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THE STABLE POINTS AND THE ATTRACTORS OF

DARBOUX FUNCTIONS

Helena Pawlak — Ryszard J. Pawlak

ABSTRACT. A special kind of stable points for an established family of func-
tions which are continuous in suitable topologies introduced in R is considered.

Introduction

The family of Darboux functions contains many important classes of map-
pings (for example: derivatives, approximately continuous functions, etc.). Re-
cently, a lot of interesting results connected with dynamical systems generated
by discontinuous functions have also been connected with the Darboux functions
([6], [14], [19], [20]), and moreover, many considerations connected with various
topics close to dynamical systems lead us to the situation when the base of these
considerations are Darboux functions, e.g., [13]. On the other hand, the restric-
tion on some investigations of the functions belonging to suitable subsets of the
family of Darboux functions permits to obtain analogous statements, as for con-
tinuous functions [6], [19], [16]. For example, a transitive map with two points
of discontinuity does not have a dense orbit in general [18], however if we con-
sider a special kind of Darboux functions, we can obtain statements analogous
to results known for continuous functions [16].

This paper is a continuation of the considerations contained in [16] (in the
case of functions mapping the real line into the real line). Consequently, we
will use convenient tools connected with bi-topological spaces (which lead us to
T-continuous functions) but we will not exhibit this topic.

We will consider functions f : R −→ R.
In the monograph [2] one can read that a point x0 is said to be a stable point

of f if for each open set U ∋ x0 there exists an open set V ∋ x0 such that

γf (x) =
{

fn(x) : n ≥ 0
}

⊂ U, for any x ∈ V.
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Consequently, we can deduce that (with no assumptions connected with con-
sidered functions):

• If x0 is a stable point of f , then x0 is a fixed point of f .

• If x0 is a stable point of f , then x0 is a continuity point of f .

For the sake of the second property, if we intend to consider discontinuous
functions then it is necessary to modify the above definition. The main idea of
this modification is to preserve the character such kinds points, and, on the other
hand, to introduce of a generalization useful for Darboux functions.

1. Preliminaries

We will use standard definitions and notations mostly (see [1], [2], [4], [12]).
In particular, by the letter N (R) we will denote the set of all natural 1 (real)
numbers.

The symbols A and Int(A) stand for the closure and interior of the set A,
respectively. By the symbol CP (A) we shall denote the family of all components
of A.

We will consider the behaviour of some real functions defined on the real line
R and we will consider iterations of such kinds of functions: f0(x) = x, and
fn(x) = f

(

fn−1(x)
)

, if n > 0.

If T is a topology in R, then we will use the notation T -open set, T -closed set,
etc. to denote that these properties of sets are connected with the topology T .
The notations open set, closed set, etc., stand for properties in the natural
topology of subsets of R. Let g : R −→ R. The notation g is T -continuous
function means that g−1((a, b)) ∈ T , for any open interval (a, b).

If we intend to consider Darboux functions, then we can require, the T -conti-
nuous functions to have Darboux property ([21], [17]) and consequently, we have
to exclude the topologies giving isolated points. Simultaneously, these topologies
will be used for generalization of the notion of “stable points”. Endeavouring for
this generalization we require, usual stable points to be obtained by putting
the usual topology instead of T (so we have to assume that our topologies
are finer than the natural topology of the real line). Consequently, the above
considerations and results presented in [16] seem to suggest that in our case it
is profitable to distinguish the following class of topologies.

Let τR be the family of topologies finer than the natural topology of R such
that if T ∈ τR, then each T -continuous function f has a Darboux property.

We make only one change in the basic definition of a stable point.

1 That is positive integer.
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Let T ∈ τR. A point x0 is said to be a T -stable point of f if for each open set
U ∋ x0 there exists a T -open set V ∋ x0 such that

γf (x) =
{

fn(x) : n ≥ 0
}

⊂ U, for any x ∈ V.

Let us notice that in the above definition we use tools connected with bi-
topological spaces, since they are only the tools, we will not consider this problem
more widely.

We will denote by ωf (x) the set of all accumulation points of the sequence
{

fn(x)
}∞

n=0
. Moreover, we establish another notation: Intf (A) = {t ∈ A : fn(t)

∈ Intfn(A), n = 0, 1, 2, . . . }. By the symbol Fix(f) we will denote the set of all
fixed points of f , i.e., Fix(f) =

{

x : f(x) = x
}

.

If A is a subset of the domain of f , then f ↾ A denotes the restriction of f
on A. We say that a set A is f -invariant if f(A) ⊂ A.

Let {An} be a sequence of subsets of the real line. We will denote An ց x0

(An ր x0) if for each ǫ > 0 there exists a positive integer N such that

An ⊂ (x0, x0 + ǫ)
(

An ⊂ (x0 − ǫ, x0)
)

, for any n ≥ N.

An idea of the undermentioned notions derives from [7], [9], [10], [5], [12],
[15]. Let J be a nondegenerate interval. By a J -trajectory we mean any sequence
{dn} ⊂ Int(J) of distinct points such that {dn : n = 1, 2, . . . } is a dense set
in J . For a given nonempty J -open set 2 V , r{dn}(V ) (or shortly r(V ), if the
J -trajectory is fixed) will be the first element of the sequence {dn} in V .

For x ∈ J the left first return path to x based on {dn}, P l
x = {tk : k = 1, 2, . . . }

is defined recursively via

t1 = r((−∞, x)), tk+1 = r((tk, x)).

For x ∈ J the right first return path to x based on {dn}, P r
x = {sk : k = 1, 2, . . . }

is defined analogously

s1 = r((x,+∞)), sk+1 = r((x, sk)).

Of course, if x is an endpoint of J , then we have only one-side first return path
to x based on {dn}.

A function f : J → R is first return continuous from the left (right) at x with
respect to the J -trajectory {dn} provided that

lim
t→x
t∈P l

x

f(t) = f(x)



 lim
t→x
t∈P r

x

f(t) = f(x)



 .

2 V is an open set in the subspace J of the space R such that V ∩ J 6= ∅.
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We say that f : J → R is a first return continuous function at x with respect
to the J -trajectory {dn} provided it is both left and right first return continuous
at x with respect to the J -trajectory {dn}.

Let {dn} be a fixed J -trajectory. A function f : J → R is an
(

J, {dn}
)

-first

return continuous function (we denote f ∈ FRC
(

J, {dn}
)

) if it is first return
continuous at each point x ∈ (a, b) = Int(J) (with respect to the J -trajectory
{dn}) and if a 6= −∞ (b 6= +∞) then f is first return continuous from the right
(left) at a (b) with respect to the J -trajectory {dn}.

We will say that f ∈ FRC(J) if there exists a J -trajectory {dn} such that
f ∈ FRC

(

J, {dn}
)

.

Let D (B1) denote the class of all Darboux functions, i.e., functions having
Darboux property or, in other words, intermediate value property ([3]) (functions
in Baire class 1). If we wish to consider the intersection of D and B1, we shall
write them next to each other, i.e., DB1 consists of all Darboux functions in
Baire class 1.

Let H be an open and dense set (od-set for short) in R. We will say that
f ∈ FRC∗(H) if for each component J = (a, b) of H f ↾ J ∈ DB1 and there
exist open intervals I,K ⊂ J such that Intf (I) 6= ∅ 6= Intf (K) and fn(I) ց a,
fn(K) ր b. Of course, if a = −∞ (b = +∞) then (in the above definition) we
have to omit the set I (K) and assumptions connected with this set.

2. Main results

In the further considerations, if we write “x0 is a T -stable point ”, then we
always assume that T ∈ τR.

We start with the observation that (similar as in the case of stable points):
T -stable points are fixed points of considered functions.Proposition 2.1. If x0 is a T -stable point of f , then x0 is a fixed point of f .

P r o o f. Suppose, on the contrary, that f(x0) 6= x0. Let ǫ = 1
2
| f(x0)−x0 |> 0.

Then f(x0) /∈ (x0 − ǫ, x0 + ǫ). On the other hand, γf (x0) ⊂ (x0 − ǫ, x0 + ǫ),
a contradiction. �

As we see, this very important property of stable points has been preserved
in the case of T -stable points. However, it can be shown, that T -stable points
need not be continuity points of f (in the usual topology).

Now, we have a base for the introduction of the notion of a T -attractor.

Let T ∈ τR. A nonempty closed set A ⊂ R is said to be a T -attractor of f if
a is a T -stable point of f , for any a ∈ A and there exists a T -open set V ⊃ A
such that ωf (x) ⊂ A for each x ∈ V .
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THE STABLE POINTS AND THE ATTRACTORS OF DARBOUX FUNCTIONSProposition 2.2. Any T -attractor of f consists of fixed points of f .

As a result, if we intend to consider a set A to be a T -attractor, then it is
natural that A ⊂ Fix(f).

According to the results in [7] and [8] we have:Lemma 2.3. If J is a compact interval then a function f : J −→ R is a Darboux
Baire one function iff f ∈ FRC(J).

Now, we shall give some sufficient conditions for the fact that a fixed set A is
a T -attractor of f (for some topology T ∈ τR).Theorem 2.4. Let f : R −→ R and A ⊂ R be a nowhere dense and closed
set, f ∈ FRC∗(R \A) and A ⊂ Fix(f). Then f is a Darboux function and there
exists a topology Tf ∈ τR such that A is a Tf -attractor of f .

In the further considerations, if we write Tf , then we understand that it is
topology constructed by means of the method described in this proof.

P r o o f. First, we will construct a suitable topology Tf ∈ τR.

Let us denote HA = R \ A and let x0 ∈ R.

Of course, HA is an open and dense set.

If x0 ∈ HA, then there exists nx0
∈ N such that

(

x0 −
1

nx0

, x0 + 1
nx0

)

⊂ HA.

Let us put

BTf
(x0) =

{

Um(x0) =

(

x0 −
1

m
, x0 +

1

m

)

∩ f−1

(

(

f(x0) −
1

m
, f(x0) +

1

m

)

)

: m = nx0
, nx0

+ 1, . . .

}

.

(1)

Now, we will consider the case x0 /∈ HA. First, we will define the “right-hand
neighbourhood” of x0. To do this it is convenient to consider two cases.

1) There exists (a, b) ∈ CP (HA) (a < b) such that x0 = a. Let I0 be an open
interval such that Intf (I0) 6= ∅ and fn(I0) ց a. Then there exists n0 such
that fn(I0) ⊂ (a, b), for n ≥ n0.

Let us denote I1 = fn0(I0). Then fn(I1) ⊂ (a, b) (n = 1, 2, . . . ),
Intf (I1) 6= ∅ and fn(I1) ց a. Let x1 ∈ I1 be a point such that fn(x1)
∈ Intfn(I1) (n = 0, 1, 2, . . . ). So, let us put

xn+1 = fn(x1), for n = 1, 2, . . .

It is easy to see that {xn : n = 0, 1, 2, . . . } ⊂ (a, b) ⊂ HA and xn → a.
For each n = 1, 2, . . . let kn be a positive integer such that

Ukn
(xn) ∈ BTf

(xn) and Ukn
(xn) ⊂ Int

(

fn−1(I1)
)

.
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Let us put

B+
Tf

(x0) =

{

U+
m(x0) = {x0} ∪

∞
⋃

n=m

Ukn
(xn); m = 1, 2, . . .

}

.

Note that in this case for every η > 0 there exists m∗ such that

f
(

U+
m(x0)

)

⊂ [x0, x0 + η), for m ≥ m∗. (2)

Let m∗ be a positive integer such that fm(I1) ⊂ (x0, x0 + η), for m ≥ m∗.
So let

U+
m(x0) = {x0} ∪

∞
⋃

n=m

Ukn
(xn) ∈ B+

Tf
(x0) (for m ≥ m∗).

Note that

f
(

Ukn
(xn)

)

⊂ (x0, x0 + η), for n = m∗,m∗ + 1, . . .

This finishes the proof of (2).
Moreover, it is easy to see that if

(x0, y) ∈ CP (HA), then fk
(

U+
m(x0)

)

⊂ [x0, y), (3)

for any k and m.

2) There is no (a, b) ∈ CP (HA) such that x0 = a. Let us denote by Rr
m(x0)

the set of all points t ∈
(

x0, x0 + 1
m

)

such that t is a left endpoint of some
component of HA. Since A ⊂ Fix(f), then limt→x0,t∈Rr

m(x0) f(t) = f(x0),
for any m.

So let us define

B+
Tf

(x0) =







U+
m(x0) = {x0} ∪

⋃

t∈Rr
m(x0)

(

U+
m(t) \ {t}

)

: m = 1, 2, . . .







.

Let us note that in this case for each η > 0 there exists m∗ such that

f
(

U+
m(x0)

)

⊂ [x0, x0 + η) =
[

f(x0), f(x0) + η
)

, for m ≥ m∗. (4)

Let m∗ be a positive integer such that if (t1, t2) ∈ CP (HA) and t1 <
x0 + 1

m∗
then t2 < x0 + η. Then for any m ≥ m∗ and t ∈ Rr

m(x0) we have
U+

m(t) ⊂ (x0, x0 + η) which, according to (3), finishes the proof of (4).

In a similar way we can define a “left-hand” base at x0 :

B−
Tf

(x0) =
{

U−
m(x0) : m = 1, 2, . . .

}

.

Finally, let BTf
(x0) =

{

Um(x0) : m = 1, 2, . . .
}

, where if x0 ∈ HA then
Um(x0) have been defined in (1) and if x0 /∈ HA, then Um(x0) = U+

m(x0)
∪ U−

m(x0), for m = 1, 2, . . .
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It is not hard to verify that the family
{

B(x) : x ∈ R
}

fulfils the conditions
(BP1), (BP2), (BP3) from [11]. Then we can consider topology Tf in R generated
by the neighbourhood system

{

B(x) : x ∈ R
}

(Proposition 1.2.3, [11]).

In the next step of the proof, we will show that

Tf ∈ τR. (5)

Of course, Tf is a finer topology than the natural topology of R. Now, let
C(Tf ) be a family of all Tf -continuous functions. Let us establish a function
h ∈ C(Tf ). For the proof of (5) it is necessary to show that

h is a Darboux function. (6)

First, we remark that if [p, q] ⊂ (a, b) ∈ CP (HA) is a compact interval, then

h ↾ [p, q] ∈ DB1. (7)

Let f∗ = f ↾ [p, q] and h∗ = h ↾ [p, q]. Since f∗ ∈ DB1 then (Lemma 2.3)
there exists [p, q]-trajectory {dn} such that f∗ ∈ FRC

(

[p, q], {dn}
)

. It is not hard

to verify, that h∗ ∈ FRC
(

[p, q], {dn}
)

. Consequently, according to Lemma 2.3,
h ↾ [p, q] ∈ DB1.

According to (7) we can deduce that if (p, q) ⊂ (a, b) ∈ CP (HA), then

h ↾ [p, q] ∈ DB1. (8)

Now, we set about proving (6). On the contrary, suppose that h is not a Dar-
boux function. This means that there exist real numbers a, b ∈ R (there is no
loss of generality in assuming a < b) and α ∈ R such that

h(a) < α, h(b) > α and h−1(α) ∩ (a, b) = ∅.

On account of Tf -continuity of h and the form of local bases B(a) and B(b)
we infer that there exist a1, b1 ∈ HA ∩ [a, b] such that h(a1) < α and h(b1) > α.
Let (p, q) be a component of HA such that a1 ∈ (p, q). From (8), h ↾ [p, q] ∈ DB1,
which means that

a0 = sup
{

x > a1 : [a1, x) ⊂ h−1((−∞, α))
}

> a1.

It is obvious that a0 < b1. Moreover, let us notice that if

a0 /∈ HA and C ∈ CP (HA), (9)

then a0 is not a left-hand endpoint of C. So, we can consider two cases:
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1) a0 ∈ h−1((α,∞)). Thus, according to Tf -continuity of h at a0 and the form
of B(a), we deduce that there exists a2 ∈ (a1, a0) such that h(a2) > α,
which contradicts the definition of a0.

2) a0 ∈ h−1((−∞, α)). Let Um′(a0) ∈ B(a0) be a set such that h
(

Um′(a0)
)

⊂ (−∞, α) and let a∗ > a0 be a fixed element of Um′(a0). Let us consider
a family

T =
{

(t1, t2) ∈ CP (HA) : a0 < t2 < a∗
}

6= ∅.

Then

(t1, t2) ∩ Um′(a0) 6= ∅, for any (t1, t2) ∈ T.

Since h ↾ [t1, t2] is a Darboux function, then
⋃

(t1,t2)∈T

[t1, t2] ⊂ h−1((−∞, α)).

According to the Tf -continuity of h, we can infer that

z ∈ h−1((−∞, α)), for every z ∈ [a0, a
∗],

which contradicts the definition of a0.
In both cases we obtain a contradiction. This finishes the proof of (6) and,
at the same time, the proof of (5) is finished, too.

For the proof of a Darboux property of the function f it is sufficient to show
that

f is a Tf -continuous function. (10)

We shall show that f is Tf -continuous at any point y0 ∈ R. It is sufficient to
restrict our considerations for the case y0 /∈ HA. Thus f(y0) = y0. On account
of (2) and (4) we infer that for every ǫ there exists mǫ such that

f
(

U+
mǫ

(y0)
)

⊂
[

f(y0), f(y0) + ǫ
)

.

In a similar way we can consider the “left-hand” Tf -neighbourhood of y0, that
permits us to conclude that f is a Tf -continuous function at y0.

Now, we shall show that

A is a Tf -attractor of f. (11)

Let us fix a point w ∈ A. First, we shall show that

w is a Tf -stable point of f. (12)

Let U be an arbitrary open set containing w and let ǫw be a positive real
number such that (w − ǫw, w + ǫw) ⊂ U .

Let us first examine a case when there exists a number v > w such that
(w, v) ∈ CP (HA). Let us go back to the construction of the “right-hand” base
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B+
Tf

at points being left endpoint of some component of HA. We will use a no-

tation similar as in the case of this construction, to that except for a and b
(we replace a with w and b with w + ǫw) and let mw be a positive integer such
that fm(I1) ⊂ (w,w + ǫw), for any m ≥ mw. Then fn(z) ∈ [w,w + ǫw), for any
z ∈ U+

m(w) and positive integer n and m ≥ mw.

Let m ≥ mw and n be a fixed positive integer. Then

U+
m(w) = {w} ∪

∞
⋃

n=m

Ukn
(xn) ⊂ {w} ∪

∞
⋃

n=m

fn−1(I1).

Let z ∈ U+
m(w). We can omit easy considerations connected with the case z = w.

So, we can assume that z ∈
∞
⋃

n=m

fn−1(I1). Let n′ be a number such that n′ ≥ m

and z ∈ fn′−1(I1). Thus fn(z) ∈ fn+n′−1(I1) and consequently fn(z) ∈ (w,w +
εw).

Now, we will consider the case when there is no positive integer v > w such
that (w, v) ∈ CP (HA). So, let m′ be a natural number such that if (t1, t2)
∈ CP (HA), t1 < t2 and if t1 < w + 1

m′
, then t2 < w + ǫw.

Let m0 be a fixed positive integer such that m0 > m′ and let us consider

U+
m0

(w) = {w} ∪
⋃

t∈Rr
m0

(w)

(

U+
m0

(t) \ {t}
)

.

If n is any positive integer and z ∈ U+
m0

(w) then, according to (3), we infer that
fn(z) ∈ [w,w + ǫw).

We can give similar considerations for the case of a “left-hand” Tf -neighbour-
hood of w.

The above considerations permit us to infer that there exists a Tf -open set
V ∋ x0 such that

γf (x) ⊂ (w − ǫw, w + ǫw) ⊂ U, for each x ∈ V.

It remains to prove that there exists; a Tf -open set V such that

V ⊃ A and ωf (x) ⊂ A, for any x ∈ V. (13)

Let k be a fixed positive integer and let us put V =
⋃

x∈AUk(x), where
Uk(x) ∈ BTf

(x). Then V is a Tf -open set and A ⊂ V . Finally, let z ∈ V . If
z ∈ A, then fn(z) = z ∈ A (n = 1, 2, . . . ). So, we will restrict our considerations
for the case z /∈ A. Then z ∈ (a, b) ∈ CP (HA) and z ∈ Uk(x), for some x ∈ A.
Consequently, z ∈ f l(I2), where I2 is an interval such that fn(I2) ց a and l is
a positive integer. It is easy to see that fn(z) → a ∈ A. �
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In the above theorem we have considered attractors which are outside of
a suitable od-set. The next theorem is some kind of complement of these con-
siderations. The notion of path derivatives ([3],[4]) will be very useful in it.

Let x0 ∈ R. A path leading to x0 is a set Px0
⊂ R such that x0 ∈ Px0

and x0

is a point of accumulation of Px0
. The collection {Px : x ∈ R} is called the path

system.

Let f : R −→ R and let P = {Px : x ∈ R} be any path system. If the

lim
y→x,y∈Px\{x}

f(y) − f(x)

y − x
= F (x)

exists and is finite, then we say that f is P -differentiable at x. We use the
notation F = f ′

P .

The next theorem is similar to the well-known theorem connected with the
usual derivative (and usual attractors) ([2]). Of course, in account of our con-
siderations, it is impossible to apply the usual derivative.Theorem 2.5. Let f : R −→ R and let A ⊂ R be a closed set such that
A ⊂ Fix(f). If T ∈ τR is a topology such that f is a T -continuous function
and for every a ∈ A there exists a local base BT (a) of (R,T ) at a consisting of
f -invariant sets such that

f ′
U (a) ∈ (−1, 1), for some U ∈ BT (a),

then A is a T -attractor of f .

P r o o f. Let us fix a ∈ A and let W be an arbitrary open set containing a. Now,
we can establish a set U ∈ BT (a) such that U ⊂ W and f ′

U (a) = αa ∈ (−1, 1).
Let βa ∈ (0, 1) be a real number such that | αa |< βa. This yields there exists
δ > 0 such that

f(x) − f(a)

x − a
∈ (−βa, βa), for x ∈ (a − δ, a + δ) ∩ U \ {a}. (14)

Let Ua ∈ BT (a) be an f -invariant set such that Ua ⊂ (a − δ, a + δ) ∩ U . On
account of (14), we have

| f(x) − f(a) |

| x − a |
< βa, for x ∈ Ua \ {a}.

Consequently,

| f(x) − a |≤ βa· | x − a |, for x ∈ Ua. (15)

It is obvious that if y ∈ Ua, then

fn(y) ∈ Ua, for n = 1, 2, . . . (16)

Therefore

fn(y) ∈ U ⊂ W, for n = 1, 2, . . .
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This finishes the proof that a is a T -stable point of f .

Now, let us put UA =
⋃

a∈A

Ua and let z ∈ UA. Finally, let t ∈ ωf (z), i.e., there

exists an increasing sequence {nk} such that fnk(z) → t. Let us remark that
there exists az ∈ A such that z ∈ Uaz

. So, according to (15) and (16), we have

| fn(z) − az |≤ βaz
· | fn−1(z) − az |≤ · · · ≤ βn

az
· | z − az | .

Consequently, fn(z) → az ∈ A, which gives t = az ∈ A. �
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