

INJECTIVE CONTINUOUS IMAGES OF HAMEL BASES

Andrzej Nowik

ABSTRACT. Under the assumption L = V we construct a Hamel bases H_1 and H_2 of \mathbb{R} and a continuous bijection $f: H_1 \to \mathbb{R} \setminus H_2$.

1. Notation

We use the abbreviation ND for "nowhere dense set".

We write \forall_n^{∞} and \exists_n^{∞} to mean "for almost all n" and "there exists infinitely many n", respectively.

The symbol \mathcal{N} denotes the Baire space ω^{ω} .

We use the standard notation from descriptive set theory, namely Σ_1^1 denotes the collection of analytic subsets of \mathbb{R} (i.e., continuous images of the Baire space \mathcal{N}) and Π_1^1 denotes the collection of all coanalytic subsets of \mathbb{R} (i.e., $\Pi_1^1 = \{\mathbb{R} \setminus A : A \in \Sigma_1^1\}$).

Suppose that \mathcal{P} is a family of pairwise disjoint sets. Denote by $\operatorname{Sel}(\mathcal{P})$ the collection of all selectors of the family \mathcal{P} , i.e., sets $X \subseteq \cup \mathcal{P}$ such that $\forall_{P \in \mathcal{P}} | X \cap P | = 1$. A set $X \subseteq \cup \mathcal{P}$ is called a *partial selector* of \mathcal{P} iff $\forall_{P \in \mathcal{P}} | X \cap P | \leq 1$.

2. Main result

The main theorem of this paper has been motivated by the following unsolved problem:

PROBLEM 2.1 (I. Recław, private communication). Does there exist a Hamel base $H \subseteq \mathbb{R}$ such that H is homeomorphic to $\mathbb{R} \setminus H$?

²⁰⁰⁰ Mathematics Subject Classification: Primary 03E15; Secondary 03E20, 28E15. Keywords: Hamel base, analytic sets.

Partially supported by grant BW/5100-5-0201-6.

ANDRZEJ NOWIK

Also, we cannot even solve the following weaker problem which solution would lead to the construction of 2-continuous Hamel function (i.e., a solution to the problem from [PR]):

PROBLEM 2.2. Does there exist a Hamel bases H_1 and H_2 of \mathbb{R} and a continuous bijection $f : \mathbb{R} \setminus H_1 \to H_2$?

The aim of this paper is to prove that the "reverse case" (under special settheoretic assumption) holds. Namely, we have:

THEOREM 2.3. Assume L = V. Then there exist a Hamel bases H_1, H_2 of \mathbb{R} and a continuous bijection $f: H_1 \to \mathbb{R} \setminus H_2$.

Unfortunately, it does not solve the problem from [PR].

Let us formulate the main lemma on Hamel bases. Notice, that Hamel bases as partitions were considered for example in [B], however, the author considered Hamel bases as selectors of partitions with small (countable) elements. In contrast of this, here we need the large cardinality case:

LEMMA 2.4. Assume CH. Suppose that \mathcal{P} is a family of pairwise disjoint subsets of \mathbb{R} with the following properties:

- (1) $\forall_{P \in \mathcal{P}} |P| = 2^{\omega};$
- (2) $\forall_{P \in \mathcal{P}} P \text{ is nowhere dense};$
- (3) $\mathbb{R} \setminus \cup \mathcal{P}$ is meager.

Then there exists a Hamel base $H \in Sel(\mathcal{P})$.

Proof. Let $\{P_{\alpha}\}_{\alpha<2^{\omega}}$ be an enumeration of elements from \mathcal{P} . Let $\{r_{\alpha}\}_{\alpha<2^{\omega}}$ be an enumeration of all real numbers and assume that $r_{\gamma} = 0$.

We will construct partial selectors $(X_{\gamma})_{\gamma < 2^{\omega}}$ by induction.

Suppose that we have constructed $\{X_{\alpha}\}_{\alpha < \gamma}$ such that the set $X_{\gamma}^* = \bigcup_{\alpha < \gamma} X_{\alpha}$ is: linearly independent over **Q**; partial selector of \mathcal{P} , and, moreover, $r_{\gamma} \in \operatorname{span}_{\mathbf{Q}}(X_{\gamma}^*)$.

Let $\overline{\gamma} = \min\{\gamma' \ge \gamma \colon P_{\gamma'} \cap X_{\gamma}^* = \emptyset\}$ and let x_{γ} be any element of $P_{\overline{\gamma}} \setminus \operatorname{span}_{\mathbf{Q}}(X_{\gamma}^*)$. Consider two cases:

CASE 1: $r_{\gamma} \in \operatorname{span}_{\mathbf{Q}} (X_{\gamma}^* \cup \{x_{\gamma}\})$. Define $X_{\gamma} = X_{\gamma}^* \cup \{x_{\gamma}\}$.

CASE 2: $r_{\gamma} \notin \operatorname{span}_{\mathbf{Q}}(X_{\gamma}^* \cup \{x_{\gamma}\})$. Let us denote

$$Z = \operatorname{span}_{\mathbf{Q}} \left(X_{\gamma}^* \cup \{x_{\gamma}\} \right) \cup \bigcup \left\{ P \in \mathcal{P} \colon P \cap \left[X_{\gamma}^* \cup \{x_{\gamma}\} \right] \neq \emptyset \right\}$$

and choose $\overline{a} \in \mathbb{R}$ such that $\forall_{q \in \mathbf{Q} \setminus \{0\}} \forall_{q' \in \mathbf{Q}} q\overline{a} + q'r_{\gamma} \in \bigcup \mathcal{P} \setminus Z$.

We will check that $r_{\gamma} - \overline{a} \notin \operatorname{span}_{\mathbf{Q}} (X_{\gamma}^* \cup \{x_{\gamma}, \overline{a}\})$. Indeed, suppose that $r_{\gamma} - \overline{a} = p_0 \overline{a} + \sum_{i=1}^k p_i u_i$, where $u_i \in X_{\gamma}^* \cup \{x_{\gamma}\}$. Then $r_{\gamma} = (p_0 + 1)\overline{a} + \sum_{i=1}^k p_i u_i$.

Let us consider two subcases:

SUBCASE 1: $p_0 = -1$. Hence $r_{\gamma} \in \operatorname{span}_{\mathbf{Q}}(X_{\gamma}^* \cup \{x_{\gamma}\})$ which is a contradiction. SUBCASE 2: $p_0 \neq -1$. In this case $\overline{a} = \frac{1}{p_0+1} \cdot \left(r_{\gamma} - \sum_{i=1}^k p_i u_i\right) \in \frac{1}{p_0+1} \cdot (r_{\gamma} + Z)$ which is impossible by the choice of \overline{a} .

Suppose by way of contradiction that $\forall_{w \in \mathbf{Q} \setminus \{0\}} w(r_{\gamma} - \overline{a}) \in P^*$, where P^* is (the unique) element from \mathcal{P} such that ${}^1 \overline{a} \in P^*$. This is, however, impossible since P^* is nowhere dense. Therefore there exists, say $w^* \in \mathbf{Q} \setminus \{0\}$ such that $w^*(r_{\gamma} - \overline{a}) \notin P^*$. Let us put $X_{\gamma} = X_{\gamma}^* \cup \{\overline{a}, w^*(r_{\gamma} - \overline{a})\}$.

Define $H = \bigcup_{\gamma \in 2^{\omega}} X_{\gamma}$ and this Hamel base has all the required properties. \Box

We will use the following characterization of the Baire space ω^{ω} which is due to Alexandrov and Urysohn:

Characterization. A topological space X is homeomorphic to ω^{ω} iff X is completely metrizable, separable, 0-dimensional space, and that there is no nonempty open compact subset of X.

This characterization implies:

COROLLARY 2.5. If $U \subseteq \omega^{\omega}$ is a nonempty open set, then \overline{U} is homeomorphic to ω^{ω} .

We will need the following interesting in itself lemma. First of all let us recall the following definition (see for example [KMM], the definition before Lemma 7):

DEFINITION 2.6. A nonempty subset A of a Polish space X is locally uncountable iff every nonempty relatively open subset of A is uncountable.

Notice that in [KMM] the authors proved ([KMM, Lemma 7]) that if B is a locally uncountable Borel set, then there is a continuous bijection $\psi \colon \mathcal{N} \to B$. Following this result we prove a theorem about analytic subsets.

THEOREM 2.7. If A is a subset of a Polish space, then the following conditions are equivalent:

- (1) A is analytic locally uncountable.
- (2) There exists a continuous surjection $\rho: \mathcal{N} \to A$ such that $\forall_{y \in A} \rho^{-1}[\{y\}]$ is nowhere dense.
- (3) There exists a continuous surjection $\rho: \mathcal{N} \to A$ such that $\forall_{y \in A} \rho^{-1}[\{y\}]$ is nowhere dense set of size 2^{ω} .

Proof. (2) \Rightarrow (1). Let us assume that $A \subseteq \mathbb{R}$ is a Σ_1^1 subset of the real line such that there is a continuous surjection $\rho \colon \mathcal{N} \to A$ with ND fibres.

 $^{^{1}}$ I would like to thank Prof. Nikodem Mrożek for suggesting this method.

Then A is locally uncountable. Indeed, if $a \in A$ and x < a < y then the preimage $\rho^{-1}[(x;y) \cap A]$ is nonempty, open, so there are uncountably many z in $(x;y) \cap A$, hence $|(x;y) \cap A| = 2^{\omega}$.

 $(1) \Rightarrow (2)$. Suppose now that A is an analytic locally uncountable set. Let $\rho: \mathcal{N} \to A$ be any continuous surjection. Let $A^* = \{y \in A: \rho^{-1}[\{y\}] \notin \mathsf{ND}\}$. Since A^* is a countable set let us choose an enumeration without repetitions of all elements of A^* :

$$A^* = \{y_0, y_1, y_2, \ldots\}.$$

Notice that in the case $|A^*| < \aleph_0$ we can choose a finite enumeration of elements of A^* , namely:

$$A^* = \{y_0, y_1, y_2, \dots, y_N\}.$$

For each $k \in \omega$ let us choose a homeomorphic embedding $h_k: 2^{\omega} \to A$ such that diam $(h_k[2^{\omega}]) < \frac{1}{2^k}$ and moreover $h_k(\underline{0}) = y_k$, where $\underline{0} \in 2^{\omega}$ denotes a zero constant function. Denote: $E_k = \rho^{-1}[\{y_k\}], U_k = \operatorname{int}(E_k)$ and $N_k = \overline{U_k}$, notice that since $E_k \notin \operatorname{ND}, U_k \neq \emptyset$.

By virtue of Corollary 2.5 we conclude that the space N_k is homeomorphic to ω^{ω} .

We will use the following (folklore?) lemma:

LEMMA 2.8. Suppose that $X \subseteq \omega^{\omega}$ is a ND set. There exists a homeomorphism $b: \omega^{\omega} \to \omega^{\omega}$ such that $b[X] \subseteq \text{Even}^{\omega}$, where $\text{Even} = \{2n: n \in \omega\}$.

Since N_k is homeomorphic to ω^{ω} and $N_k \setminus U_k$ is a ND subsets of N_k , we conclude from the Lemma 2.8 that there is a homeomorphism $b_k \colon N_k \to \omega^{\omega}$ such that $b_k[N_k \setminus U_k] \subseteq \text{Even}^{\omega}$. Let $i \colon \omega^{\omega} \to 2^{\omega}$ be a continuous surjection given by: $i(x)(k) = (x(k) \mod 2)$.

For $x \in N_k$ denote $\rho_k(x) = h_k(i(b_k(x)))$ and define function $\rho^* \colon \omega^{\omega} \to A$ as follows:

$$\rho^*(x) = \begin{cases} \rho(x) & \text{if } x \in \omega^{\omega} \setminus \bigcup_{k \in \omega} N_k, \\ \rho_k(x) & \text{if } x \in N_k \text{ for some } k \end{cases}$$

We will check that such defined function ρ^* has the required properties:

SURJECTION: Let $y \in A$. If $y \notin A^*$ then let $x \in \rho^{-1}[\{y\}]$ be arbitrary. Then $x \notin \bigcup_{k \in \omega} E_k$, hence $x \in \omega^{\omega} \setminus \bigcup_{k \in \omega} E_k \subseteq \omega^{\omega} \setminus \bigcup_{k \in \omega} N_k$, therefore $\rho^*(x) = \rho(x) = y$.

Suppose on the other hand that $y \in A^*$. Then $y = y_k$ for some $k \in \omega$. Since $h_k(\underline{0}) = y_k$ and i, b_k are surjections we conclude that $y_k \in \operatorname{ran}(\rho^*)$.

CONTINUITY: Suppose that $\{x_m\}_{m\in\omega}$ is a sequence from ω^{ω} convergent to x^* . Let us consider several cases:

CASE 1: $x^* \in U_k$ for some $k \in \omega$.

Then $\forall_m^{\infty} x_m \in U_k$, hence $\rho^*(x_m) = \rho_k(x_m) \to \rho_k(x^*) = \rho^*(x^*)$ since ρ_k is continuous.

CASE 2: $x^* \in \omega^{\omega} \setminus \bigcup_{k \in \omega} N_k$.

Then $\forall_{k\in\omega}\forall_m^{\infty}x_m \notin N_k$, since N_k is a closed set, so $\forall_{\eta>0}\forall_m^{\infty}|\rho^*(x_m)-\rho(x_m)| < \eta$. This follows from the observation that if $x' \in N_k$ then $|\rho^*(x')-\rho(x')| < \frac{1}{2^k}$, since $\rho(x') = y_k \in h_k[2^{\omega}]$ and $\rho^*(x') \in h_k[2^{\omega}]$.

Since $\rho(x_m) \to \rho(x^*)$ and $\rho(x^*) = \rho^*(x^*)$ we conclude that $\rho^*(x_m) \to \rho^*(x^*)$, too.

CASE 3: $x^* \in N_k \setminus U_k$ for some $k \in \omega$. Then $\rho^*(x^*) = h_k(i(b_k(x^*))) = h_k(\underline{0})$ = y_k .

As the sets N_j are closed pairwise disjoint, $\forall_{j \neq k} \forall_m^{\infty} x_m \notin N_j$. By splitting the sequence $\{x_m\}_m$ if necessary, we have to consider two subcases:

- $\forall_m x_m \in N_k$. Then $\rho^*(x_m) = \rho_k(x_m) \to \rho_k(x^*)$.
- $\forall_j \forall_m^{\infty} x_m \notin N_j$. Then, like in Case 2, $\forall_{\eta>0} \forall_m^{\infty} | \rho^*(x_m) \rho(x_m) | < \eta$ but then $\rho(x_m) \to \rho(x^*) = y_k$, therefore $\rho^*(x_m) \to y_k = \rho^*(x^*)$.

Nowhere Dense: Let $y \in A$.

$$(\rho^*)^{-1}[\{y\}] = \left(\rho^{-1}[\{y\}] \cap \left(\omega^{\omega} \setminus \bigcup_{k \in \omega} N_k\right)\right) \cup \left((\rho^*)^{-1}[\{y\}] \cap \left(\bigcup_{k \in \omega} N_k\right)\right).$$

If $y \notin A^*$ then $\rho^{-1}[\{y\}] \in \mathsf{ND}$, hence $\rho^{-1}[\{y\}] \cap (\omega^{\omega} \setminus \bigcup_{k \in \omega} N_k) \in \mathsf{ND}$, too. If $y \in A^*$ then there is $k \in \omega$ such that $y = y_k$. Hence

$$\rho^{-1}[\{y\}] \cap \left(\omega^{\omega} \setminus \bigcup_{k \in \omega} N_k\right) = E_k \setminus N_k \subseteq E_k \setminus \operatorname{int}(E_k) \in \mathsf{ND}$$

For every $y \in A$ we have $\rho_k^{-1}[\{y\}] \in \mathsf{ND}(N_k)$, hence $\rho_k^{-1}[(\{y\}] \in \mathsf{ND}$. This shows that $(\rho^*)^{-1}[\{y\}] \cap (\bigcup_{k \in \omega} N_k) \in \mathcal{M}$, therefore $(\rho^*)^{-1}[\{y\}] \in \mathcal{M}$, hence $(\rho^*)^{-1}[\{y\}] \in \mathsf{ND}$.

 $(2) \Rightarrow (3)$. Suppose that $\rho \colon \mathcal{N} \to A$ is a continuous surjection. Let $g \colon \mathcal{N} \to \mathcal{N} \times \mathcal{N}$ be any fixed homeomorphism and let $\pi_1 \colon \mathcal{N} \times \mathcal{N} \to \mathcal{N}$ denote the standard projection onto the first coordinate. It suffices to define $\rho^* = \rho \circ \pi_1 \circ g$:

$$\mathcal{N} \to_g \mathcal{N} \times \mathcal{N} \to_{\pi_1} \mathcal{N} \to_{\rho} A.$$

Let us prove Theorem 2.3:

Proof of Theorem 2.3. We need the following result.

THEOREM 2.9 ([M], Theorem 9.26). Assume L = V. Then there exists a Π_1^1 Hamel base for \mathbb{R} .

57

Let H_2 be a Π_1^1 Hamel base from this theorem. Since $\mathbb{R} \setminus H_2$ is a locally uncountable (being a complement of a Hamel base) Σ_1^1 set there exists a continuous surjection $f: \mathcal{N} \to \mathbb{R} \setminus H_2$.

By virtue of Lemma 2.7 we may assume that $\forall_{y \in \mathbb{R} \setminus H_2} f^{-1}[\{y\}]$ is ND and of size 2^{ω} .

It is easy to observe that the family \mathcal{P} defined by

$$\mathcal{P} = \left\{ f^{-1} \big[\{y\} \big] \colon y \in \mathbb{R} \setminus H_2 \right\}$$

satisfies all assumptions of Lemma 2.4. Hence we can find a Hamel base $H_1 \in \text{Sel}(\mathcal{P})$ and this Hamel base has all required properties. \Box

Question 2.10. Is it possible to prove Theorem 2.3 without the assumption L = V?

Acknowledgement. The author would like to express his sincere gratitude to the referee who did a lot to improve the paper with a number of expert comments.

REFERENCES

- [B] BEŠLAGIĆ, A.: Partitions of vector spaces, Proc. Amer. Math. Soc. 110 (1990), 491–493.
- [KMM] KOMISARSKI, A.—MICHALEWSKI, H.—MILEWSKI, P.: Functions equivalent to Borel measurable ones (preprint).
- [M] MILLER, A.: Infinite combinatorics and definability, Ann. Pure Appl. Logic 41 (1989), 179–203.
- [PR] PLOTKA, K.—RECLAW, I.: Finitely continuous Hamel functions, Real Anal. Exchange 30 (2004/2005), 867–870.

Received November 11, 2006

Department of Mathematics Gdańsk University Wita Stwosza 57 PL-80-952 Gdańsk POLAND E-mail: matan@julia.univ.gda.pl