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INJECTIVE CONTINUOUS IMAGES OF HAMEL

BASES

Andrzej Nowik

ABSTRACT. Under the assumption L = V we construct a Hamel bases H1 and
H2 of R and a continuous bijection f : H1 → R \ H2.

1. Notation

We use the abbreviation ND for “nowhere dense set”.

We write ∀∞n and ∃∞n to mean “for almost all n” and “there exists infinitely
many n”, respectively.

The symbol N denotes the Baire space ωω.

We use the standard notation from descriptive set theory, namely Σ1
1 de-

notes the collection of analytic subsets of R (i.e., continuous images of the
Baire space N ) and Π1

1 denotes the collection of all coanalytic subsets of R

(i.e., Π1
1 = {R \A : A ∈ Σ1

1}).

Suppose that P is a family of pairwise disjoint sets. Denote by Sel(P) the
collection of all selectors of the family P , i.e., sets X ⊆ ∪P such that ∀P∈P |X
∩ P | = 1. A set X ⊆ ∪P is called a partial selector of P iff ∀P∈P |X ∩ P | ≤ 1.

2. Main result

The main theorem of this paper has been motivated by the following unsolved
problem:Problem 2.1 (I. R e c  l a w , private communication). Does there exist a Hamel
base H ⊆ R such that H is homeomorphic to R \H?
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Also, we cannot even solve the following weaker problem which solution would
lead to the construction of 2-continuous Hamel function (i.e., a solution to the
problem from [PR]):Problem 2.2. Does there exist a Hamel bases H1 and H2 of R and a continuous
bijection f : R \H1 → H2?

The aim of this paper is to prove that the “reverse case” (under special set-
theoretic assumption) holds. Namely, we have:Theorem 2.3. Assume L = V . Then there exist a Hamel bases H1,H2 of R

and a continuous bijection f : H1 → R \H2.

Unfortunately, it does not solve the problem from [PR].

Let us formulate the main lemma on Hamel bases. Notice, that Hamel bases
as partitions were considered for example in [B], however, the author consid-
ered Hamel bases as selectors of partitions with small (countable) elements. In
contrast of this, here we need the large cardinality case:Lemma 2.4. Assume CH. Suppose that P is a family of pairwise disjoint subsets

of R with the following properties:

(1) ∀P∈P |P | = 2ω;

(2) ∀P∈PP is nowhere dense;

(3) R \ ∪P is meager.

Then there exists a Hamel base H ∈ Sel(P).

P r o o f. Let {Pα}α<2ω be an enumeration of elements from P . Let {rα}α<2ω be
an enumeration of all real numbers and assume that rγ = 0.

We will construct partial selectors (Xγ)γ<2ω by induction.

Suppose that we have constructed {Xα}α<γ such that the set X∗
γ =

⋃

α<γ Xα

is: linearly independent over Q; partial selector of P , and, moreover, rγ ∈
spanQ

(

X∗
γ

)

.

Let γ = min{γ′ ≥ γ : Pγ′∩X∗
γ = ∅} and let xγ be any element of Pγ\spanQ

(

X∗
γ

)

.

Consider two cases:

Case 1: rγ ∈ spanQ

(

X∗
γ ∪ {xγ}

)

. Define Xγ = X∗
γ ∪ {xγ}.

Case 2: rγ 6∈ spanQ

(

X∗
γ ∪ {xγ}

)

. Let us denote

Z = spanQ

(

X∗
γ ∪ {xγ}

)

∪
⋃

{

P ∈ P : P ∩
[

X∗
γ ∪ {xγ}

]

6= ∅
}

and choose a ∈ R such that ∀q ∈Q\{0}∀q′∈Q qa+ q′rγ ∈ ∪P \ Z.

We will check that rγ − a 6∈ spanQ

(

X∗
γ ∪ {xγ , a}

)

. Indeed, suppose that

rγ−a = p0a+
∑k

i=1
piui, where ui ∈ X∗

γ∪ {xγ}. Then rγ = (p0+1)a+
∑k

i=1
piui.
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Let us consider two subcases:

Subcase 1: p0 = −1. Hence rγ ∈ spanQ

(

X∗
γ ∪ {xγ}

)

which is a contradiction.

Subcase 2: p0 6= −1. In this case a = 1

p0+1
·
(

rγ −
∑k

i=1
piui

)

∈ 1

p0+1
· (rγ +Z)

which is impossible by the choice of a.

Suppose by way of contradiction that ∀w∈Q\{0}w(rγ − a) ∈ P ∗, where P ∗ is

(the unique) element from P such that 1 a ∈ P ∗. This is, however, impossible
since P ∗ is nowhere dense. Therefore there exists, say w∗ ∈ Q \ {0} such that
w∗(rγ − a) 6∈ P ∗. Let us put Xγ = X∗

γ ∪
{

a,w∗(rγ − a)
}

.

DefineH =
⋃

γ∈2ω Xγ and this Hamel base has all the required properties. �

We will use the following characterization of the Baire space ωω which is due
to A l e x a n d r o v and U r y s o h n :

Characterization. A topological space X is homeomorphic to ωω iff X is com-
pletely metrizable, separable, 0-dimensional space, and that there is no nonempty
open compact subset of X.

This characterization implies:Corollary 2.5. If U ⊆ ωω is a nonempty open set, then U is homeomorphic

to ωω.

We will need the following interesting in itself lemma. First of all let us recall
the following definition (see for example [KMM], the definition before Lemma 7):Definition 2.6. A nonempty subset A of a Polish space X is locally uncoun-
table iff every nonempty relatively open subset of A is uncountable.

Notice that in [KMM] the authors proved ([KMM, Lemma 7]) that if B is
a locally uncountable Borel set, then there is a continuous bijection ψ : N → B.
Following this result we prove a theorem about analytic subsets.Theorem 2.7. If A is a subset of a Polish space, then the following conditions

are equivalent:

(1) A is analytic locally uncountable.

(2) There exists a continuous surjection ρ : N → A such that ∀y∈Aρ
−1
[

{y}
]

is

nowhere dense.

(3) There exists a continuous surjection ρ : N → A such that ∀y∈Aρ
−1
[

{y}
]

is

nowhere dense set of size 2ω.

P r o o f. (2) ⇒ (1). Let us assume that A ⊆ R is a Σ1
1 subset of the real line

such that there is a continuous surjection ρ : N → A with ND fibres.

1I would like to thank Prof. Nikodem Mrożek for suggesting this method.
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Then A is locally uncountable. Indeed, if a ∈ A and x < a < y then the
preimage ρ−1

[

(x; y) ∩ A
]

is nonempty, open, so there are uncountably many z

in (x; y) ∩A, hence |(x; y) ∩A| = 2ω.

(1) ⇒ (2). Suppose now that A is an analytic locally uncountable set. Let
ρ : N → A be any continuous surjection. Let A∗ =

{

y ∈ A : ρ−1[{y}] 6∈ ND
}

.
Since A∗ is a countable set let us choose an enumeration without repetitions of
all elements of A∗:

A∗ = {y0, y1, y2, . . .}.

Notice that in the case |A∗| < ℵ0 we can choose a finite enumeration of
elements of A∗, namely:

A∗ = {y0, y1, y2, . . . , yN}.

For each k ∈ ω let us choose a homeomorphic embedding hk : 2ω → A such
that diam

(

hk[2ω]
)

< 1

2k and moreover hk(0) = yk, where 0 ∈ 2ω denotes a zero

constant function. Denote: Ek = ρ−1
[

{yk}
]

, Uk = int(Ek) and Nk = Uk, notice
that since Ek 6∈ ND, Uk 6= ∅.

By virtue of Corollary 2.5 we conclude that the space Nk is homeomorphic
to ωω.

We will use the following (folklore?) lemma:Lemma 2.8. Suppose that X ⊆ ωω is a ND set. There exists a homeomorphism

b : ωω → ωω such that b[X] ⊆ Evenω, where Even = {2n : n ∈ ω}.

Since Nk is homeomorphic to ωω and Nk \ Uk is a ND subsets of Nk, we
conclude from the Lemma 2.8 that there is a homeomorphism bk : Nk → ωω

such that bk[Nk \Uk] ⊆ Evenω. Let i : ωω → 2ω be a continuous surjection given
by: i(x)(k) = (x(k) mod 2).

For x ∈ Nk denote ρk(x) = hk

(

i(bk(x))
)

and define function ρ∗ : ωω → A as
follows:

ρ∗(x) =

{

ρ(x) if x ∈ ωω \
⋃

k∈ω Nk,

ρk(x) if x ∈ Nk for some k.

We will check that such defined function ρ∗ has the required properties:

Surjection: Let y ∈ A. If y 6∈ A∗ then let x ∈ ρ−1
[

{y}
]

be arbitrary. Then
x 6∈

⋃

k∈ω Ek, hence x ∈ ωω \
⋃

k∈ω Ek ⊆ ωω \
⋃

k∈ω Nk, therefore ρ∗(x) =
ρ(x) = y.

Suppose on the other hand that y ∈ A∗. Then y = yk for some k ∈ ω. Since
hk(0) = yk and i, bk are surjections we conclude that yk ∈ ran(ρ∗).

Continuity: Suppose that {xm}m∈ω is a sequence from ωω convergent to x∗.
Let us consider several cases:

Case 1: x∗ ∈ Uk for some k ∈ ω.
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Then ∀∞m xm ∈ Uk, hence ρ∗(xm) = ρk(xm) → ρk(x∗) = ρ∗(x∗) since ρk is
continuous.

Case 2: x∗ ∈ ωω \
⋃

k∈ω Nk.

Then ∀k∈ω∀
∞
mxm 6∈ Nk, since Nk is a closed set, so ∀η>0∀

∞
m |ρ∗(xm)−ρ(xm)| < η.

This follows from the observation that if x′ ∈ Nk then |ρ∗(x′)−ρ(x′)| < 1

2k , since
ρ(x′) = yk ∈ hk[2ω] and ρ∗(x′) ∈ hk[2ω].

Since ρ(xm) → ρ(x∗) and ρ(x∗) = ρ∗(x∗) we conclude that ρ∗(xm) → ρ∗(x∗),
too.

Case 3: x∗ ∈ Nk \ Uk for some k ∈ ω. Then ρ∗(x∗) = hk

(

i(bk(x∗))
)

= hk(0)
= yk.

As the sets Nj are closed pairwise disjoint, ∀j 6=k∀
∞
mxm 6∈ Nj . By splitting the

sequence {xm}m if necessary, we have to consider two subcases:

• ∀mxm ∈ Nk. Then ρ∗(xm) = ρk(xm) → ρk(x∗).

• ∀j ∀
∞
mxm 6∈ Nj . Then, like in Case 2, ∀η>0∀

∞
m |ρ∗(xm) − ρ(xm)| < η but

then ρ(xm) → ρ(x∗) = yk, therefore ρ∗(xm) → yk = ρ∗(x∗).

Nowhere Dense: Let y ∈ A.

(ρ∗)−1
[

{y}
]

=

(

ρ−1
[

{y}
]

∩

(

ωω \
⋃

k∈ω

Nk

))

∪

(

(ρ∗)−1 [{y}] ∩

(

⋃

k∈ω

Nk

))

.

If y 6∈ A∗ then ρ−1
[

{y}
]

∈ ND, hence ρ−1
[

{y}
]

∩ (ωω \
⋃

k∈ω Nk) ∈ ND, too.

If y ∈ A∗ then there is k ∈ ω such that y = yk. Hence

ρ−1
[

{y}
]

∩

(

ωω \
⋃

k∈ω

Nk

)

= Ek \Nk ⊆ Ek \ int(Ek) ∈ ND.

For every y ∈ A we have ρ−1

k

[

{y}
]

∈ ND(Nk), hence ρ−1

k

[

({y}
]

∈ ND. This

shows that (ρ∗)−1
[

{y}
]

∩
(
⋃

k∈ω Nk

)

∈ M, therefore (ρ∗)−1
[

{y}
]

∈ M, hence

(ρ∗)−1
[

{y}
]

∈ ND.

(2) ⇒ (3). Suppose that ρ : N → A is a continuous surjection. Let
g : N → N ×N be any fixed homeomorphism and let π1 : N ×N → N denote
the standard projection onto the first coordinate. It suffices to define
ρ∗ = ρ ◦ π1 ◦ g:

N →g N ×N →π1
N →ρ A.

�

Let us prove Theorem 2.3:

P r o o f o f T h e o r e m 2.3. We need the following result.Theorem 2.9 ([M], Theorem 9.26). Assume L = V . Then there exists a Π1
1

Hamel base for R.
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Let H2 be a Π1
1 Hamel base from this theorem. Since R \H2 is a locally un-

countable (being a complement of a Hamel base) Σ1
1 set there exists a continuous

surjection f : N → R \H2.

By virtue of Lemma 2.7 we may assume that ∀y∈R\H2
f−1

[

{y}
]

is ND and of
size 2ω.

It is easy to observe that the family P defined by

P =
{

f−1
[

{y}
]

: y ∈ R \H2

}

satisfies all assumptions of Lemma 2.4. Hence we can find a Hamel base H1 ∈
Sel(P) and this Hamel base has all required properties. �

Question 2.10. Is it possible to prove Theorem 2.3 without the assumption
L = V ?

Acknowledgement. The author would like to express his sincere gratitude
to the referee who did a lot to improve the paper with a number of expert
comments.
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