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INTERSECTIONS OF RANGES OF ADDITIVE
GENERATORS OF ASSOCIATIVE FUNCTIONS

PETER VICENIK

ABSTRACT. The structure of the set B of all ranges of additive generators
of associative functions is studied here. Sufficient conditions for NS ; A, € B,
where A,, € B for all n € N, are introduced. Examples of elements of B which are
nowhere dense in [0, 00] and contain 0 as an accumulation point are presented.

1. Introduction

Non-continuous additive generators of associative functions are investigated.
The associativity of a generated function depends only on properties of the range
of its additive generator. In this paper the intersections of ranges of additive
generators of associative functions are studied.

The idea of representing the special associative functions by means of func-
tions of one variable goes back to A bel [1]. Many results concerning the repre-
sentation of associative functions appeared later in the framework of the semi-
group theory and the theory of functional equations. In the context of trian-
gular norms (triangular conorms) the representation theorems were introduced
by Ling [4] and Schweizer and Sklar [5], [6]. Klement, Mesiar and
Pap [3] studied additive generators of triangular norms (triangular conorms)
whose ranges are relatively closed under the usual addition. Many results con-
cerning the additive generators of associative functions whose ranges are not
relatively closed under the usual addition were introduced in [8]-[12].
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2. Preliminaries

Each strictly monotone function f : [0,1] — [0, 00] yields the function F' :
[0,1]2 — [0, 1] via the formula

F(z,y) = fCV(f(2) + fly))  forall a,ye0,1], (1)
where f(=1) : [0, 00] — [0,1] is the pseudo-inverse of f, i.e.,

f(_l)(y) _ sup(:v € 0,1]] f(x) > y) if  f is strictly decreasing,
sup(z € [0,1] | f(z) <y) if [ is strictly increasing,
where sup® = 0. The function f is said to be an additive generator of F. In
general, the function F' need not be associative. The associativity of F' depends
only on the properties of Ran(f) = {z € [0,00] | 3¢ € [0,1], f(t) =z} of f.
Write

F={f:[0,1] = [0,00] | f is a strictly monotone function },
G=1{f:[0,1] = [0,00] | f € F generates via (1) an associative function},
and
A= {AQ [0,00] | 3 f € F, Ran(f) :A},
B={AC0,0¢]|3f€gRan(f)=A}.
Obviously,
GCF and BCA.

Let A € B.If f € F with Ran(f) = A then f € G. Let A € A. If A is
relatively closed under the usual addition (Vx,y € A, z +y € AU [s, 0], where
s = sup(A\ {max(A4)})), then A € B (see, [3]).

The main problem is the following one: What are the sufficient conditions for
N>, A, € B, where A,, e Bforallne N, (N ={1,2,...})?

In Section 3 some sufficient conditions for N2, A,, € B, where A,, € B for all
n € N, are introduced. The first example of a set A € B which is nowhere dense
in [0, 0] and contains 0 as an accumulation point was introduced in [9] and can
be found in [12]. In this paper some other examples of the sets A € B which are
nowhere dense in [0, 00] and contain 0 as an accumulation point are presented.

2.1. The range of f € F

We will use some properties of the range of a strictly monotone function
[11]: Let A € A and A # [0,00]. Then there exist the uniquely determined non-
empty countable system S = {[by,di] C [0,00] | k € K} of pairwise disjoint
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intervals of a positive length and the uniquely determined non-empty countable
set C = {cx €[0,00] | k € K} such that [by,dx] N C = {cx} for all k € K, and

A= ([O,OO]\(UkeK[bk,dk])) U{Ck € [0,00] | k‘GK} (2)
In fact, if f : [0,1] — [0,00] is a strictly increasing functlon with Ran(f) = A
#[O,oo],thesetsgz{[f(:v_), f('x-l-)] |x€[071]af( <f$+ } C= {f( )
z € [0,1], f(z—) < f(z4)} (where f(z_) = lim,_,- f(¢) for all z € (0,1],
f(0-) =0, and f(z4+) =lim; ..+ f(t) for all x € [0,1), f(14) = oo) have all the
required properties as shown in [11].

This pair (S,C) is said to be associated with A € A, A # [0,00]. The pair
(S,C) is said to be associated with A = [0,00] if S = {[00,00]} and C = {co}.
We will write (S,C) = ({{bx,di] | k € K},{ck | k € K}).

Let A C [0,00]. The set [0,00] \ A will be denoted by A® in this paper.
Observe that (A \ C)°¢ = Ukek|[br, di]. Moreover, a set C' is always non-empty,
and [bg,dg] N A = [bg,di] NC ={cx} forallk € K. Forall I,J € S,if INJ #0
then I = J, and if I # J then INJ = ().

2.2. The addition on Ran(f)

First of all, we will deal with the following operation [11]: @ : Ran(f)? —
Ran( f) which is given by

:EEByzf(F(f_l(:v),f_l(y))> for all z,y € Ran(f),

where f is an additive generator of F and f~! : Ran(f) — [0, 1] is the (standard)
inverse of f. Clearly, the operation @ is associative if and only if F' is associative.
Denote Ran(f) by A. Substituting (1) into the last equation it yields

x@y:f(f(fl)(a:—i—y)) for all z,y € A.

Let (S,C) = ({{bx,di] | k € K}, {cx | k € K}) be associated with A € A. It
is a matter of straightforward verification that

(1) _ if xeA,
F( @) { cp if  x € [bg,di] \ {ck} for some k€K,
which leads to the following definition:

DEFINITION 1 (Section 4, [11]). Let (S,C) = ({[bk,di] | k € K}, {ck | k € K})
be associated with A € A. A function Fj : [0, 00] — [0, 1] given by

Falz) = x if x€A,
AT e if € b, di] \ {ck} for some k€ K,

is said to be the function determined by A. An operation @ : A> — A given by
x@y=Falx+y) (3)
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is called the addition on A.

The function F4 determined by A € A is always non-decreasing on [0, oo] and
strictly increasing on A. Moreover, for all z,y € A,

@y — r4+y if xz4+yeA,
Y= e it x+ye b, di]\ {ck} for some ke K.

The addition @ on A is always commutative, non-decreasing (for all z,y,u,v
€ A ifz <wandy < v, then z®y < udv), max A is its annihilator and
max(z,y) < x @y for all z,y € A. Assuming that @ is the addition on A € A,
A € B if and only if the addition & is associative on A, i.e., for all z,y,2z € A,
(@Y Dz=2 (YD 2).
Let A C [0, 00]. Write

Acc_(A)={z € [0,00] |Ve>0,(z—€,2) NA#D},

Accy(A) ={z €[0,00] |Ve>0,(z,z+e)NAH#D}.
In proofs we will often use the following properties: Let A € A, @ be the addition
on A and z,y € A. Then

(i) frz+y<a(a<z+y) andac A thenxzdy<a (a<zxdy).
(ii) f 2 +y <aand a € Acc_(A), then z d y < a.
(iii) If a <z +y and a € Accy(A), thena <z @ y.
In particular, we will use (i) with a = by > 0 for some k € K and (iii) with

a=d < oo for some k € K.

2.3. Examples of elements of 5

Let A, B C [0,0¢]. Denote the set {z € [0,00] | Ja € A,3b € B,a+b =z}
by A+ B. Instead of A+ {c} (¢ € [0, 00]) we will write A + c.

We can use the following results [11] for constructing elements of .

Let A € B, a = min A and b = max A. Then

(S1) AN [u,v] € B where u,v € A, u < v.

(S2) cA={cx €[0,00] |z € A} € B, where c € (0,0).

(S3) AU (A\ {a} +¢) € B where 2b < ¢ < c0.

(S4) {a} U (UsZo(A\ {a} + nc)) U {oco} € B where 2b < ¢ < oo.

For instance, obviously [0, 00] € B, then [0,2] € B by (S1), [0,1] € B by (S2),
[0,1]U(2,3] € B by (S3), and {0} U (U2 ((6n, 6n+ 1] U (61 + 2, 6n + 3]) U {co}
by (S4).

The next result is an immediate consequence of Theorem 5.5 in [10]:
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Let

A= {O} U (Unel((anabn) U {Cn}))a I = {17' : '7k}7 (k € N)7

A ={0}u (Ung((an,bn) U {cn})) U{c}, I=N,

where 0 < a, < b, < ¢, for all n € I, and b, < apy1, ¢n < apyp for all
n,n+1el.

(S5) If b, —a, < by for all n € I and 2¢,, < a,yq for all n,n+ 1 € I, then
AeB.

3. Intersections of elements of B

In general, the intersection of the sets of B need not be an element of 4. For
instance, if A,, =1[0,2]U (11 —1/n,12] for all n € N, then A,, € B for alln € N
by (S5), but Ny, A4, = [0,2] U [11,12] ¢ A.

Further, if the intersection of the sets of B is an element of A, it need not be
an element of B. For instance, if A = [0,4) U {4 +1/n} U (11 —1/n,12] for all
n e N, then A,, € B for all n € N by (S5), N%2; A, = [0,4) U[11,12] € A but

° 1A, ¢ B since (1@2)@3—11<12—1®(2@3)

"The sets A, = [0,1] U (Up_,(10%,10% + 1/k]) U (U2, (10", 10k + 1/n))
U {0} for all n € N are elements of B by (S5). The set N2 = [0,1]
U (U2, (10%,10% + 1/k]) U {co} is obviously an element of .A and by (S5),
it is an element of .

In this section we introduce several sufficient conditions for N;2, A4, € B

where A,, € Bfor alln e N.
3.1. Sufficient conditions for N2° A, € B
In this subsection we will suppose that N7 ; A,, € A.

THEOREM 1. Let &, be the addition on A, € B for alln € N, and let ® be the
addition on NS, A, € A. Write

(P1) For all z,y € NS A, if x +y ¢ NS>, A, then there exists m € N such
thatt @y =x O,y for alln>m, n € N.

If condition (P1) is satisfied then N2 A,, € B.

Proof. Denote N, A, by A. Observe that for all z,y € A, if v +y € A then
(r,y,xr+y € Ap), 2@y =x+y =1z D,y for all n € N. With respect to this
observation condition (P1) is satisfied if and only if the following condition
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(P) For all z,y € NS%, A,,, there exists m € N such that t &y = = &, y for all
n>m,neN

is satisfied. Suppose that condition (P1) is satisfied. Fix z,y,z € A. By (P), for
the pairsc ®y,z € A, z,y € A, x,y Pz € A and y,z € A, there exist numbers
my, ma, mg,my € N, respectively, such that for all n > m = max(mq, ms, ms,
my), (2@yY)Pz=(2@Y)Bnz=(xBy)BrzandzE(ydz) =28, (ybz) =
x @y (y Bp z). Choose n > m, n € N. Since the addition @,, is associative on
A, we obtain (z ©y) ® z =  ® (y ® z) which completes the proof. O

LEMMA 1. Let (Sa,Ca) be associated with A € A and (Sp,Cp) be associated
with B € A. If AD B, A # [0,00], then for all I € S there exists an interval
J € S such that I C J.

Proof. Suppose that A O B, A # [0,00]. Fix I € Sa, I = [a,b]. Since A #
[0,00], @ < b. Choose x € [a,b], x ¢ A. Since A D B, x ¢ B. There exists J € Sg,
J = [¢,d] such that x € J. Obviously, ¢ < b. We will prove that ¢ < a. If c =0
then ¢ < a. If ¢ > 0 then ¢ € Acc_(B), and since A O B, ¢ € Acc_(A). Since
the set [a, b] contains only one element of A, ¢ ¢ (a,b] implying ¢ < a. Similarly,
we can prove that b < d. Hence, I C J which completes the proof. O

Assuming A, DO A, for all n € N, we obtain the following corollary.

COROLLARY 1. Let (S,,,C,) be associated with A, € B for alln € N and & be
the addition on NS, A, € A. Write

(P2) Forallxz,y € NS, A, ift®y # x+vy then there exist m € N and I € S,
such that x ®y,x +y € I.

If condition (P2) is satisfied and A, 2O An41 for alln € N, then NS>, A,, € B.

Proof. Denote N3, A, by A. If A =10,00] (4,, = [0,00] for all n € N), then
condition (P2) is satisfied, A, 2 A,,41 for allm € N and A € B.

Let A # [0, 00]. Suppose that condition (P2) is satisfied and A,, O A,,;1 for
all n € N. With respect to Theorem 1 it is sufficient to prove that condition (P1)
is satisfied. Let (S,C) be associated with A. Fix x,y € A such that z +y ¢ A.
Then there exists an interval K € S such that z +y € K and = ® y = ¢, where
KN A = {c}. Obviously, ¢ # = +y. By (P2), there exist m € N and J,,, € S;,,
such that ¢,z +y € J,,. By Lemma 1, there exists a sequence {J,}52 = J, € S,
such that J, C J,y1 for all n > m, n € N. For all n > m, n € N, obviously
c € J,NA,, and since J,, N A,, contains only one element, J,, N A,, = {c}, and
therefore x @&, y = c. We have proved that t @y = ¢ = x ®, y for all n > m,
n € N which completes the proof. O
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In general, condition (P1) implies condition (P2). In the proof of Corollary 1
we have shown that assuming A4, D A,y for all n € N, condition (P1) is
equivalent to (P2).

LEMMA 2. Let (S,,C,) be associated with A,, € A for allm € N. If A, 2 Api1
and C,, C Cyq1 for allmn € N, then UgZ,Cy, TN A,

Proof. Fix m € N. Since C,, C C,, C A, for all n > m, n € N, and since
A, DA, D C, foralln < m, n € N, we have that C,, C N2, A, which
completes the proof. O

Assuming that C,, C C}, 41 for all n € N, we obtain the following result.

COROLLARY 2. Let (S,,,C},) be associated with A, € B for allmn € N, and let
N 1A, € AL If Ay D Apgr and Cy, C Cryq for alln € N, then NS, A, € B.

Proof. Denote N7 ; A, by A. Let &, be the addition on A,, for all n € N,
@ be the addition on A, and let (S,C) be associated with A. Suppose that
A, O Apyq and C), C Cpyq for all n € N. With respect to Corollary 1 it
is sufficient to show that condition (P2) is satistied. Fix =,y € A such that
r®y # x+y. Then z +y ¢ A, and consequently there exists K € S such
that z +y € K and x @ y = ¢, where K N A = {c}. Further, x +y ¢ A,, for
some m € N, and consequently, there exists .J,, € S, such that z +y € J,,
and © @, Yy = ¢, where J,,, N A, = {¢}. It remains to prove that ¢ € J,,.
By Lemma 2, ¢,, € A. By Lemma 1, there exists L € S such that J,, C L.
Obviously, z +y € K N L, and since the intervals of S are pairwise disjoint,
L = K. Hence, ¢,, € KN A, and since K N A = {c}, we have ¢,, = ¢ implying
¢ € Jp, which completes the proof. O

In the proof of Corollary 2 we have showed that assuming A,, O A,,+1 for all
n € N, the condition C,, C C,,4; for all n € N implies condition (P2).

LEMMA 3. Let (Sa,Ca) be associated with A € A, (Sg,Cp) be associated with
Be A, andlet Cx C Cp. Then A D B if and only if for all I € Sa there exists
an interval J € Sg such that I C J.

Proof. (=) Suppose that A D B. If A = [0, o0] then the assertion is obviously
true. If A # [0, oo] the assertion is true by Lemma 1.

(<) Suppose that for all I € Sy, there exists J € S such that I C J. Then
US4 C USp, and consequently A D A\ Cy = (US4)¢ D (USE)¢ = B\ Cp. By
assumptions C'y C Cp. Clearly, Cp = C4 U (Cp \ C4) and C4 C A. It remains
to prove that Cp\ Cy C A. Fix b€ Cg\ Ca. Then b € K for some K € Sg and
K N B = {b}. We will prove that

KnI=10 forall Ie€S8a. (4)
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The proof is by contradiction. Suppose that K NI # () for some I € S4. Then
I C J for some J € Sg. Hence, JN K # (), and since intervals of Sg are pairwise
disjoint, J = K. Moreover, I contains just one element a of C4, and since
Ca C Cp,a € B. It follows that a € KN B = {b}, and so a = b implying b € C4
contrary to b ¢ C'4. We have proven (4). Finally, from (4) it follows immediately
that K C (USa)¢ = A\ Cy4, and consequently b € A which completes the
proof. O

The following corollary is an equivalent formulation of Corollary 2.
COROLLARY 3. Let (S,,,C},) be associated with A, € B for alln € N, and let
No2 A, € A. Write
(P3) Foralln € N, if I € S,, then there exists J € S,,11 such that I C J.

If condition (P3) is satisfied and C,, C Cp41 for alln € N, then N5, A,, € B.
Proof. Assuming that C,, C C,4; for all n € N, by Lemma 3, condition (P3)

is equivalent to A,, 2 A,41 for all n € N. The rest follows immediately from
Corollary 2. O

We conclude this subsection with one consequence of Corollary 2.

COROLLARY 4. Let (S,,,C},) be associated with A, € B for alln € N, and let
A, D Apyr and C,, C Chyq for allm € N. Then N2, A, € B if and only if
No 1A, € A

3.2. Sufficient conditions for N A4, € A

In this subsection we will assume that A, 2 A,4+; and C, C C, 41 for all
n € N, and with respect to Corollary 4 we will try to find sufficient conditions
for N9, A, € A.
First, we will study the structure of an element A € A. The following result
gives a topological characterization of the range of a function f € F.
LEMMA 4. Let A C [0,00] and A # [0, 00]. If there ezist a non-empty countable
system S = {[bi, di] C [0,00] | k € K} # {[0,00]} of pairwise disjoint intervals
of a positive length and a non-empty countable set C = {ck. € [0,00] | k € K}
such that [bg,dg) N C = {ck} for allk € K, and
A= ([0,00] \ (UkeK[blmdk])) U {Ck € [O, OO] ‘ ke K},
then
Ae A

Proof. We will construct a function f € F with Ran(f) = A. We only give the
main ideas of the proof.
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First of all, there exist min A = a, max A = b, and a < b. Further, for all
x e (A\C)N(a,b),

x € Acc_(C) & x € Acc_(A°), (5)
xz € Accy (C) & x € Accy (A9). (6)
Write (A\ C) N (a,b) = B. Clearly, B C A. Using (5) and (6) yields
B = Ago U Agr U Ao U Aps,

where the sets

App={z€B|3e>0,(z—e,x) CA, (z,z+€) C A},
A01:{:E€B|E|e>0,(x—e,x)QA,V(S>O($,$+5)HC75®},
Ay ={z€B|Vi>0,(z—0,2)NC#0,Fe>0,(z,z+¢€) C A},
An ={z€B|¥6>0,(z—0,2)NC#£0, (x,x+06)NC #0)

are pairwise disjoint.

Define g(a) = 0 and g(b) = 1. The set (C'N (a,b)) U Ag; U Ayp is countable,
and if it is non-empty, we can write (C' N (a,b)) U Ao1 U A1g = {a, | n € I},
where I = {1,...,k} or I = N, and a; # a; for all ,j € I. Define g(a;) = 1/2.
Suppose that we have defined g(a;) for all j € {1,...,n}. If n+1 € I, we define
9(ani1) as

1

§<Sup(g(a1) | ] € {1> .- an}aaj < an-l-l)

+1nf(g(aj) |] € {1> an}’an-‘rl < aj))a

where sup()) = 0 and inf()) = 1. Denote the set {a,b} UC U Ay U Ajg by M.
The function g : M — [0, 1] is strictly increasing and possesses the following two
properties:

(i) For all c € M, 0 < ¢, if s =sup([0,c) N M) ¢ M, 0 < s, then sup(g(z) |
z €[0,¢)NM) = g(c).
(ii) For all c € M, ¢ < oo, if i = inf(M N (¢,00]) ¢ M, i < oo, then inf(g(z) |
v € M 11 (e, 0]) = g(c),
(sup([0,c)NM) = 0,if [0, c)NM = 0, and inf (MN(c, ]) = oo, if MN(c, 00] = ).
Define the function h : Ay — [0,1] by
h(x) = sup(g(t) | ¢ € [0,2) N M),
where sup(()) = 0, and then put h(z) = g(x) for all z € M. The function
h: A\ Agy — [0,1] is strictly increasing.
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Since the set Agg is open in (0,00) we can write that Aoy = Uer(a],a;),
!

where (a;,a;') N (a},a’) =0 for all 4, j € L. For an arbitrary [ € L, we have

st = sup([0,a;] N (A\ Ago)) = max([0,a7] N (A\ Ago)),
it = inf([a/,00] N (A Ago)) = min([af’, 0] 1 (A Apn)),
and
h(Sl) < h(Zl)
For all | € L, choose a strictly increasing bijection k; : (a],a]') — (h(s;), h(ir)),
and define h(z) = hy(x) for all € (aj,a;') and | € L. The function h : A — [0, 1]
is strictly increasing.

Finally, define h(x) = h(cy) for all x € [by,di] \ {cx} and k € K. The func-
tion h : [0,00] — [0,1] is non-decreasing and h(0) = 0, h(1) = 1. Moreover,
the function h is continuous on [0,0c]. Hence, h([0,00]) = [0,1]. Obviously,
h([0,00]) = h(A). It follows that the function h : A — [0,1] is a strictly increas-
ing bijection, and its inverse f : [0,1] — A is an element of F with Ran(f) = A
which completes the proof. O

THEOREM 2. Let (S,,C,) be associated with A, € B for alln € N, and let
Ap D Apiq and C, C Cpyq for alln € N. Write

(P4) For all {J,}22,,., Jn € Sn, if Jn C Jpy1 for alln > m, n € N then there
exists k > m, k € N such that J, = J, for alln >k, n€ N.

Then N1 A,, € B if and only if condition (P4) is satisfied.

Proof. Denote Ny, A, by A. With respect to Corollary 4 it is sufficient to
prove that A € A if and only if condition (P4) is satisfied.

(=) Suppose that A € A. Let (S,C) be associated with A. Fix {J,}22,,,
Jn € S, Jn = [an, by] such that J, C J, 11 for all n > m, n € N. By Lemma 3,
for all J,, n > m, there exists K,, € S such that J, C K,,. Since intervals of S
are pairwise disjoint, K,, = K = [a, ] for all n > m. Obviously,

agan—i—lgangbngbn—&-lgb-

Now, we will prove that there exists k1 > m, k1 € N such that by, = b. The
proof is by contradiction. Suppose that b, < b for all n > m, n € N. The
interval J,, C K contains just one element ¢ of C,,. By Lemma 2, ¢ € A. Hence,
c € KN A, and since the interval K contains just one element of A, we have
K N A = {c}. Obviously, ¢ < b,, < b, and so b ¢ A. Since A, D A, 41 for all
n € N, there exists [ > m, [ € N such that b ¢ A;, and consequently, there exists
I; € §; such that b € I;. Clearly, I; # J;, and since the intervals of S; are pairwise
disjoint, I; N J; = (). By Lemma 3, I; C L for some L € S. Clearly, L N K # ),
and since the intervals of § are pairwise disjoint, L. = K. The interval I; C K
contains just one element d of C;. By Lemma 2, d € A. Hence, d € K N A. Thus,
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c,d € KNA, c¢#d contrary to K N A = {c}. Similarly, we can prove that there
exists ko > m, ko € N such that a,, = a. It follows that a,, = a and b,, = b for
all n > k, n € N, where k = max(ky, ko) > m.

(<) If A =10,00], then condition (P4) is satisfied and A € A. Let A # [0, c0].
Suppose that (P4) is satisfied. First, we will prove that for all z ¢ A, there exists
the uniquely determined interval [a,b], a < b containing x with the following
property: there exists k € N such that [a,b] € S, for all n > k, n € N. In order
to show it, fix x ¢ A. Then x ¢ A,, for some m € N, and consequently, z € J,,
for some J,,, € S;,,. By Lemma 3, there exists a sequence {.J,,}52,  of intervals
JIn € Spy Jp = [an, by] such that J, C J,4q foralln > m, n € N. By (P4), there
exists k > m, k € N such that J = J,, = [a,b] for all n > k, n € N. Obviously,
a<bandx € [a,b)].

Now, we will prove that the interval [a,b] is uniquely determined. Suppose
that there is an interval [c, d|, ¢ < d containing x with the property: there exists
l € N such that [¢,d] € S, for all n > I, n € N. Then [a,b], [c,d] € S, for all
n > max(k,l), n € N implying that [a,b] = [c, d].

Finally, we will prove that the interval [a,b] contains just one element of A.
The interval J; = [a, b] contains just one element e of Cj. By Lemma 2, e € A,
and consequently, e € [a, b]NA. Further, [a,b]|NA C [a,b]NA; = [a,b]NC), = {e}.
Hence, [a,b] N A = {e}.

For all z ¢ A, denote the interval [a, b] described above by I,. Write S = {I C
[0,00] | 3z € [0,00] \ A, 1, = I} and C' = {c € [0,00] | 3T € S,IN A = {c}}.
The system S is non-empty and contains intervals of a positive length. Moreover,
for all I € S, there exists m € N such that I € S, for all n > m, n € N. It
follows that intervals of S are pairwise disjoint, and S # {[0, oo]} Further, for
all I € S, the set INC contains only one element, and A = ([0,00] \ (US)) UC.
By Lemma 4, A € A which completes the proof. O

We conclude this subsection with one simple and useful consequence of The-
orem 2.

COROLLARY 5. Let (S,,C,) be associated with A,, € B for alln € N. If C,, C
Cpy1 and S, C S,41 for allm € N, then N9, A, € B.

3.3. Examples

The results presented in this subsection extend the construction of the no-
where dense set A € Bwith 0 € Accy(A)={z € [0,00] | Ve> 0, (z, z+€)NA # 0}
introduced in [12].

COROLLARY 6. Let A € B, minA = 0, maxA = 1 and let p € [1/3,1),
q=(1-p)/2 and r = (14 p)/2. Then (AU (A\ {0} +r/q)) € B.
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Proof. It follows from (S3) with ¢ = r/q (r/qg = (1 +p)/(1 —p) > 2 for all
p € [1/3,1)) and (S2) with ¢ = gq. O

Starting with A = [0, 1] Corollary 6 yields the following sequence of elements
of B.

ExXAMPLE 1. Let p € [1/3,1). Write ¢ = (1 — p)/2, r = (1 + p)/2, define the
function f : {0,1,2} — {0,q,7} by f(0) =0, f(1) = q, f(2) = r and the function
9:{0,1,2} — {q,p} by 9(0) = g(2) = ¢ and g(1) = p. Write

Ly iy =2 €[0,1] | > flij)d " < Z F)d "+ glin)g™ ™t 3, (7)
j=1 j=1

where i1,...,i,-1 € {0,2}, i, € {0,1,2}, n € N.

For all n € N, define the set A,, € A such that A, consists of 0 and
2" intervals I;, . ;. given by (7), where i1,...,i, € {0,2}. We will prove that
Ap, € B for all n € N by induction. Obviously, min 4,, = 0, maxA4,, =
Z;‘:l rgi=t +¢" =1 for all n € N. The set ¢([0,1]U ([0,1]\ {0} +7/q)) € B by
Corollary 6. Further, ¢([0,1] U ([0,1]\ {0} +7/q)) = {0} UIy U, = Ay . Hence,
Apl e B.

Suppose that A, € B. Then g(A,, U (Ap, \ {0} +r/q)) € B by Corollary 6.
It remains to show that q(A,, U (4, \ {0} +7/q)) = Apni1.

Observe that z € A, \ {0} if and only if z € I;, _; for some iy,...,i, €

{0,2}, ie.,
Zf(ij)qul <z < Zf(ij)qul 4

Further, y € q(ApnU(Apn \{0}+r/q))\{0} if and only if y = gz or y = q(a+7/q)
for some z € A,, \ {0}, i.e.,

Zf (i;)¢’ <qx<Zf )¢ + ¢t
or

7“Jer i;)¢’ < q(z+7/q) <7"+Zf )¢’ + ¢t
j=1 J=1
which is equivalent to y € Iy, .. i, ory € Iy, . ;. for some iy,..., i, € {0,2},
ie.,y€ Apny1 \{0}. Hence, Ay, 11 € B.

EXAMPLE 2. Let p € [1/3,1), and {A,,}72 1, be a sequence of the sets defined in
Example 1. Write Tpo = {[1, 00}, Tpn = {Liy,...in, | 11, sin—1 € {0,2},4,, = 1},
where I;, ;. is the closure of I;, ;. Dpo = {1}, Dy, = {l(I) | I € Tp},
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where [(]) is the left-hand end point of the interval I, and Spn, = U}_(7p;,
Cpn == U?:ODPj‘

The pair (Spn,Cpy) is associated with A,, € A for all n € N. The set
Apn € B for all n € N by Example 1. Further, S,, € Spny1 and Cp,, € Cppia
for all n € N. Hence, A, = Ny, Ay, € B by Corollary 5.

Observe that the set A, € B consists of 0 and of all € [0,1] such that z =
Z;; fl)g =1 {i5352,, 45 € {0,2} with infinite many i; # 0. If p = 1/3 then
the set A;,3 is a proper subset of the Cantor set. The set A,,3 was introduced
in [9] for the first time and can be found in [12].

COROLLARY 7. Let A € B, minA =0, maxA =1, k € N. Then ﬁ({()} U
(Uj—o(A\ {0} +27))) € B.

Proof. It follows from (S4) with ¢ = 2, (S1) with v =0, v = 2k + 1, and (S2)
with ¢ = 1/(2k +1). 0

Starting with A = [0, 1] Corollary 7 yields the following sequence of elements
of B:

EXAMPLE 3. Let k£ € N. Write

L. i ={z€[0,1] | zn:ij/@k—i—l)j <z < zn:z‘j/(zk+1)j+1/(2k+1)"}, (8)
j=1 Jj=1

where i1,...,i,—1 € {0,2,...,2k} are even, i,, € {0,1,...,2k}, n € N.

For all n € N, define the set Ay, € A such that Ag,, consists of 0 and (k+1)"
intervals I;, ;. given by (8) where iy,...,i, € {0,2,...,2k} are even. We will
prove that Ay, € B for all n € N by induction. Obviously, min A, = 0 and
max Ak, = Z?Zl (QkQ_fI)j + (2]@-&1-1)" = 1 for all n € N. The set ﬁ({O} U
(UF_o([0,1]\ {0} + 24))) € B by Corollary 7. Further, 51 ({0} U (UF_ ([0, 1]\
{O} + 2]))) = {O} UlgUIlU---UIy, = Ag. Hence, Ay € B.

Suppose that A, € B. Then ﬁ({O} U (UF_o(Akn \ {0} 4+ 24))) € B by
Corollary 7. It remains to show that T{H ({0U(UF_(Akn \{0}+27))) = Akn1-

Observe that © € Ay, \ {0} if and only if = € I;, _;, for some iy,...,i, €
{0,2,...,2k}, ie.,

n . n

Zj ij 1
— < - .
D Gy TS @iy T ma e

Jj=1 Jj=1
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Hence, y € ﬁ({()} U (U;?:O(Ak.n \ {0} + 25))) \ {0} if and only if y =
(x +27)/(2k + 1) for some = € Ay, \ {0} and j € {0,1,...,k}, ie.,
2j x+2j 2j

"~ Zj " Zj 1
- < -
21<:+1+]Z::1 Qk+ 1+ S 2%l (2k+1)+jz::1 (2k + 1)i+1

2k + 1)n+t

1

which is equivalent to y € Is;;,,. 4, for some iy,...,i, € {0,2...,2k} and
j€{0,1,...,k}, ie., y € Agni1 \ {0}. Hence, Ag,11 € B.

EXAMPLE 4. Let k € N, and {4k, }52, be a sequence of the sets defined in
Example 3. Write

Tro = {[LOO]}a
Tin = {Liy,.i | i1, ino1 €{0,2,...,2k}, 4, € {1,3,...,2k — 1} },

where I;, ;. is the closure of I;; i , Dro = {1}, Dip = {l(I) | I € ’Z}m},
where [(I) is the left-hand end point of the interval I, and Sy, = U0 7ky,
Cin = U?:oij-

The pair (Sgn, Ckn) is associated with Ay, € Afor alln € N. The set Ay, € B
for all n € N by Example 3. Further, S, C Sipy1 and Ck,, € Cipy for all

n € N. Hence, Ay = N2 Ak € B by Corollary 5.

Observe that the set Ay € B which consists of 0 and of all z € [0, 1] such that
T = Z;’;l ij/(2k + 1), {i; 21,15 €4{0,2,...,2k} with infinite many i; # 0. If
k =1 and p = 1/3, then the set A; coincides with the set A; /3. Observe the sets
A, \ {0}, pe [1/3,1) and A \ {0}, k € N are fractals.
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