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MOMENT PROBLEM FOR DOUBLE FUZZY

SEQUENCES

Miloslav Duchoň — Camille Debiève

ABSTRACT. We present a moment problem in the context of fuzzy sets. A

generalization of the Hausdorff moment theorem is formulated and proved for
fuzzy double sequences

1. Introduction

The Hausdorff one-dimensional moment problem [Ha, HS, H, SC, W] is the
following: given a prescribed set of real numbers {vn}

∞

0 , find a bounded non-
decreasing function u(t) on the closed interval [0, 1] such that its moments are
equal to the prescribed values; that is,

∫

[0,1]

tndu(t) = vn, n = 0, 1, 2, . . .

The integral is a Riemann-Stieltjes integral. Equivalently, find a nonnegative
measure µ on Borelian subsets in [0, 1] with

∫

[0,1]

tndµ(t) = vn, n = 0, 1, 2, . . .

We shall need the operator ∇k (k = 0, 1, 2, . . . ) defined by

∇0vn = vn,

∇1vn = vn − vn+1,

∇kvn = vn −

(

k

1

)

vn+1 +

(

k

2

)

vn+2 − · · · + (−1)kvn+k, n = 1, 2, . . .

for any sequence of real numbers {vn}
∞

0 . If ∇kvn ≥ 0, n = 1, 2, . . . , the se-
quence {vn}

∞

0 is called completely monotone. Now Hausdorff moment theorem
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says that for a sequence {vn}
∞

0 to be the moment sequence of some unique pos-
itive measure µ on [0, 1] it is necessary and sufficient that {vn}

∞

0 be completely
monotone.

It was shown [DR] that the result permits a generalization to the case where
{vk} is a completely monotone sequence with values in a fuzzy set. It is easy
to see that a completely monotone sequence can be defined in the same way
because the completely monotone sequence vn is, as follows from the definition,
non-increasing and so using difference vn − vn+1 makes sense. In this paper we
consider completely monotone double sequences with values in a fuzzy set.

2. Remark on Bernstein polynomials in more dimensions

In some cases we know that f(x, y) is a function of the two real variables x

and y. Further, for each fixed value of x, f(x, y) is a polynomial in y. For each
fixed value of y, f(x, y) is a polynomial in x. Is f(x, y) necessarily a polynomial
of the two variables x and y? It is interesting to note that it was shown (only in
1984) that f(x, y) is a polynomial if it is so in each variable separately.

(This fact was published by F. V. C a r o l l : A polynomial in each variable

separately is a polynomial, Amer. Math. Monthly 68 1961, p. 42, as a solution
of the problem posed in Amer. Math. Monthly 67 (1960), 68 (1961), 89 (1982)
and 91 (1984).)

If we denote

pnk(x) =

(

n

k

)

xk(1 − x)n−k = Ck
nxk(1 − x)n−k,

then we have

n
∑

k=0

kpnk(x) = nx,

n
∑

k=0

k2pnk(x) = n2x2 + nx(1 − x).

Consider a function f : [0, 1] × [0, 1] → R. The polynomial Bernstein form
(or the Bernstein polynomial) of f is

Bm,n(f ;x, y) =

m
∑

j=0

n
∑

k=0

f

(

j

m
,
k

n

)

Cj
mCk

nxj(1 − x)m−jyk(1 − y)n−k.
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If f is a continuous function, it is bounded by a positive finite M , we consider
the difference

R(x, y) = f(x, y) − Bm,n(f ;x, y)

=
∑

j,k

[

f(x, y) − f

(

j

m
,
k

n

)]

Cj
mCk

nxj(1 − x)m−jyk(1 − y)n−k.

For fixed ǫ > 0, there exists δ > 0 such that for |x− x0| < δ and |y − y0| < δ we
have |f(x, y) − f(x0, y0)| < ǫ. For fixed (x, y) ∈ [0, 1] × [0, 1],
let

A1 =

{

(j, k) |

∣

∣

∣

∣

x −
j

m

∣

∣

∣

∣

≤ δ,

∣

∣

∣

∣

y −
k

n

∣

∣

∣

∣

≤ δ

}

,

A2 =

{

(j, k) |

∣

∣

∣

∣

x −
j

m

∣

∣

∣

∣

> δ

}

,

A3 =

{

(j, k) |

∣

∣

∣

∣

y −
k

n

∣

∣

∣

∣

> δ

}

and

Ri(x, y) =
∑

(j,k)∈Ai

[

f(x, y) − f

(

j

m
,
k

n

)]

Cj
mCk

nxj(1 − x)m−jyk(1 − y)n−k

for i = 1, 2, 3,

and we easily obtain

|R(x, y)| ≤ |R1(x, y)| + |R2(x, y)| + |R3(x, y)|

≤ ǫ

1
∑

j,k

Cj
mCk

nxj(1 − x)m−jyk(1 − y)n−k

+
2M

m2δ2

∑

j,k

(mx − j)2Cj
mCk

nxj(1 − x)m−jyk(1 − y)n−k

+
2M

n2δ2

∑

j,k

(ny − k)2Cj
mCk

nxj(1 − x)m−jyk(1 − y)n−k

≤ ǫ +
M

2mδ2
+

M

2nδ2
.

For n,m > M
2ǫδ2 we have

|f(x, y) − Bm,n(f ;x, y)| < 3ǫ

which proves the following proposition.Proposition. Every continuous function f : [0, 1]2 → R can be uniformly

approximated by its Bernstein polynomials.
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3. Double fuzzy moment problem

We consider a set F ⊂ [0, 1]Ω of fuzzy subsets of a set Ω. Let B[0, 1]2 denote
the family of Borel sets in [0, 1]2 = [0, 1] × [0, 1].

An observable is a mapping y : B[0, 1]2 → F satisfying the conditions:

a) y([0, 1]2) = 1,

b) A,B ∈ B[0, 1]2 ⇒ y(A ∪ B) = y(A) + y(B) if A ∩ B = ∅,

c) An ∈ B[0, 1]2, n = 1, 2, . . . , An ր A ⇒ y(An) ր y(A).

Let (akl) ⊂ F be a double sequence of fuzzy elements. We say that (akl) is
a solution of the double fuzzy moment problem if there exists an observable
y : B[0, 1]2 → F such that

akl =

∫

[0,1]2
tksldy(t, s), k, l = 0, 1, . . . ,

i. e.,

akl(ω) =

∫

[0,1]2
tksldy(t, s)(ω) , k, l = 0, 1, . . . , ω ∈ Ω.

Now we shall prove double fuzzy moment problem theorem.Theorem 1. The double sequence (akl) ⊂ F is a solution of the double fuzzy

moment problem, i.e., there exists an observable y : B[0, 1]2 → F such that

akl(ω) =

∫

[0,1]2
tksldy(t, s)(ω), k, l = 0, 1, . . . , ω ∈ Ω

if and only if

0 ≤∇k
1∇

l
2am,n(ω) ≤ 1, k, l,m, n = 0, 1, . . . , a00(ω) = 1, ω ∈ Ω

∇k
1∇

l
2an,m(ω) =

k
∑

j=0

l
∑

p=0

(−1)j(−1)p

(

n

j

) (

m

p

)

an+j,m+p(ω),

n,m = 0, 1, . . . , k, l = 0, 1, . . .

P r o o f. Put x
(n)
k (t)z

(m)
l (s) = tk(1 − t)nsl(1 − s)m, m,n, k, l = 0, 1, . . .

Necessity. If there exists an observable y such that

akl(ω) =

∫

[0,1]2
tksldy(t, s)(ω), k, l = 0, 1, . . . ; ω ∈ Ω ,
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then
∫

[0,1]2
x

(0)
k z

(0)
l dy(t, s)(ω) = akl(ω) ,

∫

[0,1]2
x

(n)
k z

(m)
l dy(t, s)(ω) = ∇n

1∇
m
2 akl(ω), m, n, k, l = 0, 1 . . . ; ω ∈ Ω .

Hence

0 ≤ ∇n
1∇

m
2 ak,l(ω) ≤ 1, k, l,m, n = 0, 1, . . . , ω ∈ Ω .

So (akl) is also completely monotone.

Sufficiency. Let

0 ≤ ∇n
1∇

m
2 ak,l(ω) ≤ 1, k, l,m, n = 0, 1, . . . , a00(ω) = 1, ω ∈ Ω .

Define a mapping L0 by L0(t
nsm)(ω) = anm(ω), n,m = 0, 1, . . . , ω ∈ Ω.

Extend L0 to the linear hull of tnsm, n,m = 0, 1, . . . , i.e., to the set of all
polynomials in t and s:
if

x(t, s) =
∑

ck,ls
ktl,

put

L(x)(ω) =
∑

ck,lak,l(ω).

The functions tnsm, n,m = 0, 1, . . . , are linear independent so the definition of
L is unique, L is additive and homogeneous. We have

L
(

x
(n)
k z

(m)
l

)

(ω) = ∇n
1∇

m
2 akl(ω), k,m, l, n = 0, 1, . . . , ω ∈ Ω .

Take any polynomial p(t, s) of degree n+ m. The sequence of Bernstein polyno-
mials of p(t, s) is:

pnm(t, s) = Bnm(p, t, s) =

n,m
∑

k=0,l=0

(

n

k

)(

m

l

)

p

(

k

n
,

l

m

)

tk(1 − t)n−ksl(1 − s)m−l.

The degree of polynomial

pn,m(t, s), n,m = 1, 2, . . .

is ≤ m + n, pn,m(t, s) uniformly converge to p(t, s), for n,m → ∞, hence

L(pn,m)(ω) → L(p)(ω) .

Denote by Pm,n the vector space of all polynomials degree not exceeding m+n;
Pm,n is finite-dimensional, hence for every, ω ∈ Ω, L(p)(ω) is a continuous linear
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functional on Pm,n. But, moreover,

L(pm,n)(ω) =

n,m
∑

k=0,l=0

(

n

k

)(

m

l

)

p

(

k

n
,

l

m

)

L
(

x(n−k)
n y(m−l)

m

)

(ω)

=

n,m
∑

k=0,l=0

(

n

k

)(

m

l

)

p

(

k

n
,

l

m

)

∇n−k
1 ∇m−l

2 ak,l(ω) ,

hence L(p)(ω) is positive if p is positive. So L(·)(ω) is a positive linear functional
on P (all polynomials). We may extend L(·)(ω) to a continuous linear functional
on C([0, 1]2); it is positive. Therefore there exists a positive Borel measure νω

on B[0, 1]2, see [R, S], such that

L(f)(ω) =

∫

[0,1]2
f(t, s)dνω(t, s) .

Put

y(A)(ω) = νω(A), A ∈ B[0, 1]2 .

We may write

L(f) =

∫

[0,1]2
f(t, s)dy(t, s),

L(tnsm) =

∫

[0,1]2
tnsmdy(t, s), n,m = 0, 1, . . .

Since by assumption

0 ≤ ∇k
1∇

l
2an,m(ω) ≤ 1, k, l,m, n = 0, 1, . . . ;

we have

0 ≤ y(A)(ω) ≤ 1, A ∈ B[0, 1]2, ω ∈ Ω .

So y is an observable. �

4. Moments of observables for some types of MV algebras

Consider a set F ⊂ [0, 1]Ω of fuzzy subsets of a set Ω. We may take for example
the operation f⊕g = min(f +g, 1). This algebraic structure is an example of MV
algebra. As for MV algebras and the product of observables we refer the reader
to [2DR] and references given there. On the other hand, every MV algebra can
be represented by a set [0, u]Ω, where [0, u] is an interval in an ℓ-group G. So
we are able to construct a convenient theory for a special case of MV algebras
(with a (boundedly) complete vector lattice L as G).
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Recall the definition of an observable in that particular context. Let G be a
commutative ℓ-group,

u ∈ G, u > 0,

F = [0, u]Ω, I = [0, 1].

An observable is a mapping x : B(I) → F satisfying the following conditions:

(a) x(I) = uΩ.

(b) If A,B ∈ B(I), A ∩ B = ∅, then x(A ∪ B) = x(A) + x(B).

(c) If An ∈ B(I) (n = 1, 2, . . . ), An ր A, then x(An) ր x(A).

If there is given a commutative binary operation ⋆ on [0, u], we can define the
joint observable of two observables x, y : B(R) → F as a mapping h : B(R2) → F
satisfying the following conditions:

(i) h(R2) = uΩ.

(ii) If A,B ∈ B(R2), A ∩ B = ∅, then h(A ∪ B) = h(A) + h(B).

(iii) If An ∈ B(R2) (n = 1, 2, . . . ), An ր A, then h(An) ր h(A).

(iv) If A,B ∈ B(R), then

h(A × B) = x(A)⋆y(B) .

We shall now present an application of the preceding results : an observable
of two variables as the ”product” of observables of one variable in a more general
context.Theorem 2. [2DR] Let G be a commutative, weakly σ-distributive ℓ-group with

a partial commutative binary operation ⋆ : G+ × G+ → G+ satisfying the dis-

tributive law. Let a, b, c ∈ G+, a ≤ b imply a⋆c ≤ b⋆c. Let u ∈ G, u > 0 be such

an element that u · u = u. Let x, y : B(I) → [0, u]
Ω

be observables. Then there

exists the joint observable of x and y.
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Štefánikova 49

SK–814-73 Bratislava

SLOVAKIA

E-mail : duchon@mat.savba.sk

Camille Debiève
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