MOMENT PROBLEM FOR DOUBLE FUZZY SEQUENCES

Miloslav Duchoñ - Camille Debiève

Abstract

We present a moment problem in the context of fuzzy sets. A generalization of the Hausdorff moment theorem is formulated and proved for fuzzy double sequences

1. Introduction

The Hausdorff one-dimensional moment problem [Ha, HS, H, SC, W] is the following: given a prescribed set of real numbers $\left\{v_{n}\right\}_{0}^{\infty}$, find a bounded nondecreasing function $u(t)$ on the closed interval $[0,1]$ such that its moments are equal to the prescribed values; that is,

$$
\int_{[0,1]} t^{n} d u(t)=v_{n}, \quad n=0,1,2, \ldots
$$

The integral is a Riemann-Stieltjes integral. Equivalently, find a nonnegative measure μ on Borelian subsets in $[0,1]$ with

$$
\int_{[0,1]} t^{n} d \mu(t)=v_{n}, \quad n=0,1,2, \ldots
$$

We shall need the operator $\nabla^{k} \quad(k=0,1,2, \ldots)$ defined by

$$
\begin{aligned}
& \nabla^{0} v_{n}=v_{n} \\
& \nabla^{1} v_{n}=v_{n}-v_{n+1} \\
& \nabla^{k} v_{n}=v_{n}-\binom{k}{1} v_{n+1}+\binom{k}{2} v_{n+2}-\cdots+(-1)^{k} v_{n+k}, \quad n=1,2, \ldots
\end{aligned}
$$

for any sequence of real numbers $\left\{v_{n}\right\}_{0}^{\infty}$. If $\nabla^{k} v_{n} \geq 0, \quad n=1,2, \ldots$, the sequence $\left\{v_{n}\right\}_{0}^{\infty}$ is called completely monotone. Now Hausdorff moment theorem

[^0]```
MILOSLAV DUCHOŇ - CAMILLE DEBIÈVE
```

says that for a sequence $\left\{v_{n}\right\}_{0}^{\infty}$ to be the moment sequence of some unique positive measure $\mu$ on $[0,1]$ it is necessary and sufficient that $\left\{v_{n}\right\}_{0}^{\infty}$ be completely monotone.

It was shown $[\mathrm{DR}]$ that the result permits a generalization to the case where $\left\{v_{k}\right\}$ is a completely monotone sequence with values in a fuzzy set. It is easy to see that a completely monotone sequence can be defined in the same way because the completely monotone sequence $v_{n}$ is, as follows from the definition, non-increasing and so using difference $v_{n}-v_{n+1}$ makes sense. In this paper we consider completely monotone double sequences with values in a fuzzy set.

## 2. Remark on Bernstein polynomials in more dimensions

In some cases we know that $f(x, y)$ is a function of the two real variables $x$ and $y$. Further, for each fixed value of $x, f(x, y)$ is a polynomial in $y$. For each fixed value of $y, f(x, y)$ is a polynomial in $x$. Is $f(x, y)$ necessarily a polynomial of the two variables $x$ and $y$ ? It is interesting to note that it was shown (only in 1984) that $f(x, y)$ is a polynomial if it is so in each variable separately.
(This fact was published by F. V. Caroll: A polynomial in each variable separately is a polynomial, Amer. Math. Monthly 68 1961, p. 42, as a solution of the problem posed in Amer. Math. Monthly 67 (1960), 68 (1961), 89 (1982) and 91 (1984).)

If we denote

$$
p_{n k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}=C_{n}^{k} x^{k}(1-x)^{n-k},
$$

then we have

$$
\begin{aligned}
\sum_{k=0}^{n} k p_{n k}(x) & =n x \\
\sum_{k=0}^{n} k^{2} p_{n k}(x) & =n^{2} x^{2}+n x(1-x)
\end{aligned}
$$

Consider a function $f:[0,1] \times[0,1] \rightarrow R$. The polynomial Bernstein form (or the Bernstein polynomial) of $f$ is

$$
B_{m, n}(f ; x, y)=\sum_{j=0}^{m} \sum_{k=0}^{n} f\left(\frac{j}{m}, \frac{k}{n}\right) C_{m}^{j} C_{n}^{k} x^{j}(1-x)^{m-j} y^{k}(1-y)^{n-k} .
$$

If $f$ is a continuous function, it is bounded by a positive finite $M$, we consider the difference

$$
\begin{aligned}
R(x, y) & =f(x, y)-B_{m, n}(f ; x, y) \\
& =\sum_{j, k}\left[f(x, y)-f\left(\frac{j}{m}, \frac{k}{n}\right)\right] C_{m}^{j} C_{n}^{k} x^{j}(1-x)^{m-j} y^{k}(1-y)^{n-k} .
\end{aligned}
$$

For fixed $\epsilon>0$, there exists $\delta>0$ such that for $\left|x-x_{0}\right|<\delta$ and $\left|y-y_{0}\right|<\delta$ we have $\left|f(x, y)-f\left(x_{0}, y_{0}\right)\right|<\epsilon$. For fixed $(x, y) \in[0,1] \times[0,1]$, let

$$
\begin{aligned}
& A_{1}=\left\{(j, k)| | x-\frac{j}{m}\left|\leq \delta,\left|y-\frac{k}{n}\right| \leq \delta\right\},\right. \\
& A_{2}=\left\{\left.(j, k)| | x-\frac{j}{m} \right\rvert\,>\delta\right\}, \\
& A_{3}=\left\{\left.(j, k)| | y-\frac{k}{n} \right\rvert\,>\delta\right\}
\end{aligned}
$$

and

$$
\begin{array}{r}
R_{i}(x, y)=\sum_{(j, k) \in A_{i}}\left[f(x, y)-f\left(\frac{j}{m}, \frac{k}{n}\right)\right] C_{m}^{j} C_{n}^{k} x^{j}(1-x)^{m-j} y^{k}(1-y)^{n-k} \\
\text { for } \quad i=1,2,3
\end{array}
$$

and we easily obtain

$$
\begin{aligned}
|R(x, y)| \leq & \left|R_{1}(x, y)\right|+\left|R_{2}(x, y)\right|+\left|R_{3}(x, y)\right| \\
\leq & \epsilon \sum_{j, k}^{1} C_{m}^{j} C_{n}^{k} x^{j}(1-x)^{m-j} y^{k}(1-y)^{n-k} \\
& +\frac{2 M}{m^{2} \delta^{2}} \sum_{j, k}(m x-j)^{2} C_{m}^{j} C_{n}^{k} x^{j}(1-x)^{m-j} y^{k}(1-y)^{n-k} \\
& +\frac{2 M}{n^{2} \delta^{2}} \sum_{j, k}(n y-k)^{2} C_{m}^{j} C_{n}^{k} x^{j}(1-x)^{m-j} y^{k}(1-y)^{n-k} \\
\leq & \epsilon+\frac{M}{2 m \delta^{2}}+\frac{M}{2 n \delta^{2}} .
\end{aligned}
$$

For $n, m>\frac{M}{2 \epsilon \delta^{2}}$ we have

$$
\left|f(x, y)-B_{m, n}(f ; x, y)\right|<3 \epsilon
$$

which proves the following proposition.
Proposition. Every continuous function $f:[0,1]^{2} \rightarrow R$ can be uniformly approximated by its Bernstein polynomials.

MILOSLAV DUCHOŇ - CAMILLE DEBIÈVE

## 3. Double fuzzy moment problem

We consider a set $\mathcal{F} \subset[0,1]^{\Omega}$ of fuzzy subsets of a set $\Omega$. Let $B[0,1]^{2}$ denote the family of Borel sets in $[0,1]^{2}=[0,1] \times[0,1]$.

An observable is a mapping $y: B[0,1]^{2} \rightarrow \mathcal{F}$ satisfying the conditions:
a) $y\left([0,1]^{2}\right)=1$,
b) $A, B \in B[0,1]^{2} \Rightarrow y(A \cup B)=y(A)+y(B)$ if $A \cap B=\emptyset$,
c) $A_{n} \in B[0,1]^{2}, n=1,2, \ldots, A_{n} \nearrow A \Rightarrow y\left(A_{n}\right) \nearrow y(A)$.

Let $\left(a_{k l}\right) \subset \mathcal{F}$ be a double sequence of fuzzy elements. We say that $\left(a_{k l}\right)$ is a solution of the double fuzzy moment problem if there exists an observable $y: B[0,1]^{2} \rightarrow \mathcal{F}$ such that

$$
a_{k l}=\int_{[0,1]^{2}} t^{k} s^{l} d y(t, s), \quad k, l=0,1, \ldots
$$

i. e.,

$$
a_{k l}(\omega)=\int_{[0,1]^{2}} t^{k} s^{l} d y(t, s)(\omega), \quad k, l=0,1, \ldots, \quad \omega \in \Omega
$$

Now we shall prove double fuzzy moment problem theorem.
THEOREM 1. The double sequence $\left(a_{k l}\right) \subset \mathcal{F}$ is a solution of the double fuzzy moment problem, i.e., there exists an observable $y: B[0,1]^{2} \rightarrow \mathcal{F}$ such that

$$
a_{k l}(\omega)=\int_{[0,1]^{2}} t^{k} s^{l} d y(t, s)(\omega), \quad k, l=0,1, \ldots, \quad \omega \in \Omega
$$

if and only if

$$
\begin{array}{r}
0 \leq \nabla_{1}^{k} \nabla_{2}^{l} a_{m, n}(\omega) \leq 1, \quad k, l, m, n=0,1, \ldots, a_{00}(\omega)=1, \quad \omega \in \Omega \\
\nabla_{1}^{k} \nabla_{2}^{l} a_{n, m}(\omega)=\sum_{j=0}^{k} \sum_{p=0}^{l}(-1)^{j}(-1)^{p}\binom{n}{j}\binom{m}{p} a_{n+j, m+p}(\omega) \\
n, m=0,1, \ldots, \quad k, l=0,1, \ldots
\end{array}
$$

Proof. Put $x_{k}^{(n)}(t) z_{l}^{(m)}(s)=t^{k}(1-t)^{n} s^{l}(1-s)^{m}, \quad m, n, k, l=0,1, \ldots$
Necessity. If there exists an observable $y$ such that

$$
a_{k l}(\omega)=\int_{[0,1]^{2}} t^{k} s^{l} d y(t, s)(\omega), \quad k, l=0,1, \ldots ; \quad \omega \in \Omega
$$

then

$$
\begin{aligned}
& \int_{[0,1]^{2}} x_{k}^{(0)} z_{l}^{(0)} d y(t, s)(\omega)=a_{k l}(\omega), \\
& \int_{[0,1]^{2}} x_{k}^{(n)} z_{l}^{(m)} d y(t, s)(\omega)=\nabla_{1}^{n} \nabla_{2}^{m} a_{k l}(\omega), \quad m, n, k, l=0,1 \ldots ; \quad \omega \in \Omega
\end{aligned}
$$

Hence

$$
0 \leq \nabla_{1}^{n} \nabla_{2}^{m} a_{k, l}(\omega) \leq 1, \quad k, l, m, n=0,1, \ldots, \quad \omega \in \Omega .
$$

So ( $a_{k l}$ ) is also completely monotone.
Sufficiency. Let

$$
0 \leq \nabla_{1}^{n} \nabla_{2}^{m} a_{k, l}(\omega) \leq 1, \quad k, l, m, n=0,1, \ldots, \quad a_{00}(\omega)=1, \quad \omega \in \Omega .
$$

Define a mapping $L_{0}$ by $L_{0}\left(t^{n} s^{m}\right)(\omega)=a_{n m}(\omega), n, m=0,1, \ldots, \omega \in \Omega$.
Extend $L_{0}$ to the linear hull of $t^{n} s^{m}, n, m=0,1, \ldots$, i.e., to the set of all polynomials in $t$ and $s$ : if

$$
x(t, s)=\sum c_{k, l} s^{k} t^{l}
$$

put

$$
L(x)(\omega)=\sum c_{k, l} a_{k, l}(\omega) .
$$

The functions $t^{n} s^{m}, n, m=0,1, \ldots$, are linear independent so the definition of $L$ is unique, $L$ is additive and homogeneous. We have

$$
L\left(x_{k}^{(n)} z_{l}^{(m)}\right)(\omega)=\nabla_{1}^{n} \nabla_{2}^{m} a_{k l}(\omega), \quad k, m, l, n=0,1, \ldots, \quad \omega \in \Omega .
$$

Take any polynomial $p(t, s)$ of degree $n+m$. The sequence of Bernstein polynomials of $p(t, s)$ is:
$p_{n m}(t, s)=B_{n m}(p, t, s)=\sum_{k=0, l=0}^{n, m}\binom{n}{k}\binom{m}{l} p\left(\frac{k}{n}, \frac{l}{m}\right) t^{k}(1-t)^{n-k} s^{l}(1-s)^{m-l}$.
The degree of polynomial

$$
p_{n, m}(t, s), \quad n, m=1,2, \ldots
$$

is $\leq m+n, p_{n, m}(t, s)$ uniformly converge to $p(t, s)$, for $n, m \rightarrow \infty$, hence

$$
L\left(p_{n, m}\right)(\omega) \rightarrow L(p)(\omega)
$$

Denote by $P_{m, n}$ the vector space of all polynomials degree not exceeding $m+n$; $P_{m, n}$ is finite-dimensional, hence for every, $\omega \in \Omega, L(p)(\omega)$ is a continuous linear
functional on $P_{m, n}$. But, moreover,

$$
\begin{aligned}
L\left(p_{m, n}\right)(\omega) & =\sum_{k=0, l=0}^{n, m}\binom{n}{k}\binom{m}{l} p\left(\frac{k}{n}, \frac{l}{m}\right) L\left(x_{n}^{(n-k)} y_{m}^{(m-l)}\right)(\omega) \\
& =\sum_{k=0, l=0}^{n, m}\binom{n}{k}\binom{m}{l} p\left(\frac{k}{n}, \frac{l}{m}\right) \nabla_{1}^{n-k} \nabla_{2}^{m-l} a_{k, l}(\omega)
\end{aligned}
$$

hence $L(p)(\omega)$ is positive if $p$ is positive. So $L(\cdot)(\omega)$ is a positive linear functional on $P$ (all polynomials). We may extend $L(\cdot)(\omega)$ to a continuous linear functional on $C\left([0,1]^{2}\right)$; it is positive. Therefore there exists a positive Borel measure $\nu_{\omega}$ on $B[0,1]^{2}$, see $[\mathrm{R}, \mathrm{S}]$, such that

$$
L(f)(\omega)=\int_{[0,1]^{2}} f(t, s) d \nu_{\omega}(t, s) .
$$

Put

$$
y(A)(\omega)=\nu_{\omega}(A), \quad A \in B[0,1]^{2}
$$

We may write

$$
\begin{aligned}
L(f) & =\int_{[0,1]^{2}} f(t, s) d y(t, s), \\
L\left(t^{n} s^{m}\right) & =\int_{[0,1]^{2}} t^{n} s^{m} d y(t, s), \quad n, m=0,1, \ldots
\end{aligned}
$$

Since by assumption

$$
0 \leq \nabla_{1}^{k} \nabla_{2}^{l} a_{n, m}(\omega) \leq 1, \quad k, l, m, n=0,1, \ldots ;
$$

we have

$$
0 \leq y(A)(\omega) \leq 1, \quad A \in B[0,1]^{2}, \quad \omega \in \Omega
$$

So $y$ is an observable.

## 4. Moments of observables for some types of MV algebras

Consider a set $\mathcal{F} \subset[0,1]^{\Omega}$ of fuzzy subsets of a set $\Omega$. We may take for example the operation $f \oplus g=\min (f+g, 1)$. This algebraic structure is an example of MV algebra. As for MV algebras and the product of observables we refer the reader to $[2 \mathrm{DR}]$ and references given there. On the other hand, every MV algebra can be represented by a set $[0, u]^{\Omega}$, where $[0, u]$ is an interval in an $\ell$-group $G$. So we are able to construct a convenient theory for a special case of MV algebras (with a (boundedly) complete vector lattice $L$ as $G$ ).

Recall the definition of an observable in that particular context. Let $G$ be a commutative $\ell$-group,

$$
\begin{array}{ll}
u \in G, & \\
\mathcal{F}=[0, u]^{\Omega}, & \\
I=[0,1] .
\end{array}
$$

An observable is a mapping $x: \mathcal{B}(I) \rightarrow \mathcal{F}$ satisfying the following conditions:
(a) $x(I)=u_{\Omega}$.
(b) If $A, B \in \mathcal{B}(I), A \cap B=\emptyset$, then $x(A \cup B)=x(A)+x(B)$.
(c) If $A_{n} \in \mathcal{B}(I)(n=1,2, \ldots), A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow x(A)$.

If there is given a commutative binary operation $\star$ on $[0, u]$, we can define the joint observable of two observables $x, y: \mathcal{B}(R) \rightarrow \mathcal{F}$ as a mapping $h: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$ satisfying the following conditions:
(i) $h\left(R^{2}\right)=u_{\Omega}$.
(ii) If $A, B \in \mathcal{B}\left(R^{2}\right), A \cap B=\emptyset$, then $h(A \cup B)=h(A)+h(B)$.
(iii) If $A_{n} \in \mathcal{B}\left(R^{2}\right)(n=1,2, \ldots), A_{n} \nearrow A$, then $h\left(A_{n}\right) \nearrow h(A)$.
(iv) If $A, B \in \mathcal{B}(R)$, then

$$
h(A \times B)=x(A) \star y(B) .
$$

We shall now present an application of the preceding results : an observable of two variables as the "product" of observables of one variable in a more general context.

Theorem 2. [2DR] Let $G$ be a commutative, weakly $\sigma$-distributive $\ell$-group with a partial commutative binary operation $\star: G^{+} \times G^{+} \rightarrow G^{+}$satisfying the distributive law. Let $a, b, c \in G^{+}, a \leq b$ imply $a \star c \leq b \star c$. Let $u \in G, u>0$ be such an element that $u \cdot u=u$. Let $x, y: \mathcal{B}(I) \rightarrow[0, u]^{\Omega}$ be observables. Then there exists the joint observable of $x$ and $y$.

## REFERENCES

[DR] DUCHOŇ, M.-RIEČAN, B.: Fuzzy moment problem, Tatra Mt. Math. Publ. 14 1998, 193-197.
[2DR] DUCHOŇ, M.-RIEČAN, B.: On the product of semigroup valued measures, Tatra Mt. Math. Publ. 10 1997, 17-27.
[Ha] HAUSDORFF, F.: Momentprobleme für ein endliches Interval, Math. Z. 16 1923, 220248.
[HS] HILDEBRANDT, T. H.-SCHOENBERG, I. J.: Linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math. $\mathbf{3 4}$ 1933, 317-328.

## MILOSLAV DUCHOŇ - CAMILLE DEBIÈVE

[H] HILDEBRANDT, T. H.: On the moment problem for a finite interval, Bull. Amer. Math. Soc. 38 1932, 269-270.
[R] RADON, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen, S.-B. Akad. Wiss. Wien 122 1913, 1295-1348.
[S] SAKS, S: Integration in abstract metric spaces, Duke Math. J. 4 1938, 408-411.
[SC] SCHOENBERG, I. J.: On the finite and infinite completely monotone sequences, Bull. Amer. Math. Soc. 38 1932, 72-76.
[W] WIDDER, D. V.: The Laplace Transform, Princeton University Press, New York, 1946.

Received December 10, 2007

Miloslav Duchoñ<br>Mathematical Institute<br>Slovak Academy of Sciences<br>Štefánikova 49<br>SK-814-73 Bratislava<br>SLOVAKIA<br>E-mail: duchon@mat.savba.sk<br>Camille Debiève<br>Institut Mathématique<br>Université Catholique de Louvain<br>2, Chemin du Cyclotron<br>B-1348 Louvain-la-Neuve<br>BELGIUM<br>E-mail: camille.debieve@uclouvain.be


[^0]:    2000 Mathematics Subject Classification: 28E10, 81P10.
    Keywords: moment, fuzzy set, completely monotone double sequence, observable.
    Supported by VEGA grant $2 / 4137 / 04$.

