# NOTE ON DECOMPOSABLE SETS 

Jolanta Olko


#### Abstract

We consider the notion of decomposable hull of a subset of the space of vector measures and give some elementary properties. The relation between decomposability of the set of measure selections of a multimeasure and additivity of multimeasure is studied. We give an example of multimeasure with nonconvex and nondecomposable set of measure selections.


Let $(T, \Sigma)$ be a measurable space and let $X$ be a real normed space. In the sequel, $\mathcal{M}$ stands for the space of all vector measures defined on $\Sigma$ with values in $X$.

Definition 1. We say that $D \subset \mathcal{M}$ is decomposable iff for every $A \in \Sigma$ and $m, n \in D$

$$
m \chi_{A}+n \chi_{T \backslash A} \in D
$$

where the measure $m \chi_{A}$ is given by $m \chi_{A}(B)=m(B \cap A)$.
Lemma 1. Let $(T, \Sigma)$ be a measurable space, $X$ a normed space. Then
(1) $\mathcal{M}$ is decomposable;
(2) the intersection of any family of decomposable sets in $\mathcal{M}$ is decomposable; if $\left\{S_{n}: n \in \mathbb{N}\right\}$ is an increasing sequence of decomposable sets in $\mathcal{M}$, then $\bigcup_{n \in \mathbb{N}} S_{n}$ is decomposable;
(3) if $S_{1}, S_{2} \subset \mathcal{M}$ are decomposable sets, then $S_{1}+S_{2}$ is decomposable.

The above lemma allows us to define a decomposable hull of a set $S \subset \mathcal{M}$ in the following way

$$
\operatorname{dec} S=\bigcap\{D: S \subset D, \quad D \text { is decomposable }\}
$$

It is easily seen that the decomposable hull of $S$ is the smallest decomposable set containing $S$.

[^0]Keywords: multimeasure, measure selection, decomposable set.

We say that sets $A_{1}, \ldots, A_{k}$ form $\Sigma$-partition of the space $T$ iff they are mutually disjoint elements of $\Sigma$ such that $\bigcup_{i=1}^{k} A_{i}=T$. The following lemma yields information about elements of the decomposable hull of a set.

Lemma 2. Let $S \subset \mathcal{M}$. Then

$$
\operatorname{dec} S=\left\{\sum_{i=1}^{k} m_{i} \chi_{A_{i}}: k \in I N, m_{i} \in S,\left\{A_{1}, \ldots, A_{k}\right\} \text { is } \Sigma \text {-partition of } T\right\}
$$

Proof. Throughout the proof $R$ denotes the set on the right-hand side of the above equality. We first show that $\operatorname{dec} S \subset R$. It is clear that $S \subset R$, so it suffices to prove that $R$ is decomposable.

Fix $m, n \in R$ and $C \in \Sigma$. Therefore $m=\sum_{i=1}^{k} m_{i} \chi_{A_{i}}, n=\sum_{i=1}^{l} n_{i} \chi_{B_{i}}$, where $m_{i}, n_{i} \in S, A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{l}$ are $\Sigma$-partitions of $T$. Therefore

$$
\begin{aligned}
m \chi_{C}+n \chi_{T \backslash C} & =\left(\sum_{i=1}^{k} m_{i} \chi_{A_{i}}\right) \chi_{C}+\left(\sum_{i=1}^{l} n_{i} \chi_{B_{i}}\right) \chi_{T \backslash C} \\
& =\sum_{i=1}^{k} m_{i} \chi_{A_{i}} \chi_{C}+\sum_{i=1}^{l} n_{i} \chi_{B_{i}} \chi_{T \backslash C} \\
& =\sum_{i=1}^{k} m_{i} \chi_{A_{i} \cap C}+\sum_{i=1}^{l} n_{i} \chi_{B_{i} \cap(T \backslash C)} .
\end{aligned}
$$

Observe that the sets $A_{1} \cap C, \ldots, A_{k} \cap C, B_{1} \cap(T \backslash C), \ldots, B_{l} \cap(T \backslash C)$ form $\Sigma$-partition of $T$. Thus the measure $m \chi_{C}+n \chi_{T \backslash C} \in R$.

Now, we will show that for every $k \in \mathbb{N}$

$$
\begin{equation*}
\sum_{i=1}^{k} m_{i} \chi_{A_{i}} \in \operatorname{dec} S \quad \text { for } m_{1}, \ldots, m_{k} \in S, \quad A_{1}, \ldots, A_{k} \Sigma \text {-partition of } T \text {. } \tag{1}
\end{equation*}
$$

The proof is by induction on $k$. Obviously $m \chi_{T} \in S \subset \operatorname{dec} S$ for $m \in S$, hence (1) holds for $k=1$.

Let $k=2, m_{1}, m_{2} \in S, A_{1}, A_{2} \in \Sigma$ be such that $A_{1} \cap A_{2}=\emptyset, A_{1} \cup A_{2}=T$. Therefore by definition the decomposable hull of $S$ the measure $m_{1} \chi_{A_{1}}+m_{2} \chi_{A_{2}}$ is an element of dec $S$.

Assuming (1) holds for $k$, we will prove it for $k+1$. Let $A_{1}, \ldots, A_{k+1}$ be $\Sigma$-partition of $T$ and let $m_{1}, \ldots, m_{k+1} \in S$.

Define

$$
m=\sum_{i=1}^{k-1} m_{i} \chi_{A_{i}}+m_{k} \chi_{A_{k} \cup A_{k+1}} .
$$

By the induction hypothesis $m \in \operatorname{dec} S$. Since $m_{k+1} \in S \subset \operatorname{dec} S$ and $\operatorname{dec} S$ is decomposable, $m \chi_{A_{1} \cup \ldots \cup A_{k}}+m_{k+1} \chi_{A_{k+1}}$ belongs to $\operatorname{dec} S$. But

$$
\sum_{i=1}^{k+1} m_{i} \chi_{A_{i}}=\sum_{i=1}^{k} m_{i} \chi_{A_{i}}+m_{k+1} \chi_{A_{k+1}}=m \chi_{A_{1} \cup \ldots \cup A_{k}}+m_{k+1} \chi_{A_{k+1}},
$$

which completes the proof.
Here we give some elementary properties of the decomposable hull of a set.

## Lemma 3. Let $S \subset \mathcal{M}$. Then

(1) $S \subset \operatorname{dec} S$;
(2) $S$ is decomposable if and only if $S=\operatorname{dec} S$.
(3) If $S$ is a convex set, then $\operatorname{dec} S$ is convex.
(4) If $S$ is decomposable, then conv $S$ (convex hull of $S$ ) is decomposable.

Proof. The first two properties are obvious. To prove the third one, take $m=\sum_{i=1}^{k} m_{i} \chi_{A_{i}}, n=\sum_{i=1}^{l} n_{i} \chi_{B_{i}}$ from $\operatorname{dec} S$ and $\lambda \in[0,1]$. Define sets $C_{i j}=A_{i} \cap B_{j}, i \in\{1, \ldots, k\}, j \in\{1, \ldots, l\}$, which form $\Sigma$-partition of $T$. Observe that

$$
m=\sum_{i=1}^{k} \sum_{j=1}^{l} m_{i} \chi_{C_{i j}} \quad \text { and } \quad n=\sum_{i=1}^{k} \sum_{j=1}^{l} n_{j} \chi_{C_{i j}} .
$$

Therefore

$$
\begin{aligned}
\lambda m+(1-\lambda) n & =\lambda\left(\sum_{i=1}^{k} \sum_{j=1}^{l} m_{i} \chi_{C_{i j}}\right)+(1-\lambda) \sum_{i=1}^{k} \sum_{j=1}^{l} n_{j} \chi_{C_{i j}} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{l}\left(\lambda m_{i}+(1-\lambda) n_{j}\right) \chi_{C_{i j}}
\end{aligned}
$$

Since $S$ is convex, $\lambda m_{i}+(1-\lambda) n_{j} \in S$ for $i \in\{1, \ldots, k\}, j \in\{1, \ldots, l\}$ and finally $\lambda m+(1-\lambda) n \in \operatorname{dec} S$.

Now, assume that $S$ is decomposable. Take $A \in \Sigma$. Let us first prove that

$$
\begin{equation*}
m \in S, \quad n \in \operatorname{conv} S \Longrightarrow m \chi_{A}+n \chi_{T \backslash A} \in \operatorname{conv} S \tag{2}
\end{equation*}
$$

To do this, consider $m \in S$ and $n=\sum_{i=1}^{k} \lambda_{i} n_{i}$, a convex combination of elements of $S$. Then we have

$$
m \chi_{A}+n \chi_{T \backslash A}=\left(\sum_{i=1}^{k} \lambda_{i} m\right) \chi_{A}+\left(\sum_{i=1}^{k} \lambda_{i} n_{i}\right) \chi_{T \backslash A}=\sum_{i=1}^{k} \lambda_{i}\left(m \chi_{A}+n_{i} \chi_{T \backslash A}\right) .
$$

Since $m \chi_{A}+n_{i} \chi_{T \backslash A} \in S, i \in\{1, \ldots, k\}$, it folows that $m \chi_{A}+n \chi_{T \backslash A} \in \operatorname{conv} S$.

Now, we will show decomposability of conv $S$. Fix $A \in \Sigma$. We prove that for every $k \in \mathbb{N}$

$$
\begin{equation*}
m=\sum_{i=1}^{k} \lambda_{i} m_{i}, \quad n=\sum_{i=1}^{k} \mu_{i} n_{i} \in \operatorname{conv} S \Longrightarrow m \chi_{A}+n \chi_{T \backslash A} \in \operatorname{conv} S . \tag{3}
\end{equation*}
$$

The proof runs by induction on $k$. For $k=1(3)$ is evident, by decomposability of $S$. Assuming (3) for $k$, take $m=\sum_{i=1}^{k+1} \lambda_{i} m_{i}, n=\sum_{i=1}^{k+1} \mu_{i} n_{i} \in \operatorname{conv} S$. Hence we can write

$$
m=\lambda \bar{m}+(1-\lambda) m_{k+1} \quad \text { and } \quad n=\mu \bar{n}+(1-\mu) n_{k+1},
$$

where

$$
\lambda:=\sum_{i=1}^{k} \lambda_{i}, \quad \bar{m}:=\sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda} m_{i} \in \operatorname{conv} S,
$$

and

$$
\mu:=\sum_{i=1}^{k} \mu_{i}, \quad \bar{n}:=\sum_{i=1}^{k} \frac{\mu_{i}}{\mu} n_{i} \in \operatorname{conv} S .
$$

Without loss of generality we can assume that $\lambda \leq \mu$. Consequently,

$$
\begin{aligned}
m \chi_{A}+n \chi_{T \backslash A}= & \left(\lambda \bar{m}+(1-\lambda) m_{k+1}\right) \chi_{A}+\left(\mu \bar{n}+(1-\mu) n_{k+1}\right) \chi_{T \backslash A} \\
= & \lambda\left(\bar{m} \chi_{A}+\bar{n} \chi_{T \backslash A}\right)+(\mu-\lambda) \bar{n} \chi_{T \backslash A} \\
& +(1-\mu)\left(m_{k+1} \chi_{A}+n_{k+1} \chi_{T \backslash A}\right)+(\mu-\lambda) m_{k+1} \chi_{A} \\
= & \lambda\left(\bar{m} \chi_{A}+\bar{n} \chi_{T \backslash A}\right)+(\mu-\lambda)\left(m_{k+1} \chi_{A}+\bar{n} \chi_{T \backslash A}\right) \\
& +(1-\mu)\left(m_{k+1} \chi_{A}+n_{k+1} \chi_{T \backslash A}\right) .
\end{aligned}
$$

By the induction hypothesis, $\bar{m} \chi_{A}+\bar{n} \chi_{T \backslash A} \in$ conv $S$. According to (2), $m_{k+1} \chi_{A}$ $+\bar{n} \chi_{T \backslash A} \in \operatorname{conv} S$. By the decomposability of $S, m_{k+1} \chi_{A}+n_{k+1} \chi_{T \backslash A} \in \operatorname{conv} S$. Thus $m \chi_{A}+n \chi_{T \backslash A}$ is the convex combination of elements of conv $S$ and the proof is complete.

The notion of decomposability is related to multimeasures. We recall some usefull definitions. Let $P_{f}(X)$ be a family of all nonempty closed subsets of $X$.

Among three different definitions of a multimeasure given in [2] (see also [1]), the most popular and general is the next one.

Definition 2. A multifunction $M: \Sigma \rightarrow P_{f}(X)$ is said to be a weak multimeasure iff for every $x^{*} \in X^{*}$ the function $A \mapsto \sigma\left(x^{*}, M(A)\right)=\sup \left\{x^{*}(x): x\right.$ $\in M(A)\}$ is an $\mathbb{R} \cup\{+\infty\}$-valued signed measure.

A weak multimeasure will be called a multimeasure for abbreviation.

We say that a vector measure $m: \Sigma \rightarrow X$ is a measure selection of multimeasure $M$ iff $m(A) \in M(A)$ for every $A \in \Sigma$. The set of all measure selections of $M$ will be denoted by $S_{M}$.
Example 1. Let $T=[0,1] \subset \mathbb{R}, \Sigma$ be $\sigma$-algebra of Lebesgue measurable subsets of $T$. Let $m$ be Lebesgue measure on $\Sigma$. Then the multifunction given by $M(A)=$ $\{m(A), 2 m(A)\}, A \in \Sigma$ is the multimeasure, $S_{M}=\{m, 2 m\}$, which is neither convex nor decomposable. Moreover, conv $S_{M}$ is not decomposable as well.

Proof. It is clear that $M$ is multimeasure. We will show that the set $S_{M}$ consists of two elements. Obviously $m, 2 m \in S_{M}$. Suppose, contrary to our claim, that there exist $n \in S_{M}$ and $A \in \Sigma$ such that

$$
n(T)=m(T) \quad \text { and } \quad n(A)=2 m(A) \neq m(A)
$$

Hence

$$
\begin{aligned}
n(T \backslash A) & =n(T)-n(A)=m(T)-2 m(A) \\
& =m(A)+m(T \backslash A)-2 m(A) \\
& =m(T \backslash A)-m(A) \in\{m(T \backslash A), 2 m(T \backslash A)\}
\end{aligned}
$$

If

$$
n(T \backslash A)=m(T \backslash A),
$$

then

$$
m(A)=0=2 m(A), \quad \text { which contradicts our assumption. }
$$

If

$$
n(T \backslash A)=2 m(T \backslash A), \quad \text { then } \quad m(T)=0, \quad \text { a contradiction. }
$$

The similar arguments are applied to the case $n(T)=2 m(T)$ and $n(A)=$ $m(A)$.

It is easily seen that $S_{M}$ is not convex. To prove that it is not decomposable, take

$$
A=\left[0, \frac{1}{2}\right] \in \Sigma
$$

We will show that $\widehat{m}:=\chi_{A}+2 m \chi_{T \backslash A}$ is not an element of $S_{M}$. Let

$$
B=\left[\frac{1}{4}, \frac{3}{4}\right] .
$$

Therefore

$$
\begin{aligned}
\widehat{m}(B) & =m(B \cap A)+2 m(B \cap(T \backslash A)) \\
& =m\left(\left[\frac{1}{4}, \frac{1}{2}\right]\right)+2 m\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right)=\frac{3}{4} .
\end{aligned}
$$

Therefore $\widehat{m}(B) \notin M(B)=\left\{\frac{1}{2}, 1\right\}$ and consequently $\widehat{m} \notin S_{M}$.

Observe that
$S_{M} \subset \operatorname{conv} S_{M}=\{\lambda m+(1-\lambda) 2 m: \lambda \in[0,1]\}=\{(2-\lambda) m: \lambda \in[0,1]\}$.
If there existed $\lambda \in[0,1]$ such that $\widehat{m}=(2-\lambda) m$, we would have

$$
\frac{3}{2}=\widehat{m}([0,1])=(2-\lambda) m([0,1])=2-\lambda
$$

and

$$
\frac{1}{2}=\widehat{m}(A)=(2-\lambda) m(A)=\frac{1}{2}(2-\lambda),
$$

a contradiction.
Convexity of values of a multimeasure implies convexity of the set $S_{M}$. Decomposability is related to additivity of $M$. We say that $M$ is an additive setmultifunction iff $M(A \cup B)=\operatorname{cl}(M(A)+M(B))$ for disjoint sets $A, B \in \Sigma$.

Lemma 4. Let the multimeasure $M: \Sigma \rightarrow P_{f}(X)$ be an additive multifunction, then $S_{M}$ is decomposable.

The proof is straightforward.
According to the above lemma, the multimeasure from Example 1 is not additive set-multifunction.

Definition 3. The multimeasure $M: \Sigma \rightarrow P_{f}(X)$ is said to be rich iff $M(A)=\operatorname{cl}\left\{m(A): m \in S_{M}\right\}$ for every $A \in \Sigma$.

If the multimeasure $M$ has closed convex values, then it is additive setmultifunction and consequently $S_{M}$ is decomposable. Here we give a partial converse of Lemma 4.

Lemma 5. Let $M: \Sigma \rightarrow P_{f}(X)$ be a rich multimeasure. If $S_{M}$ is decomposable, then $M$ is additive set-multifunction.

Proof. Let $A, B \in \Sigma$ be disjoint and let $\varepsilon>0$.
If $x \in M(A \cup B)$, then there exists $m \in S_{M}$, such that

$$
\|x-m(A \cup B)\|<\varepsilon
$$

Since $m(A \cup B)=m(A)+m(B)$, then

$$
\|x-(m(A)+m(B))\|<\varepsilon
$$

and consequently $x \in \operatorname{cl}(M(A)+M(B))$.
To prove the converse inclusion, take $x \in \operatorname{cl}(M(A)+M(B))$. Then there exist

$$
m_{1}, m_{2} \in S_{M}
$$

such that

$$
\left\|x-\left(m_{1}(A)+m_{2}(B)\right)\right\|<\varepsilon .
$$

Therefore, by decomposability of $S_{M}$, we have

$$
\begin{aligned}
m_{1}(A)+m_{2}(B) & =m_{1}((A \cup B) \cap A)+m_{2}((A \cup B) \cap(T \backslash A)) \\
& =m_{1} \chi_{A}(A \cup B)+m_{2} \chi_{T \backslash A}(A \cup B) \\
& =\left(m_{1} \chi_{A}+m_{2} \chi_{T \backslash A}\right)(A \cup B) \in M(A \cup B) .
\end{aligned}
$$

Therefore

$$
x \in \operatorname{cl} M(A \cup B)=M(A \cup B)
$$

and the proof is complete.
Consider the space $\mathcal{M}$ with the weak pointwise convergence topology $\widehat{\omega}$, which is the weak topology on $\mathcal{M}$ given by functionals of the from

$$
u(\cdot)=\sum_{k=1}^{n} \chi_{A_{k}}(\cdot) x_{k}^{*},
$$

where $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$ and $A_{1}, \ldots, A_{n}$ is $\Sigma$-partition of $T$. If $m \in \mathcal{M}$, then

$$
(m, u)=\sum_{k=1}^{n}\left(x_{k}^{*}, m\left(A_{k}\right)\right)
$$

(see [2]). Namely a net $m_{\alpha} \xrightarrow{\widehat{\omega}} m$ iff $\left(x^{*}, m_{\alpha}(A)\right) \rightarrow\left(x^{*}, m(A)\right)$ for every $A \in \Sigma$ and $x^{*} \in X^{*}$.

Remark 1. If $S \subset \mathcal{M}$ is decomposable, then $\operatorname{cl}_{\widehat{\omega}} S$ is decomposable as well.
Let $M$ be the multimeasure from Example 1. Define the multimeasure clconv $M$ by

$$
(\operatorname{clconv} M)(A):=\operatorname{clconv} M(A), \quad A \in \Sigma
$$

Therefore $S_{\text {clconv } M}$ is convex and decomposable. On the other hand the set $\mathrm{cl}_{\widehat{\omega}} \operatorname{conv} S_{M}=\operatorname{conv} S_{M}$ is not decomposable (see Example 1). Hence Proposition 4.30 in [2] is false. The proof of this proposition strongly depends on the assumptions that $M$ is rich and $S_{M}$ is decomposable. If $M$ has closed convex values, then $M$ is rich and $S_{M}$ is decomposable (cf. [2, Theorem 4.17]), however in this case the proposition is obvious.

When using an analogous proof, we have the following version without assumption of convexity of values of multimeasure.

Theorem 1. Let $M: \Sigma \rightarrow P_{f}(X)$ be a rich multimeasure. Then

$$
S_{\text {clconv } M}=\operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}
$$

Proof. Obviously $S_{\text {clconv } M}$ is $\widehat{\omega}$-closed, decomposable and convex and therefore $\mathrm{cl}_{\hat{\omega}} \mathrm{decconv} S_{M} \subset S_{\text {clconv } M}$. Suppose that the inclusion is strict. Then there exists $\widehat{m} \in S_{\text {clconv } M}$ such that $\widehat{m} \notin \mathrm{cl}_{\hat{\omega}} \mathrm{decconv} S_{M}$. According to the separation theorem, there exists a functional $\sum_{k=1}^{n} \chi_{A_{k}} x_{k}^{*}$ such that

$$
\sup \left\{\sum_{k=1}^{n}\left(x_{k}^{*}, m\left(A_{k}\right)\right): m \in \operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}\right\}<\sum_{k=1}^{n}\left(x_{k}^{*}, \widehat{m}\left(A_{k}\right)\right) .
$$

Since

$$
\sum_{k=1}^{n}\left(x_{k}^{*}, \widehat{m}\left(A_{k}\right)\right) \leq \sum_{k=1}^{n} \sigma\left(x_{k}^{*}, \operatorname{clconv} M\left(A_{k}\right)\right)=\sum_{k=1}^{n} \sigma\left(x_{k}^{*}, M\left(A_{k}\right)\right),
$$

thus

$$
\begin{equation*}
\sup \left\{\sum_{k=1}^{n}\left(x_{k}^{*}, m\left(A_{k}\right)\right): m \in \operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}\right\}<\sum_{k=1}^{n} \sigma\left(x_{k}^{*}, M\left(A_{k}\right)\right) . \tag{4}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\sum_{k=1}^{n} \sigma\left(x_{k}^{*}, M\left(A_{k}\right)\right) & =\sum_{k=1}^{n} \sup \left\{\left(x_{k}^{*}, x\right): x \in M\left(A_{k}\right)\right\} \\
& =\sum_{k=1}^{n} \sup \left\{\left(x_{k}^{*}, m\left(A_{k}\right)\right): m \in S_{M}\right\} \\
& \leq \sum_{k=1}^{n} \sup \left\{\left(x_{k}^{*}, m\left(A_{k}\right)\right): m \in \operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}\right\} \\
& =\sum_{k=1}^{n} \sup \left\{\left(x_{k}^{*}, m_{k}\left(A_{k}\right)\right): m_{k} \in \operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}\right\} \\
& =\sup \left\{\sum_{k=1}^{n}\left(x_{k}^{*}, m_{k}\left(A_{k}\right)\right): m_{k} \in \operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}\right\} \\
& =\sup \left\{\sum_{k=1}^{n}\left(x_{k}^{*}, m\left(A_{k}\right)\right): m \in \operatorname{cl}_{\widehat{\omega}} \operatorname{decconv} S_{M}\right\}
\end{aligned}
$$

which contradicts (4).
Note that the last equality relies on the decomposability of $\mathrm{cl}_{\hat{\omega}} \mathrm{decconv} S_{M}$. Indeed, for $m_{k} \in \operatorname{cl}_{\omega} \operatorname{decconv} S_{M}$

$$
\sum_{k=1}^{n} m_{k}\left(A_{k}\right)=\sum_{k=1}^{n} m\left(A_{k}\right)
$$

where $m=\sum_{k=1}^{n} m_{k} \chi_{A_{k}} \in \operatorname{cl}_{\hat{\omega}} \operatorname{decconv} S_{M}$.

## NOTE ON DECOMPOSABLE SETS

## REFERENCES

[1] GODET-THOBIE, C.: Some results about multimeasures and their selectors, Measure Theory at Oberwolfach, 1979, Lecture Notes in Math., Vol. 794, Springer-Verlag, Berlin, 1979, pp. 112-116.
[2] HU, S.- PAPAGEORGIU, N. S.: Handbook of Multivalued Analysis, Vol. I: Theory, Mathematics and Its Applications, Vol. 419, Kluwer Academic Publishers, Dordrecht, 1997.
[3] RUDIN, W.: Functional Analysis, McGraw-Hill, New York, 1991.

Received November 29, 2006

Institute of Mathematics
Pedagogical University
Podchorażych 2
PL-30-084 Kraków
POLAND
E-mail: jolko@ap.krakow.pl


[^0]:    2000 Mathematics Subject Classification: Primary: 28B20, 54 C 65.

