ON A SUBFAMILY OF DERIVATIVES

Ewa Strońska

Abstract

In this article we introduce and investigate some typical property in the space of all Baire 1 functions. In the class of derivatives this property implies that primitive functions are monotone in some intervals. Moreover, we observe that the quasicontinuity implies this property.

Let \mathbb{R} be the set of reals. As well-known, there are nowhere monotone differentiable functions with bounded derivatives. For example, if $A, B \subset \mathbb{R}$ are countable disjoint dense subsets then there are G_{δ} sets $U \supset A$ and $V \supset B$ of (Lebesgue) measure zero such that $U \cap B=V \cap A=\emptyset$. In accordance with Zahorski's lemma ([5, Lemma 11] (see also [1, p. 28 Theorem 6.5], and [4]) there are approximately continuous functions $\phi, \psi: \mathbb{R} \rightarrow[0,1]$ such that $\phi^{-1}(0)=U$ and $\psi^{-1}(0)=V$. Let

$$
h=\phi-\psi \quad \text { and } \quad F(x)=\int_{0}^{x} h(t) \mathrm{d} t .
$$

Observe that

$$
h(x)>0 \quad \text { for } \quad x \in B
$$

and

$$
h(x)<0 \quad \text { for } \quad x \in A .
$$

Since

$$
F^{\prime}(x)=h(x) \quad \text { for } \quad \text { all } \quad x \in \mathbb{R},
$$

F is a differentiable nowhere monotone function with bounded derivative.
Let Δ be the family of all differentiable functions from \mathbb{R} to \mathbb{R} and let $\Delta_{n m}$ be the family of all nowhere monotone differentiable functions. Moreover, let $\Delta_{i m}=\Delta \backslash \Delta_{n m}$ and let $\Delta_{a m}$ denote the family of all functions $F \in \Delta$ such that for each open interval I there is an open interval $J \subset I$ on which F is monotone.

[^0]Remark 1. If $F: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function whose derivative F^{\prime} is bounded from above or from below, then there are both a real C as well as a monotone differentiable function $G: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
F(x)=G(x)+C x \quad \text { for all } \quad x \in \mathbb{R} .
$$

Proof. Assume that F^{\prime} is strictly bounded from the above by a constant C. For each $x \in \mathbb{R}$ the inequality $F^{\prime}(x)-C<0$ is true. Let

$$
G(x)=F(x)-C x \quad \text { for } \quad x \in \mathbb{R} .
$$

Since $G^{\prime}=F^{\prime}-C<0$, the function G is strictly monotone. But

$$
F(x)=G(x)+C x \quad \text { for all } \quad x \in \mathbb{R},
$$

so the proof in this case is completed. In the remaining case the proof is similar.

For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ denote by $C(f)$ the set of all its continuity points. All derivatives are of Baire 1 class, so the sets of their continuity points are dense in \mathbb{R}. However, they do not have to satisfy condition (a) formulated as follows:
a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies condition (a) if for each open interval I there is an open interval $J \subset I$ for which

$$
f(J) \subset[0, \infty) \quad \text { or } \quad f(J) \subset(-\infty, 0] .
$$

Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called quasicontinuous at a point x if for all positive reals $r, s>0$ there is an open interval $I \subset(x-r, x+r)$ such that

$$
f(I) \subset(f(x)-s, f(x)+s),
$$

(compare [2], [3]).
Remark 2. If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is quasicontinuous then it satisfies condition (a).

Proof. Fix an open interval I and assume that f does not vanish on I. Then there is a point $x \in I$ at which $f(x) \neq 0$. From the quasicontinuity of f at x it follows that there is an open interval $J \subset I$ such that

$$
f(J) \subset\left(f(x)-\frac{|f(x)|}{2}, f(x)+\frac{|f(x)|}{2}\right) .
$$

Obviously,

$$
f(u) f(x)>0 \quad \text { for all } \quad u \in J
$$

and the proof is completed.
Observe that the derivative h considered above is bounded and approximately continuous but it does not satisfy condition (a).

Remark 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. If there is an open interval $I \subset$ $c l\left(f^{-1}((0, \infty))\right) \cap c l\left(f^{-1}((-\infty, 0))\right)$ then f does not satisfy condition (a).

Proof. It suffices to observe that in each open interval $J \subset I$ there are points $u, v \in J$ with $f(u) f(v)<0$.
Remark 4. A differentiable function $F \in \Delta_{a m}$ if and only if its derivative F^{\prime} satisfies condition (a).

Proof. The proof follows from the observation that a function F is monotone in an open interval if and only if its derivative F^{\prime} has all values belonging to $[0, \infty)$ or all values belonging to $(-\infty, 0]$.

Remark 5. A differentiable function $F: \mathbb{R} \rightarrow \mathbb{R}$ belongs to $\Delta_{i m}$ if and only if its derivative F^{\prime} satisfies the following condition
(b) there is an open interval I such that

$$
F^{\prime}(I) \subset[0, \infty) \quad \text { or } \quad F^{\prime}(I) \subset(-\infty, 0] .
$$

The class of functions satisfying condition (a) is very large. For example, it contains all functions whose all values are nonnegative or all values are nonpositive.

For functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ denote by $\rho(f, g)=\min \left\{1, \sup _{t \in \mathbb{R}}|f(t)-g(t)|\right\}$ their uniform distance. Let $B_{1, a}$ denote the family of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ belonging to Baire 1 class and satisfying condition (a).
Remark 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of Baire 1 class. If there is a positive real r with $|f| \geq r$ then $f \in \operatorname{int}\left(B_{1, a}\right)$, where the interior is considered in the metric space $\left(B_{1}, \rho\right)$.

Proof. We start by proving that $f \in B_{1, a}$. Fix an open interval I. Since $f \in B_{1}$, there is a point $x \in I \cap C(f)$. If $f(x) \geq r$ then there is an open interval $J \subset I$ containing x such that

$$
f(J) \subset\left(\frac{r}{2}, \infty\right)
$$

If $f(x) \leq-r$ then there is an open interval $J_{1} \subset I$ containing x with

$$
f\left(J_{1}\right) \subset\left(-\infty,-\frac{r}{2}\right) .
$$

So f satisfies condition (a). Since for $s \in(0, r)$ each function $g: \mathbb{R} \rightarrow \mathbb{R}$ belonging to the ball

$$
K(f, s)=\left\{h \in B_{1} ; \rho(h, f)<s\right\}
$$

satisfies the hypothesis of Remark 6 (so it belongs to $B_{1, a}$), the function $f \in$ $\operatorname{int}\left(B_{1, a}\right)$. This completes the proof.

EWA STROŃSKA

In the last remark the hypothesis that $f \in B_{1}$ is important. For example, the function

$$
f(x)=1, \quad \text { at all rationals } x
$$

and

$$
f(x)=-1, \quad \text { at all irrationals } x
$$

is such that $|f| \geq 1$ but f does not satisfy condition (a).

Theorem 1. The set $\operatorname{int}\left(B_{1, a}\right)$ is dense in the metric space $\left(B_{1}, \rho\right)$.

Proof. Fix a real $\varepsilon>0$ and a function $f \in B_{1}$. For $x \in \mathbb{R}$ let

$$
\begin{aligned}
& f_{1}(x)=\max \left\{f(x), \frac{\varepsilon}{3}\right\} \\
& f_{2}(x)=\min \left\{f(x),-\frac{\varepsilon}{3}\right\}
\end{aligned}
$$

and

$$
g(x)=f_{1}(x)+f_{2}(x)
$$

Then the function g is of Baire 1 class. If $|f(x)|<\frac{\varepsilon}{3}$ then

$$
f_{1}(x)=\frac{\varepsilon}{3}, \quad f_{2}(x)=-\frac{\varepsilon}{3}, \quad g(x)=0
$$

and

$$
|g(x)-f(x)|<\frac{\varepsilon}{3}
$$

Moreover, if a point u is a continuity point of f and $-\frac{\varepsilon}{3}<f(u)<\frac{\varepsilon}{3}$, then there is an open interval $I_{1}(u) \ni u$ for which $f\left(I_{1}(u)\right) \subset\left(-\frac{\varepsilon}{3}, \frac{\varepsilon}{3}\right)$, and consequently $g\left(I_{1}(u)\right)=\{0\}$.

If $f(x) \geq \frac{\varepsilon}{3}$, then

$$
f_{1}(x)=f(x), \quad f_{2}(x)=-\frac{\varepsilon}{3}, \quad g(x)=f(x)-\frac{\varepsilon}{3}
$$

and

$$
|f(x)-g(x)|=\frac{\varepsilon}{3}
$$

Moreover, if u is a continuity point of f such that $f(u) \geq \frac{\varepsilon}{3}$ then there is an open interval $I_{2}(u) \ni u$ such that $f\left(I_{2}(u)\right) \subset\left(\frac{\varepsilon}{4}, \infty\right)$. Observe that for $t \in I_{2}(u)$ we have

$$
f_{1}(t) \geq \frac{\varepsilon}{3}, \quad f_{2}(t)=-\frac{\varepsilon}{3}
$$

and

$$
g(t) \geq \frac{\varepsilon}{3}-\frac{\varepsilon}{3}=0
$$

If $f(x) \leq-\frac{\varepsilon}{3}$, then

$$
f_{2}(x)=f(x), \quad f_{1}(x)=\frac{\varepsilon}{3}, \quad g(x)=f(x)+\frac{\varepsilon}{3}
$$

and

$$
|f(x)-g(x)|=\frac{\varepsilon}{3} .
$$

Moreover, if u is a continuity point of f such that $f(u) \leq-\frac{\varepsilon}{3}$, then there is an open interval $I_{3}(u) \ni u$ such that

$$
f\left(I_{3}(u)\right) \subset\left(-\infty,-\frac{\varepsilon}{4}\right) .
$$

Observe that for $t \in I_{3}(u)$ we have

$$
f_{1}(t)=\frac{\varepsilon}{3}, \quad f_{2}(t) \leq-\frac{\varepsilon}{3}
$$

and

$$
g(t) \leq \frac{\varepsilon}{3}-\frac{\varepsilon}{3}=0 .
$$

Let

$$
h(t)=g(t)-\frac{\varepsilon}{5} \quad \text { for } \quad t \in \bigcup I_{3}(u)
$$

and

$$
h(t)=g(t)+\frac{\varepsilon}{5} \quad \text { otherwise on } \mathbb{R} .
$$

Then h is of Baire 1 class and

$$
\rho(h, f) \leq \rho(h, g)+\rho(g, f) \leq \frac{\varepsilon}{5}+\frac{\varepsilon}{3}=\frac{8 \varepsilon}{15} .
$$

To complete the proof it suffices to prove that each function $k \in B_{1}$ with $\rho(k, h)<\frac{\varepsilon}{15}$ belongs to $B_{1, a}$. For this fix such a function k and an open interval I. Since the set $C(f)$ is dense, there is a point $u \in C(f) \cap I$. If $f(u) \geq \frac{\varepsilon}{3}$, then for $t \in I_{2}(u) \cap I$ we have

$$
k(t)>h(t)-\frac{\varepsilon}{15}=g(t)+\frac{\varepsilon}{5}-\frac{\varepsilon}{15}>0 .
$$

Similarly, we can verify that if $|f(u)|<\frac{\varepsilon}{3}$, then for $t \in I_{1}(u) \cap I$ we have $k(t)>0$.
If $f(u) \leq-\frac{\varepsilon}{3}$, then for $t \in I_{3}(u) \cap I$ we obtain

$$
k(t)<h(t)+\frac{\varepsilon}{15}=g(t)-\frac{\varepsilon}{5}+\frac{\varepsilon}{15}<0 .
$$

So k satisfies condition (a) and the proof is completed.
Let \mathcal{A} denote the family of all approximately continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $\mathcal{A}_{a} \subset \mathcal{A}$ denote the family of all approximately continuous functions satisfying condition (a).

Theorem 2. The set \mathcal{A}_{a} is dense in the metric space (\mathcal{A}, ρ).

EWA STROŃSKA

Proof. Fix a positive real ε and put

$$
f_{1}(x)=\max \left\{\frac{\varepsilon}{2}, f(x)\right\} \text { and } f_{2}(x)=\min \left\{-\frac{\varepsilon}{2}, f(x)\right\} \quad \text { for } \quad x \in \mathbb{R} .
$$

Then the functions f_{1} and f_{2} are approximately continuous, and consequently, the sum $g=f_{1}+f_{2}$ is also approximately continuous. If

$$
f(x) \geq \frac{\varepsilon}{2}, \quad \text { then } \quad f_{1}(x)=f(x) \quad \text { and } \quad f_{2}(x)=-\frac{\varepsilon}{2}
$$

thus

$$
g(x)=f(x)-\frac{\varepsilon}{2} .
$$

Similarly, if

$$
f(x) \leq-\frac{\varepsilon}{2}, \quad \text { then } \quad f_{2}(x)=f(x) \quad \text { and } \quad f_{1}(x)=\frac{\varepsilon}{2}
$$

thus

$$
g(x)=f(x)+\frac{\varepsilon}{2} .
$$

If

$$
-\frac{\varepsilon}{2}<f(x)<\frac{\varepsilon}{2}, \quad \text { then } \quad f_{1}(x)=\frac{\varepsilon}{2} \quad \text { and } \quad f_{2}(x)=\frac{\varepsilon}{2},
$$

thus

$$
g(x)=0 .
$$

Thus $|g(x)-f(x)| \leq \frac{\varepsilon}{2}<\varepsilon$ for each $x \in \mathbb{R}$. We will prove that g satisfies condition (a). For this fix an open interval I. Since f is of Baire 1 class, there is a continuity point $u \in I$ of f. If $|f(u)|<\frac{\varepsilon}{2}$, then there is an open interval $J \subset I$ containing u for which $f(J) \subset\left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$. Consequently, for $t \in J$ we have

$$
f_{1}(t)=\frac{\varepsilon}{2}, \quad f_{2}(t)=\frac{\varepsilon}{2} \quad \text { and } \quad g(t)=f_{1}(t)+f_{2}(t)=0
$$

thus

$$
g(J) \subset(-\infty, 0] .
$$

If $f(u) \geq \frac{\varepsilon}{2}$, then there is an open interval $J \subset I$ containing u with $f(J) \subset$ $\left(\frac{\varepsilon}{4}, \infty\right)$. Then for $t \in J$ we have

$$
f_{1}(t) \geq \frac{\varepsilon}{2}, \quad f_{2}(t)=-\frac{\varepsilon}{2} \quad \text { and } \quad g(t) \geq 0,
$$

thus

$$
g(J) \subset[0, \infty)
$$

Similarly, if $f(u) \leq-\frac{\varepsilon}{2}$, then there is an open interval $J \subset I$ containing u with $g(J) \subset(-\infty, 0]$. So the function g satisfies condition (a) and the proof is completed.

Since the families \mathcal{A} of all approximately continuous functions and Q of all quasicontinuous functions are closed with respect to the uniform convergence, the subspace $(Q \cap \mathcal{A}, \rho)$ is closed in the space (\mathcal{A}, ρ).

Remark 7. The set $Q \cap \mathcal{A}$ is nowhere dense in the space (\mathcal{A}, ρ).
Proof. Fix a real $\varepsilon>0$ and a function $f \in Q \cap \mathcal{A}$. There is a continuity point x of f. Let $I \ni x$ be an open interval such that $f(I) \subset\left(f(x)-\frac{\varepsilon}{3}, f(x)+\frac{\varepsilon}{3}\right)$ and let $E \subset I$ be a nowhere dense F_{σ}-set belonging to the density topology and containing x. From Zahorski's lemma ([5, Lemma 11]) it follows that there is an approximately continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(\mathbb{R})=[0,1]$, $f(x)=1$ and $g(\mathbb{R} \backslash E)=\{0\}$. Let $h=f+\frac{2 \varepsilon}{3} \cdot g$. Then h is approximately continuous,

$$
h(x)=f(x)+\frac{2 \varepsilon}{3}, \quad \text { and } \quad h(t)=f(t)<f(x)+\frac{\varepsilon}{3} \quad \text { for } \quad t \in \mathbb{R} \backslash E .
$$

So h is not quasicontinuous at x. Evidently, $|f-h|=\frac{2 \varepsilon}{3} \cdot|g| \leq \frac{2 \varepsilon}{3}<\varepsilon$, and the proof is completed.

Theorem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an approximately continuous function such that $f(C(f)) \subset[0, \infty)$ or $f(C(f)) \subset(-\infty, 0]$. Then f belongs to the uniform closure of the interior $\operatorname{int}\left(\mathcal{A}_{a}\right)$ considered in the space (\mathcal{A}, ρ).

Proof. The proof is similar to the proof of Theorem 1. If we assume that

$$
f(C(f)) \subset[0, \infty)
$$

then there do not exist the intervals $I_{3}(u)$ and for all $t \in \mathbb{R}$ we put

$$
h(t)=g(t)+\frac{\varepsilon}{5} .
$$

If $f(C(f)) \subset(-\infty, 0]$ the reasoning is analogous.

Problems.

(1) Is the interior $\operatorname{int}\left(\mathcal{A}_{a}\right)$ of the set \mathcal{A}_{a} dense in the metric space (\mathcal{A}, ρ) ? Consider the metric space (Δ^{\prime}, ρ) of all derivatives with the metric ρ and the set Δ_{a}^{\prime} of all derivatives satisfying condition (a).
(2) Is the interior $\operatorname{int}\left(\Delta_{a}^{\prime}\right)$ dense in $\left(\Delta^{\prime}, \rho\right)$?
(3) Is the set Δ_{a}^{\prime} dense in $\left(\Delta^{\prime}, \rho\right)$?

Acknowledgement. The author is grateful to the referee for his/her corrections of Theorem 2.

EWA STROŃSKA

REFERENCES

[1] BRUCKNER, A. M.: Differentiation of Real Functions, Springer-Verlag, Berlin, 1978.
[2] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
[3] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988/89), 259-306.
[4] TALL, F. D.: The density topology, Pacific J. Math. 62 (1976), 275-284.
[5] ZAHORSKI, Z.: Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54.

Received November 8, 2006
Institute of Mathematics Kazimierz Wielki University
Plac Weyssenhoffa 11
PL-85-072 Bydgoszcz
POLAND
E-mail: stronska@neostrada.pl

[^0]: 2000 Mathematics Subject Classification: $26 \mathrm{~A} 15,26 \mathrm{~A} 24,54 \mathrm{C} 05$.
 Keywords: derivative, approximate continuity, quasicontinuity, Baire 1 function.

