P* is
(the unique) element from P such that ! @ € P*. This is, however, impossible
since P* is nowhere dense. Therefore there exists, say w* € Q \ {0} such that
w*(ry — @) ¢ P*. Let us put X, = X> U {a,w*(r, —a@)}.

Define H = (J e2w X, and this Hamel base has all the required properties. [J

We will use the following characterization of the Baire space w* which is due
to Alexandrov and Urysohn:

Characterization. A topological space X is homeomorphic to w® iff X is com-
pletely metrizable, separable, 0-dimensional space, and that there is no nonempty
open compact subset of X.

This characterization implies:

COROLLARY 2.5. If U C w* is a nonempty open set, then U is homeomorphic
to w*.

We will need the following interesting in itself lemma. First of all let us recall
the following definition (see for example [KMM], the definition before Lemma 7):

DEFINITION 2.6. A nonempty subset A of a Polish space X is locally uncoun-
table iff every nonempty relatively open subset of A is uncountable.

Notice that in [KMM] the authors proved ([KMM, Lemma 7]) that if B is
a locally uncountable Borel set, then there is a continuous bijection ¢: N' — B.
Following this result we prove a theorem about analytic subsets.

THEOREM 2.7. If A is a subset of a Polish space, then the following conditions
are equivalent:
(1) A is analytic locally uncountable.

(2) There exists a continuous surjection p: N'— A such that Vyeap™ [{y}] is
nowhere dense.

(3) There exists a continuous surjection p: N' — A such that Vyeap™ [{y}] is
nowhere dense set of size 2.

Proof. (2) = (1). Let us assume that A C R is a X} subset of the real line
such that there is a continuous surjection p: N' — A with ND fibres.

1T would like to thank Prof. Nikodem Mrozek for suggesting this method.
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Then A is locally uncountable. Indeed, if a € A and x < a < y then the
preimage p~! [(x, y) N A] is nonempty, open, so there are uncountably many z
in (z;y) N A, hence |(z;y) N A| = 2v.

(1) = (2). Suppose now that A is an analytic locally uncountable set. Let
p: N'— A be any continuous surjection. Let A* = {y € A: p~'[{y}] & ND}.
Since A* is a countable set let us choose an enumeration without repetitions of
all elements of A*:

A* = {y07y17y27 .. }

Notice that in the case |A*| < Ny we can choose a finite enumeration of
elements of A*, namely:

A" ={yo,y1,Y2,-- -, Un}-

For each k € w let us choose a homeomorphic embedding hy: 2* — A such
that diam(h4[2%]) < 55 and moreover hy(0) = yi, where 0 € 2* denotes a zero
constant function. Denote: Ej, = p~! [{yk}], Uy = int(Ey) and Ny = Uy, notice
that since Ej ¢ ND, Uy # 0.

By virtue of Corollary 2.5 we conclude that the space Ny is homeomorphic
to wv.

We will use the following (folklore?) lemma:

LEMMA 2.8. Suppose that X C w® is a ND set. There exists a homeomorphism
b: w¥ — w* such that b[X] C Even”, where Even = {2n: n € w}.

Since Nj is homeomorphic to w* and Ny \ Uy is a ND subsets of Nj, we
conclude from the Lemma 2.8 that there is a homeomorphism by : N, — w®
such that b; [Ny \ U] C Even®. Let i: w* — 2¢ be a continuous surjection given
by: i(x)(k) = (z(k) mod 2).

For z € Ny, denote pi(x) = hy(i(bk(z))) and define function p*: w* — A as

follows:
p* (@) = p(x) }f r € w’ \ Upeo N,
pr(xz) if xe€ N forsome k.

We will check that such defined function p* has the required properties:
SURJECTION: Let y € A. If y ¢ A* then let z € p~'[{y}] be arbitrary. Then
T & Upew Bk, hence 2 € 0¥ \ U, Bx € w” \ Upew Nk, therefore p*(z) =
p(z) =y.

Suppose on the other hand that y € A*. Then y = y;, for some k € w. Since
hi(0) = yx and i, by are surjections we conclude that y; € ran(p*).

CONTINUITY: Suppose that {x,, }mew 1S a sequence from w* convergent to z*.
Let us consider several cases:

CASE 1: z* € Uy, for some k € w.
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Then V2 z,, € U, hence p* () = pr(zm) — pr(z*) = p*(x*) since py is
continuous.

CasE 2: 2* € w* \ Upey, Ni-

Then Vi, Voo & Ni, since Ny, is a closed set, 50 V,,50Vee | p* (4,) — p(@m)| < 7.

This follows from the observation that if 2/ € Ny, then |p*(z’) — p(2’)| < 5, since

p(z") = yr € hi[2¥] and p*(z) € hi[2¥].

Since p(x,,) — p(x*) and p(z*) = p*(x*) we conclude that p*(z,,) — p*(z*),
too.
CASE 3: 2* € Ni \ Uy, for some k € w. Then p*(z*) = hy(i(by(z*))) = hi(0)
= Yk-

As the sets IV; are closed pairwise disjoint, V1 Vys @, € N;. By splitting the
sequence {Z, }, if necessary, we have to consider two subcases:

® V.o € Ni. Then p*(x,) = pr(Tm) — pr(x™).

o V;Vx,, & Nj. Then, like in Case 2, V,~oV5o|p*(zm) — p(zm)| < n but

then p(z,,) — p(x*) = yg, therefore p*(z,) — yr = p*(z*).

NOWHERE DENSE: Let y € A.

() H{y}] = (p_l[{y}] N <w“’\ U Nk)) U ((p*)_1 Kyin < U Nk)) :
kew kew

If y ¢ A* then p—! [{y}] € ND, hence p~* [{y}] N (w* \ Ugew, Ni) € ND, too.

If y € A* then there is k € w such that y = y;. Hence

p [y} N <ww \ U Nk> = E,. \ N, C E; \ int(Ey) € ND.
kew

For every y € A we have p; " [{y}] € ND(Ny), hence p; ' [({y}] € ND. This

shows that (p*) ' [{y}] N (Uyew Nk) € M, therefore (p*)~*[{y}] € M, hence

(p*) ' [{y}] € ND.
(2) = (3). Suppose that p: N/ — A is a continuous surjection. Let

g: N — N x N be any fixed homeomorphism and let 771 : N' x N'— A denote
the standard projection onto the first coordinate. It suffices to define

p*=pomog:
N =y NxN = N =, A

Let us prove Theorem 2.3:

Proof of Theorem 2.3. We need the following result.

THEOREM 2.9 ([M], Theorem 9.26). Assume L = V. Then there erists a I}
Hamel base for R.
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Let Hs be a I} Hamel base from this theorem. Since R\ Hs is a locally un-
countable (being a complement of a Hamel base) Y1 set there exists a continuous
surjection f: N'— R\ Ha.

By virtue of Lemma 2.7 we may assume that vyeR\Hgfil [{y}] is ND and of
size 2¢.

It is easy to observe that the family P defined by

P={f"[}]:yeR\ B}

satisfies all assumptions of Lemma 2.4. Hence we can find a Hamel base H; €
Sel(P) and this Hamel base has all required properties. O

Question 2.10. Is it possible to prove Theorem 2.3 without the assumption
L=V?

Acknowledgement. The author would like to express his sincere gratitude
to the referee who did a lot to improve the paper with a number of expert
comments.
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