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INTERSECTIONS OF RANGES OF ADDITIVE

GENERATORS OF ASSOCIATIVE FUNCTIONS

Peter Viceńık

ABSTRACT. The structure of the set B of all ranges of additive generators

of associative functions is studied here. Sufficient conditions for ∩∞
n=1

An ∈ B,
where An ∈ B for all n ∈ N , are introduced. Examples of elements of B which are
nowhere dense in [0,∞] and contain 0 as an accumulation point are presented.

1. Introduction

Non-continuous additive generators of associative functions are investigated.
The associativity of a generated function depends only on properties of the range
of its additive generator. In this paper the intersections of ranges of additive
generators of associative functions are studied.

The idea of representing the special associative functions by means of func-
tions of one variable goes back to A b e l [1]. Many results concerning the repre-
sentation of associative functions appeared later in the framework of the semi-
group theory and the theory of functional equations. In the context of trian-
gular norms (triangular conorms) the representation theorems were introduced
by L i n g [4] and S c h w e i z e r and S k l a r [5], [6]. K l e m e n t , M e s i a r and
P a p [3] studied additive generators of triangular norms (triangular conorms)
whose ranges are relatively closed under the usual addition. Many results con-
cerning the additive generators of associative functions whose ranges are not
relatively closed under the usual addition were introduced in [8]–[12].
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2. Preliminaries

Each strictly monotone function f : [0, 1] → [0,∞] yields the function F :
[0, 1]2 → [0, 1] via the formula

F (x, y) = f (−1)
(

f(x) + f(y)
)

for all x, y ∈ [0, 1], (1)

where f (−1) : [0,∞] → [0, 1] is the pseudo-inverse of f , i.e.,

f (−1)(y) =

{

sup
(

x ∈ [0, 1] | f(x) > y
)

if f is strictly decreasing,
sup

(

x ∈ [0, 1] | f(x) < y
)

if f is strictly increasing,

where sup ∅ = 0. The function f is said to be an additive generator of F . In
general, the function F need not be associative. The associativity of F depends
only on the properties of Ran(f) =

{

x ∈ [0,∞] | ∃ t ∈ [0, 1], f(t) = x
}

of f .

Write

F =
{

f : [0, 1] → [0,∞] | f is a strictly monotone function
}

,

G =
{

f : [0, 1] → [0,∞] | f ∈ F generates via (1) an associative function
}

,

and

A =
{

A ⊆ [0,∞] | ∃ f ∈ F , Ran(f) = A
}

,

B =
{

A ⊆ [0,∞] | ∃ f ∈ G,Ran(f) = A
}

.

Obviously,

G ⊆ F and B ⊆ A.

Let A ∈ B. If f ∈ F with Ran(f) = A then f ∈ G. Let A ∈ A. If A is
relatively closed under the usual addition (∀x, y ∈ A, x + y ∈ A ∪ [s,∞], where
s = sup

(

A \ {max(A)}
)

), then A ∈ B (see, [3]).

The main problem is the following one: What are the sufficient conditions for
∩∞

n=1An ∈ B, where An ∈ B for all n ∈ N , (N = {1, 2, . . . })?

In Section 3 some sufficient conditions for ∩∞

n=1An ∈ B, where An ∈ B for all
n ∈ N , are introduced. The first example of a set A ∈ B which is nowhere dense
in [0,∞] and contains 0 as an accumulation point was introduced in [9] and can
be found in [12]. In this paper some other examples of the sets A ∈ B which are
nowhere dense in [0,∞] and contain 0 as an accumulation point are presented.

2.1. The range of f ∈ F

We will use some properties of the range of a strictly monotone function
[11]: Let A ∈ A and A 6= [0,∞]. Then there exist the uniquely determined non-

empty countable system S =
{

[bk, dk] ⊆ [0,∞] | k ∈ K
}

of pairwise disjoint
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intervals of a positive length and the uniquely determined non-empty countable

set C =
{

ck ∈ [0,∞] | k ∈ K
}

such that [bk, dk] ∩ C = {ck} for all k ∈ K, and

A =
(

[0,∞] \ (∪k∈K [bk, dk])
)

∪
{

ck ∈ [0,∞] | k ∈ K
}

. (2)

In fact, if f : [0, 1] → [0,∞] is a strictly increasing function with Ran(f) = A
6= [0,∞], the sets S =

{

[f(x−), f(x+)] | x ∈ [0, 1], f(x−) < f(x+)
}

, C =
{

f(x) |

x ∈ [0, 1], f(x−) < f(x+)
}

(where f(x−) = limt→x− f(t) for all x ∈ (0, 1],
f(0−) = 0, and f(x+) = limt→x+ f(t) for all x ∈ [0, 1), f(1+) = ∞) have all the
required properties as shown in [11].

This pair (S, C) is said to be associated with A ∈ A, A 6= [0,∞]. The pair
(S, C) is said to be associated with A = [0,∞] if S =

{

[∞,∞]
}

and C = {∞}.

We will write (S, C) =
(

{[bk, dk] | k ∈ K}, {ck | k ∈ K}
)

.

Let A ⊆ [0,∞]. The set [0,∞] \ A will be denoted by Ac in this paper.
Observe that (A \ C)c = ∪k∈K [bk, dk]. Moreover, a set C is always non-empty,
and [bk, dk]∩A = [bk, dk]∩C = {ck} for all k ∈ K. For all I, J ∈ S, if I ∩ J 6= ∅
then I = J , and if I 6= J then I ∩ J = ∅.

2.2. The addition on Ran(f)

First of all, we will deal with the following operation [11]: ⊕ : Ran(f)2 →
Ran(f) which is given by

x ⊕ y = f
(

F
(

f−1(x), f−1(y)
)

)

for all x, y ∈ Ran(f),

where f is an additive generator of F and f−1 : Ran(f) → [0, 1] is the (standard)
inverse of f . Clearly, the operation ⊕ is associative if and only if F is associative.

Denote Ran(f) by A. Substituting (1) into the last equation it yields

x ⊕ y = f
(

f (−1)(x + y)
)

for all x, y ∈ A.

Let (S, C) =
(

{[bk, dk] | k ∈ K}, {ck | k ∈ K}
)

be associated with A ∈ A. It
is a matter of straightforward verification that

f
(

f (−1)(x)
)

=

{

x if x ∈ A,
ck if x ∈ [bk, dk] \ {ck} for some k ∈ K,

which leads to the following definition:Definition 1 (Section 4, [11]). Let (S, C) =
(

{[bk, dk] | k ∈ K}, {ck | k ∈ K}
)

be associated with A ∈ A. A function FA : [0,∞] → [0, 1] given by

FA(x) =

{

x if x ∈ A,
ck if x ∈ [bk, dk] \ {ck} for some k ∈ K,

is said to be the function determined by A. An operation ⊕ : A2 → A given by

x ⊕ y = FA(x + y) (3)
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is called the addition on A.

The function FA determined by A ∈ A is always non-decreasing on [0,∞] and
strictly increasing on A. Moreover, for all x, y ∈ A,

x ⊕ y =

{

x + y if x + y ∈ A,
ck if x + y ∈ [bk, dk] \ {ck} for some k ∈ K.

The addition ⊕ on A is always commutative, non-decreasing (for all x, y, u, v
∈ A, if x ≤ u and y ≤ v, then x ⊕ y ≤ u ⊕ v), maxA is its annihilator and
max(x, y) ≤ x ⊕ y for all x, y ∈ A. Assuming that ⊕ is the addition on A ∈ A,
A ∈ B if and only if the addition ⊕ is associative on A, i.e., for all x, y, z ∈ A,
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z).

Let A ⊆ [0,∞]. Write

Acc−(A) =
{

x ∈ [0,∞] | ∀ ǫ > 0, (x − ǫ, x) ∩ A 6= ∅
}

,

Acc+(A) =
{

x ∈ [0,∞] | ∀ ǫ > 0, (x, x + ǫ) ∩ A 6= ∅
}

.

In proofs we will often use the following properties: Let A ∈ A, ⊕ be the addition
on A and x, y ∈ A. Then

(i) If x + y ≤ a (a ≤ x + y) and a ∈ A, then x ⊕ y ≤ a (a ≤ x ⊕ y).

(ii) If x + y < a and a ∈ Acc−(A), then x ⊕ y < a.

(iii) If a < x + y and a ∈ Acc+(A), then a < x ⊕ y.

In particular, we will use (ii) with a = bk > 0 for some k ∈ K and (iii) with
a = dk < ∞ for some k ∈ K.

2.3. Examples of elements of B

Let A,B ⊆ [0,∞]. Denote the set
{

x ∈ [0,∞] | ∃ a ∈ A,∃ b ∈ B, a + b = x
}

by A + B. Instead of A + {c} (c ∈ [0,∞]) we will write A + c.

We can use the following results [11] for constructing elements of B.

Let A ∈ B, a = min A and b = max A. Then

(S1) A ∩ [u, v] ∈ B where u, v ∈ A, u < v.

(S2) cA =
{

cx ∈ [0,∞] | x ∈ A
}

∈ B, where c ∈ (0,∞).

(S3) A ∪
(

A \ {a} + c
)

∈ B where 2b ≤ c < ∞.

(S4) {a} ∪
(

∪∞

n=0(A \ {a} + nc)
)

∪ {∞} ∈ B where 2b ≤ c < ∞.

For instance, obviously [0,∞] ∈ B, then [0, 2] ∈ B by (S1), [0, 1] ∈ B by (S2),
[0, 1]∪ (2, 3] ∈ B by (S3), and {0} ∪

(

∪∞

n=0((6n, 6n+ 1]∪ (6n+ 2, 6n+ 3]
)

∪ {∞}
by (S4).

The next result is an immediate consequence of Theorem 5.5 in [10]:
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Let

A = {0} ∪
(

∪n∈I

(

(an, bn) ∪ {cn}
)

)

, I = {1, . . . , k}, (k ∈ N),

or

A = {0} ∪
(

∪n∈I

(

(an, bn) ∪ {cn}
)

)

∪ {∞}, I = N,

where 0 ≤ an < bn ≤ cn for all n ∈ I, and bn < an+1, cn ≤ an+1 for all
n, n + 1 ∈ I.

(S5) If bn − an ≤ b1 for all n ∈ I and 2cn ≤ an+1 for all n, n + 1 ∈ I, then
A ∈ B.

3. Intersections of elements of B

In general, the intersection of the sets of B need not be an element of A. For
instance, if An = [0, 2] ∪ (11− 1/n, 12] for all n ∈ N , then An ∈ B for all n ∈ N
by (S5), but ∩∞

n=1An = [0, 2] ∪ [11, 12] /∈ A.

Further, if the intersection of the sets of B is an element of A, it need not be
an element of B. For instance, if A = [0, 4) ∪ {4 + 1/n} ∪ (11 − 1/n, 12] for all
n ∈ N , then An ∈ B for all n ∈ N by (S5), ∩∞

n=1An = [0, 4) ∪ [11, 12] ∈ A but
∩∞

n=1An /∈ B since (1 ⊕ 2) ⊕ 3 = 11 < 12 = 1 ⊕ (2 ⊕ 3).

The sets An = [0, 1] ∪
(

∪n
k=1(10k, 10k + 1/k]

)

∪
(

∪∞

k=n+1(10k, 10k + 1/n]
)

∪ {∞} for all n ∈ N are elements of B by (S5). The set ∩∞

n=1An = [0, 1]
∪

(

∪∞

k=1(10k, 10k + 1/k]
)

∪ {∞} is obviously an element of A, and by (S5),
it is an element of B.

In this section we introduce several sufficient conditions for ∩∞

n=1An ∈ B
where An ∈ B for all n ∈ N .

3.1. Sufficient conditions for ∩∞

n=1An ∈ B

In this subsection we will suppose that ∩∞

n=1An ∈ A.Theorem 1. Let ⊕n be the addition on An ∈ B for all n ∈ N , and let ⊕ be the

addition on ∩∞

n=1An ∈ A. Write

(P1) For all x, y ∈ ∩∞

n=1An, if x + y /∈ ∩∞

n=1An then there exists m ∈ N such

that x ⊕ y = x ⊕n y for all n ≥ m, n ∈ N .

If condition (P1) is satisfied then ∩∞

n=1An ∈ B.

P r o o f. Denote ∩∞

n=1An by A. Observe that for all x, y ∈ A, if x + y ∈ A then
(x, y, x + y ∈ An), x ⊕ y = x + y = x ⊕n y for all n ∈ N . With respect to this
observation condition (P1) is satisfied if and only if the following condition
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(P) For all x, y ∈ ∩∞

n=1An, there exists m ∈ N such that x⊕ y = x⊕n y for all
n ≥ m, n ∈ N

is satisfied. Suppose that condition (P1) is satisfied. Fix x, y, z ∈ A. By (P), for
the pairs x ⊕ y, z ∈ A, x, y ∈ A, x, y ⊕ z ∈ A and y, z ∈ A, there exist numbers
m1,m2,m3,m4 ∈ N , respectively, such that for all n ≥ m = max(m1,m2,m3,
m4), (x⊕ y)⊕ z = (x⊕ y)⊕n z = (x⊕n y)⊕n z and x⊕ (y⊕ z) = x⊕n (y⊕ z) =
x ⊕n (y ⊕n z). Choose n ≥ m, n ∈ N . Since the addition ⊕n is associative on
An, we obtain (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) which completes the proof. �Lemma 1. Let (SA, CA) be associated with A ∈ A and (SB , CB) be associated

with B ∈ A. If A ⊇ B, A 6= [0,∞], then for all I ∈ SA there exists an interval

J ∈ SB such that I ⊆ J .

P r o o f. Suppose that A ⊇ B, A 6= [0,∞]. Fix I ∈ SA, I = [a, b]. Since A 6=
[0,∞], a < b. Choose x ∈ [a, b], x /∈ A. Since A ⊇ B, x /∈ B. There exists J ∈ SB ,
J = [c, d] such that x ∈ J . Obviously, c ≤ b. We will prove that c ≤ a. If c = 0
then c ≤ a. If c > 0 then c ∈ Acc−(B), and since A ⊇ B, c ∈ Acc−(A). Since
the set [a, b] contains only one element of A, c /∈ (a, b] implying c ≤ a. Similarly,
we can prove that b ≤ d. Hence, I ⊆ J which completes the proof. �

Assuming An ⊇ An+1 for all n ∈ N , we obtain the following corollary.Corollary 1. Let (Sn, Cn) be associated with An ∈ B for all n ∈ N and ⊕ be

the addition on ∩∞

n=1An ∈ A. Write

(P2) For all x, y ∈ ∩∞

n=1An, if x⊕y 6= x+y then there exist m ∈ N and I ∈ Sm

such that x ⊕ y, x + y ∈ I.

If condition (P2) is satisfied and An ⊇ An+1 for all n ∈ N , then ∩∞

n=1An ∈ B.

P r o o f. Denote ∩∞

n=1An by A. If A = [0,∞] (An = [0,∞] for all n ∈ N), then
condition (P2) is satisfied, An ⊇ An+1 for all n ∈ N and A ∈ B.

Let A 6= [0,∞]. Suppose that condition (P2) is satisfied and An ⊇ An+1 for
all n ∈ N . With respect to Theorem 1 it is sufficient to prove that condition (P1)
is satisfied. Let (S, C) be associated with A. Fix x, y ∈ A such that x + y /∈ A.
Then there exists an interval K ∈ S such that x + y ∈ K and x ⊕ y = c, where
K ∩ A = {c}. Obviously, c 6= x + y. By (P2), there exist m ∈ N and Jm ∈ Sm

such that c, x+y ∈ Jm. By Lemma 1, there exists a sequence {Jn}
∞

n=m, Jn ∈ Sn

such that Jn ⊆ Jn+1 for all n ≥ m, n ∈ N . For all n ≥ m, n ∈ N , obviously
c ∈ Jn ∩ An, and since Jn ∩ An contains only one element, Jn ∩ An = {c}, and
therefore x ⊕n y = c. We have proved that x ⊕ y = c = x ⊕n y for all n ≥ m,
n ∈ N which completes the proof. �
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In general, condition (P1) implies condition (P2). In the proof of Corollary 1
we have shown that assuming An ⊇ An+1 for all n ∈ N , condition (P1) is
equivalent to (P2).Lemma 2. Let (Sn, Cn) be associated with An ∈ A for all n ∈ N . If An ⊇ An+1

and Cn ⊆ Cn+1 for all n ∈ N , then ∪∞

n=1Cn ⊆ ∩∞

n=1An.

P r o o f. Fix m ∈ N . Since Cm ⊆ Cn ⊆ An for all n ≥ m, n ∈ N , and since
An ⊇ Am ⊇ Cm for all n ≤ m, n ∈ N , we have that Cm ⊆ ∩∞

n=1An which
completes the proof. �

Assuming that Cn ⊆ Cn+1 for all n ∈ N , we obtain the following result.Corollary 2. Let (Sn, Cn) be associated with An ∈ B for all n ∈ N , and let

∩∞

n=1An ∈ A. If An ⊇ An+1 and Cn ⊆ Cn+1 for all n ∈ N , then ∩∞

n=1An ∈ B.

P r o o f. Denote ∩∞

n=1An by A. Let ⊕n be the addition on An for all n ∈ N ,
⊕ be the addition on A, and let (S, C) be associated with A. Suppose that
An ⊇ An+1 and Cn ⊆ Cn+1 for all n ∈ N . With respect to Corollary 1 it
is sufficient to show that condition (P2) is satistied. Fix x, y ∈ A such that
x ⊕ y 6= x + y. Then x + y /∈ A, and consequently there exists K ∈ S such
that x + y ∈ K and x ⊕ y = c, where K ∩ A = {c}. Further, x + y /∈ Am for
some m ∈ N , and consequently, there exists Jm ∈ Sm such that x + y ∈ Jm

and x ⊕m y = cm, where Jm ∩ Am = {cm}. It remains to prove that c ∈ Jm.
By Lemma 2, cm ∈ A. By Lemma 1, there exists L ∈ S such that Jm ⊆ L.
Obviously, x + y ∈ K ∩ L, and since the intervals of S are pairwise disjoint,
L = K. Hence, cm ∈ K ∩ A, and since K ∩ A = {c}, we have cm = c implying
c ∈ Jm which completes the proof. �

In the proof of Corollary 2 we have showed that assuming An ⊇ An+1 for all
n ∈ N , the condition Cn ⊆ Cn+1 for all n ∈ N implies condition (P2).Lemma 3. Let (SA, CA) be associated with A ∈ A, (SB , CB) be associated with

B ∈ A, and let CA ⊆ CB. Then A ⊇ B if and only if for all I ∈ SA there exists

an interval J ∈ SB such that I ⊆ J .

P r o o f. (⇒) Suppose that A ⊇ B. If A = [0,∞] then the assertion is obviously
true. If A 6= [0,∞] the assertion is true by Lemma 1.
(⇐) Suppose that for all I ∈ SA, there exists J ∈ SB such that I ⊆ J . Then
∪SA ⊆ ∪SB , and consequently A ⊇ A \ CA = (∪SA)c ⊇ (∪SB)c = B \CB . By
assumptions CA ⊆ CB . Clearly, CB = CA ∪ (CB \ CA) and CA ⊆ A. It remains
to prove that CB \CA ⊆ A. Fix b ∈ CB \CA. Then b ∈ K for some K ∈ SB and
K ∩ B = {b}. We will prove that

K ∩ I = ∅ for all I ∈ SA. (4)
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The proof is by contradiction. Suppose that K ∩ I 6= ∅ for some I ∈ SA. Then
I ⊆ J for some J ∈ SB . Hence, J ∩K 6= ∅, and since intervals of SB are pairwise
disjoint, J = K. Moreover, I contains just one element a of CA, and since
CA ⊆ CB , a ∈ B. It follows that a ∈ K ∩B = {b}, and so a = b implying b ∈ CA

contrary to b /∈ CA. We have proven (4). Finally, from (4) it follows immediately
that K ⊆ (∪SA)c = A \ CA, and consequently b ∈ A which completes the
proof. �

The following corollary is an equivalent formulation of Corollary 2.Corollary 3. Let (Sn, Cn) be associated with An ∈ B for all n ∈ N , and let

∩∞

n=1An ∈ A. Write

(P3) For all n ∈ N , if I ∈ Sn then there exists J ∈ Sn+1 such that I ⊆ J .

If condition (P3) is satisfied and Cn ⊆ Cn+1 for all n ∈ N , then ∩∞

n=1An ∈ B.

P r o o f. Assuming that Cn ⊆ Cn+1 for all n ∈ N , by Lemma 3, condition (P3)
is equivalent to An ⊇ An+1 for all n ∈ N . The rest follows immediately from
Corollary 2. �

We conclude this subsection with one consequence of Corollary 2.Corollary 4. Let (Sn, Cn) be associated with An ∈ B for all n ∈ N , and let

An ⊇ An+1 and Cn ⊆ Cn+1 for all n ∈ N . Then ∩∞

n=1An ∈ B if and only if

∩∞

n=1An ∈ A.

3.2. Sufficient conditions for ∩∞

n=1An ∈ A

In this subsection we will assume that An ⊇ An+1 and Cn ⊆ Cn+1 for all
n ∈ N , and with respect to Corollary 4 we will try to find sufficient conditions
for ∩∞

n=1An ∈ A.

First, we will study the structure of an element A ∈ A. The following result
gives a topological characterization of the range of a function f ∈ F .Lemma 4. Let A ⊆ [0,∞] and A 6= [0,∞]. If there exist a non-empty countable

system S =
{

[bk, dk] ⊆ [0,∞] | k ∈ K
}

6= {[0,∞]} of pairwise disjoint intervals

of a positive length and a non-empty countable set C =
{

ck ∈ [0,∞] | k ∈ K
}

such that [bk, dk] ∩ C = {ck} for all k ∈ K, and

A =
(

[0,∞] \ (∪k∈K [bk, dk])
)

∪
{

ck ∈ [0,∞] | k ∈ K
}

,

then

A ∈ A.

P r o o f. We will construct a function f ∈ F with Ran(f) = A. We only give the
main ideas of the proof.
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First of all, there exist minA = a, maxA = b, and a < b. Further, for all
x ∈ (A \ C) ∩ (a, b),

x ∈ Acc−(C) ⇔ x ∈ Acc−(Ac), (5)

x ∈ Acc+(C) ⇔ x ∈ Acc+(Ac). (6)

Write (A \ C) ∩ (a, b) = B. Clearly, B ⊆ A. Using (5) and (6) yields

B = A00 ∪ A01 ∪ A10 ∪ A11,

where the sets
A00 =

{

x ∈ B | ∃ ǫ > 0, (x − ǫ, x) ⊆ A, (x, x + ǫ) ⊆ A
}

,

A01 =
{

x ∈ B | ∃ ǫ > 0, (x − ǫ, x) ⊆ A, ∀ δ > 0(x, x + δ) ∩ C 6= ∅
}

,

A10 =
{

x ∈ B | ∀ δ > 0, (x − δ, x) ∩ C 6= ∅, ∃ ǫ > 0, (x, x + ǫ) ⊆ A
}

,

A11 =
{

x ∈ B | ∀ δ > 0, (x − δ, x) ∩ C 6= ∅, (x, x + δ) ∩ C 6= ∅
}

are pairwise disjoint.

Define g(a) = 0 and g(b) = 1. The set
(

C ∩ (a, b)
)

∪ A01 ∪ A10 is countable,

and if it is non-empty, we can write
(

C ∩ (a, b)
)

∪ A01 ∪ A10 = {an | n ∈ I},
where I = {1, . . . , k} or I = N , and ai 6= aj for all i, j ∈ I. Define g(a1) = 1/2.
Suppose that we have defined g(aj) for all j ∈ {1, . . . , n}. If n+1 ∈ I, we define
g(an+1) as

1

2

(

sup
(

g(aj) | j ∈ {1, . . . , n}, aj < an+1

)

+ inf
(

g(aj) | j ∈ {1, . . . , n}, an+1 < aj

)

)

,

where sup(∅) = 0 and inf(∅) = 1. Denote the set {a, b} ∪ C ∪ A01 ∪ A10 by M .
The function g : M → [0, 1] is strictly increasing and possesses the following two
properties:

(i) For all c ∈ M , 0 < c, if s = sup
(

[0, c) ∩ M
)

/∈ M , 0 < s, then sup
(

g(x) |

x ∈ [0, c) ∩ M
)

= g(c).

(ii) For all c ∈ M , c < ∞, if i = inf
(

M ∩ (c,∞]
)

/∈ M , i < ∞, then inf
(

g(x) |

x ∈ M ∩ (c,∞]
)

= g(c),

(sup
(

[0, c)∩M
)

= 0, if [0, c)∩M = ∅, and inf
(

M∩(c,∞]
)

= ∞, if M∩(c,∞] = ∅).

Define the function h : A11 → [0, 1] by

h(x) = sup
(

g(t) | t ∈ [0, x) ∩ M
)

,

where sup(∅) = 0, and then put h(x) = g(x) for all x ∈ M . The function
h : A \ A00 → [0, 1] is strictly increasing.
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Since the set A00 is open in (0,∞) we can write that A00 = ∪l∈L(a′

l, a
′′

l ),
where (a′

i, a
′′

i ) ∩ (a′

j , a
′′

j ) = ∅ for all i, j ∈ L. For an arbitrary l ∈ L, we have

sl = sup
(

[0, a′

l] ∩ (A \ A00)
)

= max
(

[0, a′

l] ∩ (A \ A00)
)

,

il = inf
(

[a′′

l ,∞] ∩ (A \ A00)
)

= min
(

[a′′

l ,∞] ∩ (A \ A00)
)

,

and

h(sl) < h(il).

For all l ∈ L, choose a strictly increasing bijection hl : (a′

l, a
′′

l ) →
(

h(sl), h(il)
)

,
and define h(x) = hl(x) for all x ∈ (a′

l, a
′′

l ) and l ∈ L. The function h : A → [0, 1]
is strictly increasing.

Finally, define h(x) = h(ck) for all x ∈ [bk, dk] \ {ck} and k ∈ K. The func-
tion h : [0,∞] → [0, 1] is non-decreasing and h(0) = 0, h(1) = 1. Moreover,
the function h is continuous on [0,∞]. Hence, h

(

[0,∞]
)

= [0, 1]. Obviously,

h
(

[0,∞]
)

= h(A). It follows that the function h : A → [0, 1] is a strictly increas-
ing bijection, and its inverse f : [0, 1] → A is an element of F with Ran(f) = A
which completes the proof. �Theorem 2. Let (Sn, Cn) be associated with An ∈ B for all n ∈ N , and let

An ⊇ An+1 and Cn ⊆ Cn+1 for all n ∈ N . Write

(P4) For all {Jn}
∞

n=m, Jn ∈ Sn, if Jn ⊆ Jn+1 for all n ≥ m, n ∈ N then there

exists k ≥ m, k ∈ N such that Jk = Jn for all n ≥ k, n ∈ N .

Then ∩∞

n=1An ∈ B if and only if condition (P4) is satisfied.

P r o o f. Denote ∩∞

n=1An by A. With respect to Corollary 4 it is sufficient to
prove that A ∈ A if and only if condition (P4) is satisfied.
(⇒) Suppose that A ∈ A. Let (S, C) be associated with A. Fix {Jn}

∞

n=m,
Jn ∈ Sn, Jn = [an, bn] such that Jn ⊆ Jn+1 for all n ≥ m, n ∈ N . By Lemma 3,
for all Jn, n ≥ m, there exists Kn ∈ S such that Jn ⊆ Kn. Since intervals of S
are pairwise disjoint, Kn = K = [a, b] for all n ≥ m. Obviously,

a ≤ an+1 ≤ an ≤ bn ≤ bn+1 ≤ b.

Now, we will prove that there exists k1 ≥ m, k1 ∈ N such that bk1
= b. The

proof is by contradiction. Suppose that bn < b for all n ≥ m, n ∈ N . The
interval Jm ⊆ K contains just one element c of Cm. By Lemma 2, c ∈ A. Hence,
c ∈ K ∩ A, and since the interval K contains just one element of A, we have
K ∩ A = {c}. Obviously, c ≤ bm < b, and so b /∈ A. Since An ⊇ An+1 for all
n ∈ N , there exists l ≥ m, l ∈ N such that b /∈ Al, and consequently, there exists
Il ∈ Sl such that b ∈ Il. Clearly, Il 6= Jl, and since the intervals of Sl are pairwise
disjoint, Il ∩ Jl = ∅. By Lemma 3, Il ⊆ L for some L ∈ S. Clearly, L ∩ K 6= ∅,
and since the intervals of S are pairwise disjoint, L = K. The interval Il ⊆ K
contains just one element d of Cl. By Lemma 2, d ∈ A. Hence, d ∈ K ∩A. Thus,
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c, d ∈ K ∩A, c 6= d contrary to K ∩ A = {c}. Similarly, we can prove that there
exists k2 ≥ m, k2 ∈ N such that an = a. It follows that an = a and bn = b for
all n ≥ k, n ∈ N , where k = max(k1, k2) ≥ m.
(⇐) If A = [0,∞], then condition (P4) is satisfied and A ∈ A. Let A 6= [0,∞].
Suppose that (P4) is satisfied. First, we will prove that for all x /∈ A, there exists
the uniquely determined interval [a, b], a < b containing x with the following
property: there exists k ∈ N such that [a, b] ∈ Sn for all n ≥ k, n ∈ N . In order
to show it, fix x /∈ A. Then x /∈ Am for some m ∈ N , and consequently, x ∈ Jm

for some Jm ∈ Sm. By Lemma 3, there exists a sequence {Jn}
∞

n=m of intervals
Jn ∈ Sn, Jn = [an, bn] such that Jn ⊆ Jn+1 for all n ≥ m, n ∈ N . By (P4), there
exists k ≥ m, k ∈ N such that Jk = Jn = [a, b] for all n ≥ k, n ∈ N . Obviously,
a < b and x ∈ [a, b].

Now, we will prove that the interval [a, b] is uniquely determined. Suppose
that there is an interval [c, d], c < d containing x with the property: there exists
l ∈ N such that [c, d] ∈ Sn for all n ≥ l, n ∈ N . Then [a, b], [c, d] ∈ Sn for all
n ≥ max(k, l), n ∈ N implying that [a, b] = [c, d].

Finally, we will prove that the interval [a, b] contains just one element of A.
The interval Jk = [a, b] contains just one element e of Ck. By Lemma 2, e ∈ A,
and consequently, e ∈ [a, b]∩A. Further, [a, b]∩A ⊆ [a, b]∩Ak = [a, b]∩Ck = {e}.
Hence, [a, b] ∩ A = {e}.

For all x /∈ A, denote the interval [a, b] described above by Ix. Write S =
{

I ⊆

[0,∞] | ∃x ∈ [0,∞] \ A, Ix = I
}

and C =
{

c ∈ [0,∞] | ∃ I ∈ S, I ∩ A = {c}
}

.
The system S is non-empty and contains intervals of a positive length. Moreover,
for all I ∈ S, there exists m ∈ N such that I ∈ Sn for all n ≥ m, n ∈ N . It
follows that intervals of S are pairwise disjoint, and S 6=

{

[0,∞]
}

. Further, for

all I ∈ S, the set I ∩C contains only one element, and A =
(

[0,∞] \ (∪S)
)

∪C.
By Lemma 4, A ∈ A which completes the proof. �

We conclude this subsection with one simple and useful consequence of The-
orem 2.Corollary 5. Let (Sn, Cn) be associated with An ∈ B for all n ∈ N . If Cn ⊆
Cn+1 and Sn ⊆ Sn+1 for all n ∈ N , then ∩∞

n=1An ∈ B.

3.3. Examples

The results presented in this subsection extend the construction of the no-
where dense set A ∈ B with 0 ∈ Acc+(A)=

{

x ∈ [0,∞] | ∀ǫ> 0, (x, x+ǫ)∩A 6= ∅
}

introduced in [12].Corollary 6. Let A ∈ B, min A = 0, maxA = 1 and let p ∈ [1/3, 1),
q = (1 − p)/2 and r = (1 + p)/2. Then q

(

A ∪ (A \ {0} + r/q)
)

∈ B.
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P r o o f. It follows from (S3) with c = r/q (r/q = (1 + p)/(1 − p) ≥ 2 for all
p ∈ [1/3, 1)) and (S2) with c = q. �

Starting with A = [0, 1] Corollary 6 yields the following sequence of elements
of B.

Example 1. Let p ∈ [1/3, 1). Write q = (1 − p)/2, r = (1 + p)/2, define the
function f : {0, 1, 2} → {0, q, r} by f(0) = 0, f(1) = q, f(2) = r and the function
g : {0, 1, 2} → {q, p} by g(0) = g(2) = q and g(1) = p. Write

Ii1,...,in
=







x ∈ [0, 1] |
n

∑

j=1

f(ij)q
j−1 < x ≤

n
∑

j=1

f(ij)q
j−1 + g(in)qn−1







, (7)

where i1, . . . , in−1 ∈ {0, 2}, in ∈ {0, 1, 2}, n ∈ N .

For all n ∈ N , define the set Apn ∈ A such that Apn consists of 0 and
2n intervals Ii1,...,in

given by (7), where i1, . . . , in ∈ {0, 2}. We will prove that
Apn ∈ B for all n ∈ N by induction. Obviously, minApn = 0, maxApn =
∑n

j=1 rqj−1 + qn = 1 for all n ∈ N . The set q
(

[0, 1]∪ ([0, 1] \ {0}+ r/q)
)

∈ B by

Corollary 6. Further, q
(

[0, 1]∪ ([0, 1] \ {0}+ r/q)
)

= {0}∪ I0 ∪ I2 = Ap1. Hence,
Ap1 ∈ B.

Suppose that Apn ∈ B. Then q
(

Apn ∪ (Apn \ {0}+ r/q)
)

∈ B by Corollary 6.

It remains to show that q
(

Apn ∪ (Apn \ {0} + r/q)
)

= Apn+1.

Observe that x ∈ Apn \ {0} if and only if x ∈ Ii1,...,in
for some i1, . . . , in ∈

{0, 2}, i.e.,
n

∑

j=1

f(ij)q
j−1 < x ≤

n
∑

j=1

f(ij)q
j−1 + qn.

Further, y ∈ q
(

Apn∪(Apn\{0}+r/q)
)

\{0} if and only if y = qx or y = q(x+r/q)
for some x ∈ Apn \ {0}, i.e.,

n
∑

j=1

f(ij)q
j < qx ≤

n
∑

j=1

f(ij)q
j + qn+1

or

r +
n

∑

j=1

f(ij)q
j < q(x + r/q) ≤ r +

n
∑

j=1

f(ij)q
j + qn+1,

which is equivalent to y ∈ I0,i1,...,in
or y ∈ I2,i1,...,in

for some i1, . . . , in ∈ {0, 2},
i.e., y ∈ Apn+1 \ {0}. Hence, Apn+1 ∈ B.

Example 2. Let p ∈ [1/3, 1), and {Apn}
∞

n=1, be a sequence of the sets defined in
Example 1. Write Tp0 = {[1,∞]}, Tpn = {Īi1,...,in

| i1, . . . , in−1 ∈ {0, 2}, in = 1},
where Īi1,...,in

is the closure of Ii1,...,in
, Dp0 = {1}, Dpn = {l(I) | I ∈ Tpn},
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where l(I) is the left-hand end point of the interval I, and Spn = ∪n
j=0Tpj ,

Cpn = ∪n
j=0Dpj .

The pair (Spn, Cpn) is associated with Apn ∈ A for all n ∈ N . The set
Apn ∈ B for all n ∈ N by Example 1. Further, Spn ⊆ Spn+1 and Cpn ⊆ Cpn+1

for all n ∈ N . Hence, Ap = ∩∞

n=1Apn ∈ B by Corollary 5.

Observe that the set Ap ∈ B consists of 0 and of all x ∈ [0, 1] such that x =
∑

∞

j=1 f(ij)q
j−1, {ij}

∞

j=1, ij ∈ {0, 2} with infinite many ij 6= 0. If p = 1/3 then
the set A1/3 is a proper subset of the Cantor set. The set A1/3 was introduced
in [9] for the first time and can be found in [12].Corollary 7. Let A ∈ B, min A = 0, maxA = 1, k ∈ N . Then 1

2k+1

(

{0} ∪

(∪k
j=0(A \ {0} + 2j))

)

∈ B.

P r o o f. It follows from (S4) with c = 2, (S1) with u = 0, v = 2k + 1, and (S2)
with c = 1/(2k + 1). �

Starting with A = [0, 1] Corollary 7 yields the following sequence of elements
of B :

Example 3. Let k ∈ N . Write

Ii1,...,in
=

{

x ∈ [0, 1] |
n

∑

j=1

ij/(2k+1)j < x ≤
n

∑

j=1

ij/(2k+1)j+1/(2k+1)n
}

, (8)

where i1, . . . , in−1 ∈ {0, 2, . . . , 2k} are even, in ∈ {0, 1, . . . , 2k}, n ∈ N .

For all n ∈ N , define the set Akn ∈ A such that Akn consists of 0 and (k+1)n

intervals Ii1,...,in
given by (8) where i1, . . . , in ∈ {0, 2, . . . , 2k} are even. We will

prove that Akn ∈ B for all n ∈ N by induction. Obviously, minAkn = 0 and
maxAkn =

∑n
j=1

2k
(2k+1)j + 1

(2k+1)n = 1 for all n ∈ N . The set 1
2k+1

(

{0} ∪

(∪k
j=0([0, 1] \ {0} + 2j))

)

∈ B by Corollary 7. Further, 1
2k+1

(

{0} ∪ (∪k
j=0([0, 1] \

{0} + 2j))
)

= {0} ∪ I0 ∪ I2 ∪ · · · ∪ I2k = Ak1. Hence, Ak1 ∈ B.

Suppose that Akn ∈ B. Then 1
2k+1

(

{0} ∪ (∪k
j=0(Akn \ {0} + 2j))

)

∈ B by

Corollary 7. It remains to show that 1
2k+1

(

{0}∪(∪k
j=0(Akn\{0}+2j))

)

= Akn+1.

Observe that x ∈ Akn \ {0} if and only if x ∈ Ii1,...,in
for some i1, . . . , in ∈

{0, 2, . . . , 2k}, i.e.,

n
∑

j=1

ij
(2k + 1)j

< x ≤
n

∑

j=1

ij
(2k + 1)j

+
1

(2k + 1)n
.
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Hence, y ∈ 1
2k+1

(

{0} ∪ (∪k
j=0(Akn \ {0} + 2j))

)

\ {0} if and only if y =

(x + 2j)/(2k + 1) for some x ∈ Akn \ {0} and j ∈ {0, 1, . . . , k}, i.e.,

2j

2k + 1
+

n
∑

j=1

ij
(2k + 1)j+1

<
x + 2j

2k + 1
≤

2j

(2k + 1)
+

n
∑

j=1

ij
(2k + 1)j+1

+
1

(2k + 1)n+1

which is equivalent to y ∈ I2j,i1,...,in
for some i1, . . . , in ∈ {0, 2 . . . , 2k} and

j ∈ {0, 1, . . . , k}, i.e., y ∈ Akn+1 \ {0}. Hence, Akn+1 ∈ B.

Example 4. Let k ∈ N , and {Akn}
∞

n=1 be a sequence of the sets defined in
Example 3. Write

Tk0 =
{

[1,∞]
}

,

Tkn =
{

Īi1,...,in
| i1, . . . , in−1 ∈ {0, 2, . . . , 2k}, in ∈ {1, 3, . . . , 2k − 1}

}

,

where Īi1,...,in
is the closure of Ii1,...,in

, Dk0 = {1}, Dkn =
{

l(I) | I ∈ Tkn

}

,
where l(I) is the left-hand end point of the interval I, and Skn = ∪n

j=0Tkj,
Ckn = ∪n

j=0Dkj .

The pair (Skn, Ckn) is associated with Akn ∈ A for all n ∈ N . The set Akn ∈ B
for all n ∈ N by Example 3. Further, Skn ⊆ Skn+1 and Ckn ⊆ Ckn+1 for all
n ∈ N . Hence, Ak = ∩∞

n=1Akn ∈ B by Corollary 5.

Observe that the set Ak ∈ B which consists of 0 and of all x ∈ [0, 1] such that
x =

∑

∞

j=1 ij/(2k + 1)j , {ij}
∞

j=1, ij ∈ {0, 2, . . . , 2k} with infinite many ij 6= 0. If

k = 1 and p = 1/3, then the set A1 coincides with the set A1/3. Observe the sets
Ap \ {0}, p ∈ [1/3, 1) and Ak \ {0}, k ∈ N are fractals.
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[10] VICENÍK, P.: Additive generators of non-continuous triangular norms. In: S. E. Rod-
abaugh, E. P. Klement (Eds.), Topological and Algebraic Structures in Fuzzy Sets, Trends
Log. Stud. Log. Libr., Vol. 20, Kluwer Academic Publishers, Dordrecht, 2003, pp. 441–454.
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