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ON A SUBFAMILY OF DERIVATIVES

Ewa Strońska

ABSTRACT. In this article we introduce and investigate some typical property
in the space of all Baire 1 functions. In the class of derivatives this property
implies that primitive functions are monotone in some intervals. Moreover, we

observe that the quasicontinuity implies this property.

Let IR be the set of reals. As well-known, there are nowhere monotone dif-
ferentiable functions with bounded derivatives. For example, if A,B ⊂ IR are
countable disjoint dense subsets then there are Gδ sets U ⊃ A and V ⊃ B of
(Lebesgue) measure zero such that U ∩ B = V ∩ A = ∅. In accordance with
Zahorski’s lemma ([5, Lemma 11] (see also [1, p. 28 Theorem 6.5], and [4]) there
are approximately continuous functions φ,ψ : IR → [0, 1] such that φ−1(0) = U

and ψ−1(0) = V . Let

h = φ− ψ and F (x) =

x
∫

0

h(t) dt.

Observe that

h(x) > 0 for x ∈ B

and

h(x) < 0 for x ∈ A.

Since

F ′(x) = h(x) for all x ∈ IR,

F is a differentiable nowhere monotone function with bounded derivative.
Let ∆ be the family of all differentiable functions from IR to IR and let ∆nm

be the family of all nowhere monotone differentiable functions. Moreover, let
∆im = ∆ \∆nm and let ∆am denote the family of all functions F ∈ ∆ such that
for each open interval I there is an open interval J ⊂ I on which F is monotone.
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Remark 1. If F : IR → IR is a differentiable function whose derivative F ′ is
bounded from above or from below, then there are both a real C as well as
a monotone differentiable function G : IR → IR such that

F (x) = G(x) + Cx for all x ∈ IR .

P r o o f. Assume that F ′ is strictly bounded from the above by a constant C.
For each x ∈ IR the inequality F ′(x) − C < 0 is true. Let

G(x) = F (x) − Cx for x ∈ IR .

Since G′ = F ′ − C < 0, the function G is strictly monotone. But

F (x) = G(x) + Cx for all x ∈ IR,

so the proof in this case is completed. In the remaining case the proof is similar.
�

For a function f : IR → IR denote by C(f) the set of all its continuity points.
All derivatives are of Baire 1 class, so the sets of their continuity points are dense
in IR. However, they do not have to satisfy condition (a) formulated as follows:

a function f : IR → IR satisfies condition (a) if for each open interval I
there is an open interval J ⊂ I for which

f(J) ⊂ [0,∞) or f(J) ⊂ (−∞, 0].

Recall that a function f : IR → IR is called quasicontinuous at a point x if for
all positive reals r, s > 0 there is an open interval I ⊂ (x− r, x + r) such that

f(I) ⊂
(

f(x) − s, f(x) + s
)

,

(compare [2], [3]).

Remark 2. If a function f : IR → IR is quasicontinuous then it satisfies condi-
tion (a).

P r o o f. Fix an open interval I and assume that f does not vanish on I. Then
there is a point x ∈ I at which f(x) 6= 0. From the quasicontinuity of f at x it
follows that there is an open interval J ⊂ I such that

f(J) ⊂

(

f(x) −
|f(x)|

2
, f(x) +

|f(x)|

2

)

.

Obviously,

f(u)f(x) > 0 for all u ∈ J

and the proof is completed. �

Observe that the derivative h considered above is bounded and approximately
continuous but it does not satisfy condition (a).
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Remark 3. Let f : IR → IR be a function. If there is an open interval I ⊂
cl

(

f−1((0,∞))
)

∩ cl
(

f−1((−∞, 0))
)

then f does not satisfy condition (a).

P r o o f. It suffices to observe that in each open interval J ⊂ I there are points
u, v ∈ J with f(u)f(v) < 0. �

Remark 4. A differentiable function F ∈ ∆am if and only if its derivative F ′

satisfies condition (a).

P r o o f. The proof follows from the observation that a function F is monotone
in an open interval if and only if its derivative F ′ has all values belonging to
[0,∞) or all values belonging to (−∞, 0]. �

Remark 5. A differentiable function F : IR → IR belongs to ∆im if and only if
its derivative F ′ satisfies the following condition

(b) there is an open interval I such that

F ′(I) ⊂ [0,∞) or F ′(I) ⊂ (−∞, 0].

The class of functions satisfying condition (a) is very large. For example, it
contains all functions whose all values are nonnegative or all values are nonpos-
itive.

For functions f, g : IR → IR denote by ρ(f, g) = min
{

1, supt∈IR
|f(t) − g(t)|

}

their uniform distance. Let B1,a denote the family of all functions f : IR → IR
belonging to Baire 1 class and satisfying condition (a).

Remark 6. Let f : IR → IR be a function of Baire 1 class. If there is a positive
real r with |f | ≥ r then f ∈ int (B1,a), where the interior is considered in the
metric space (B1, ρ).

P r o o f. We start by proving that f ∈ B1,a. Fix an open interval I. Since f ∈ B1,
there is a point x ∈ I ∩ C(f). If f(x) ≥ r then there is an open interval J ⊂ I

containing x such that

f(J) ⊂

(

r

2
,∞

)

.

If f(x) ≤ −r then there is an open interval J1 ⊂ I containing x with

f(J1) ⊂

(

−∞,−
r

2

)

.

So f satisfies condition (a). Since for s ∈ (0, r) each function g : IR → IR
belonging to the ball

K(f, s) =
{

h ∈ B1; ρ(h, f) < s
}

satisfies the hypothesis of Remark 6 (so it belongs to B1,a), the function f ∈
int(B1,a). This completes the proof. �

37



EWA STROŃSKA

In the last remark the hypothesis that f ∈ B1 is important. For example, the
function

f(x) = 1, at all rationals x

and
f(x) = −1, at all irrationals x

is such that |f | ≥ 1 but f does not satisfy condition (a).Theorem 1. The set int(B1,a) is dense in the metric space (B1, ρ).

P r o o f. Fix a real ε > 0 and a function f ∈ B1. For x ∈ IR let

f1(x) = max

{

f(x),
ε

3

}

,

f2(x) = min

{

f(x),−
ε

3

}

,

and
g(x) = f1(x) + f2(x).

Then the function g is of Baire 1 class. If |f(x)| < ε
3

then

f1(x) =
ε

3
, f2(x) = −

ε

3
, g(x) = 0

and
|g(x) − f(x)| <

ε

3
.

Moreover, if a point u is a continuity point of f and − ε
3
< f(u) < ε

3
, then there

is an open interval I1(u) ∋ u for which f
(

I1(u)
)

⊂ (− ε
3
, ε

3
), and consequently

g
(

I1(u)
)

= {0}.

If f(x) ≥ ε
3
, then

f1(x) = f(x), f2(x) = −
ε

3
, g(x) = f(x) −

ε

3
and

|f(x) − g(x)| =
ε

3
.

Moreover, if u is a continuity point of f such that f(u) ≥ ε
3

then there is an

open interval I2(u) ∋ u such that f
(

I2(u)
)

⊂
(

ε
4
,∞

)

. Observe that for t ∈ I2(u)
we have

f1(t) ≥
ε

3
, f2(t) = −

ε

3
and

g(t) ≥
ε

3
−
ε

3
= 0.

If f(x) ≤ − ε
3
, then

f2(x) = f(x), f1(x) =
ε

3
, g(x) = f(x) +

ε

3
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and

|f(x) − g(x)| =
ε

3
.

Moreover, if u is a continuity point of f such that f(u) ≤ − ε
3
, then there is an

open interval I3(u) ∋ u such that

f
(

I3(u)
)

⊂
(

−∞,−
ε

4

)

.

Observe that for t ∈ I3(u) we have

f1(t) =
ε

3
, f2(t) ≤ −

ε

3

and

g(t) ≤
ε

3
−
ε

3
= 0.

Let

h(t) = g(t) −
ε

5
for t ∈

⋃

I3(u)

and

h(t) = g(t) +
ε

5
otherwise on IR .

Then h is of Baire 1 class and

ρ(h, f) ≤ ρ(h, g) + ρ(g, f) ≤
ε

5
+
ε

3
=

8ε

15
.

To complete the proof it suffices to prove that each function k ∈ B1 with
ρ(k, h) < ε

15
belongs to B1,a. For this fix such a function k and an open in-

terval I. Since the set C(f) is dense, there is a point u ∈ C(f) ∩ I. If f(u) ≥ ε
3
,

then for t ∈ I2(u) ∩ I we have

k(t) > h(t)−
ε

15
= g(t) +

ε

5
−

ε

15
> 0.

Similarly, we can verify that if |f(u)| < ε
3
, then for t ∈ I1(u)∩I we have k(t) > 0.

If f(u) ≤ − ε
3
, then for t ∈ I3(u) ∩ I we obtain

k(t) < h(t) +
ε

15
= g(t) −

ε

5
+

ε

15
< 0.

So k satisfies condition (a) and the proof is completed. �

Let A denote the family of all approximately continuous functions f : IR → IR
and let Aa ⊂ A denote the family of all approximately continuous functions
satisfying condition (a).Theorem 2. The set Aa is dense in the metric space (A, ρ).
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P r o o f. Fix a positive real ε and put

f1(x) = max

{

ε

2
, f(x)

}

and f2(x) = min

{

−
ε

2
, f(x)

}

for x ∈ IR .

Then the functions f1 and f2 are approximately continuous, and consequently,
the sum g = f1 + f2 is also approximately continuous. If

f(x) ≥
ε

2
, then f1(x) = f(x) and f2(x) = −

ε

2
,

thus

g(x) = f(x) −
ε

2
.

Similarly, if

f(x) ≤ −
ε

2
, then f2(x) = f(x) and f1(x) =

ε

2
,

thus

g(x) = f(x) +
ε

2
.

If

−
ε

2
< f(x) <

ε

2
, then f1(x) =

ε

2
and f2(x) =

ε

2
,

thus

g(x) = 0.

Thus |g(x) − f(x)| ≤ ε
2
< ε for each x ∈ IR. We will prove that g satisfies

condition (a). For this fix an open interval I. Since f is of Baire 1 class, there is
a continuity point u ∈ I of f . If |f(u)| < ε

2
, then there is an open interval J ⊂ I

containing u for which f(J) ⊂
(

− ε
2
, ε

2

)

. Consequently, for t ∈ J we have

f1(t) =
ε

2
, f2(t) =

ε

2
and g(t) = f1(t) + f2(t) = 0,

thus

g(J) ⊂ (−∞, 0].

If f(u) ≥ ε
2
, then there is an open interval J ⊂ I containing u with f(J) ⊂

(

ε
4
,∞

)

. Then for t ∈ J we have

f1(t) ≥
ε

2
, f2(t) = −

ε

2
and g(t) ≥ 0,

thus

g(J) ⊂ [0,∞).

Similarly, if f(u) ≤ − ε
2
, then there is an open interval J ⊂ I containing u

with g(J) ⊂ (−∞, 0]. So the function g satisfies condition (a) and the proof is
completed. �

40



ON A SUBFAMILY OF DERIVATIVES

Since the families A of all approximately continuous functions and Q of all
quasicontinuous functions are closed with respect to the uniform convergence,
the subspace (Q ∩ A, ρ) is closed in the space (A, ρ).

Remark 7. The set Q ∩ A is nowhere dense in the space (A, ρ).

P r o o f. Fix a real ε > 0 and a function f ∈ Q ∩ A. There is a continuity point
x of f . Let I ∋ x be an open interval such that f(I) ⊂

(

f(x) − ε
3
, f(x) + ε

3

)

and let E ⊂ I be a nowhere dense Fσ-set belonging to the density topology
and containing x. From Zahorski’s lemma ([5, Lemma 11]) it follows that there
is an approximately continuous function g : IR → IR such that g(IR) = [0, 1],
f(x) = 1 and g(IR \E) = {0}. Let h = f + 2ε

3
· g. Then h is approximately

continuous,

h(x) = f(x) +
2ε

3
, and h(t) = f(t) < f(x) +

ε

3
for t ∈ IR \E.

So h is not quasicontinuous at x. Evidently, |f − h| = 2ε
3
· |g| ≤ 2ε

3
< ε, and the

proof is completed. �Theorem 3. Let f : IR → IR be an approximately continuous function such that

f
(

C(f)
)

⊂ [0,∞) or f
(

C(f)
)

⊂ (−∞, 0]. Then f belongs to the uniform closure

of the interior int(Aa) considered in the space (A, ρ).

P r o o f. The proof is similar to the proof of Theorem 1. If we assume that

f
(

C(f)
)

⊂ [0,∞),

then there do not exist the intervals I3(u) and for all t ∈ IR we put

h(t) = g(t) +
ε

5
.

If f
(

C(f)
)

⊂ (−∞, 0] the reasoning is analogous. �

Problems.

(1) Is the interior int(Aa) of the set Aa dense in the metric space (A, ρ)?
Consider the metric space (∆′, ρ) of all derivatives with the metric ρ and
the set ∆′

a of all derivatives satisfying condition (a).

(2) Is the interior int(∆′

a) dense in (∆′, ρ)?

(3) Is the set ∆′

a dense in (∆′, ρ)?

Acknowledgement. The author is grateful to the referee for his/her corrections
of Theorem 2.
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