

CONVERGENCE FIELDS OF REGULAR MATRIX TRANSFORMATIONS 2

PAVEL KOSTYRKO

ABSTRACT. Let $A = (a_{nk})$ be a regular matrix and S(A) be the set of all sequences $x = (x_k)$ such that the series $\sum_{k=1}^{\infty} a_{nk}x_k$ converges for each n = 1, 2, ...It is shown that the convergence field F(A) of the matrix A is a σ -porous set in the linear metric space S(A) endowed with the Fréchet metric. This result improves the result of the paper [Ko].

1. Introduction

Let (a_{nk}) (n, k = 1, 2, ...) be an infinite matrix of real numbers. A sequence $(x_k)_1^{\infty}$ of reals is said to be A-limitable (limitable by method (A)) to a real number t, if $\lim_{n\to\infty} t_n = t$, where

$$t_n = t_n(x) = \sum_{k=1}^{\infty} a_{nk} x_k, \qquad n = 1, 2, \dots$$

If $x = (x_k)$ is A-limitable to the number t, we write A-lim $x_k = t$. The symbol F(A) denotes the set of all A-limitable sequences. The set F(A) is called the convergence field of the method (A) or of the matrix transformation A (see [Pe]). The method (A) defined by the matrix A is said to be regular provided F(A) contains all convergent sequences and $\lim_{k\to\infty} x_k = A - \lim x_k$. If the method (A) is regular then the matrix A is called a regular matrix. It is well-known that the method (A) is regular if and only if the matrix A fulfils the following three conditions ([Co, p. 79]; [Pe, p. 8]):

- (i) There exists c > 0 such that for each n = 1, 2, ... we have $\sum_{k=1}^{\infty} |a_{nk}| \le c$;
- (ii) $\lim_{n\to\infty} a_{nk} = 0$ holds for each fixed positive integer k;
- (iii) $\lim_{n\to\infty}\sum_{k=1}^{\infty}a_{nk}=1.$

²⁰⁰⁰ Mathematics Subject Classification: 40D09. Keywords: convergence field, regular matrix, porosity. Supported by the Grant VEGA 1/3018/06.

Further, we will deal with the set s of all real sequences and with some of its subsets endowed with the Fréchet metric

$$\varrho(x,y) = \sum_{k=1}^{\infty} 2^{-k} |x_k - y_k| (1 + |x_k - y_k|)^{-1}, \quad x = (x_k), \quad y = (y_k).$$

We will consider them to be a linear metric space. Operations of addition and multiplication by a real number are defined in the natural way.

The notion of porosity has been introduced by L. Z a j í č e k [Za]. It is a suitable tool to describe the small sets in a metric space. Let (Y, σ) be a metric space, $Z \subset Y$. Let $y \in Y$, $\delta > 0$ and $B(y, \delta) = \{x \in Y : \sigma(x, y) < \delta\}$. We put $\gamma(y, \delta, Z) = \sup\{t > 0 : \text{there is } z \in B(y, \delta) \text{ such that } B(z, t) \subset B(y, \delta) \text{ and } B(z, t) \cap Z = \emptyset\}$. If such t > 0 does not exist, we put $\gamma(y, \delta, Z) = 0$. The numbers $\underline{p}(y, Z) = \liminf_{\delta \to 0^+} \gamma(y, \delta, Z)/\delta$ and $\overline{p}(y, Z) = \limsup_{\delta \to 0^+} \gamma(y, \delta, Z)/\delta$ are called lower and upper porosity of the set Z at y, respectively. If we have $\overline{p}(y, Z) > 0$ for all $y \in Y$, then Z is said to be porous in Y. Obviously, every set porous in Y is nowhere dense in Y. The set W is said to be σ -porous in Y, if $W = \bigcup_{n=1}^{\infty} Z_n$ and each Z_n is porous in Y.

In [Ko] it is shown that in any space (S, ϱ) , $l_{\infty} \subset S$ (l_{∞} -bounded sequences), the set F(A) is of the first Baire category in S for every regular matrix A. The aim of the present paper is to show that the above result can be formulated in a stronger form.

Notice that in a linear metric space (S, ϱ) of sequences, i.e. $S \subset s$, the functions $f_k : S \to \mathbb{R}, f_k(x) = x_k, k = 1, 2, \ldots$, are continuous. It is easy to verify that in (S, ϱ) this holds if and only if the convergence in the sense of the metric ϱ implies the pointwise convergence, i.e., if $x = (x_k), x^{(r)} = (x_k^{(r)}) \in S$ and $\varrho(x^{(r)}, x) \to 0$ as $r \to \infty$, then $x_k^{(r)} \to x_k$ as $r \to \infty$ for each $k = 1, 2, \ldots$

2. Results

To each regular matrix $A = (a_{nk})$ we can assign the set $S(A) \subset s$,

$$S(A) = \left\{ x \in s : \exists t = (t_n) \,\forall \, n : t_n = \sum_{k=1}^{\infty} a_{nk} x_k \right\},$$

i.e., for every $x \in S(A)$ the series $\sum_{k=1}^{\infty} a_{nk} x_k$ is convergent for each n. Obviously, $(S(A), \varrho)$ is a linear metric space for each regular matrix A and $l_{\infty} \subset S(A)$. In general, $S(A) \neq l_{\infty}$, and l_{∞} is not closed in S(A). The following example shows this.

144

EXAMPLE. Let $C = (c_{nk})$ be the Césaro matrix, i.e., $c_{nk} = \frac{1}{n}$ for $k \leq n$ and $c_{nk} = 0$ for k > n. Obviously, S(C) = s. Let $x^{(m)} = (x_k^{(m)})$, where $x_k^{(m)} = k$ for $k \leq m$ and $x_k^{(m)} = 0$ for k > m. Then $x^{(m)} \in l_{\infty}$ for each m, and $\varrho(x^{(m)}, x) \to 0$ as $m \to \infty$, where $x = (x_k)$, $x_k = k$. Hence $x \in S(C) \setminus l_{\infty}$.

Further, we will use the following auxiliary result.

LEMMA. Let $A = (a_{nk})$ be a regular matrix. Then for each positive integer Q there exist M > Q, u > Q and v > Q, such that $a_{uM} \neq a_{vM}$.

Proof. Suppose that there is Q such that $a_{uM} = a_{vM}$ for each M > Q, u > Q and v > Q. It follows from property (ii) of a regular matrix, that $a_{nk} = 0$ for every n > Q and k > Q. The property (ii) implies that for each sufficiently large n we have

$$\sum_{k=1}^{\infty} a_{nk} \le \sum_{k=1}^{Q} |a_{nk}| < \frac{1}{2}$$

This leads to a contradiction with (iii).

THEOREM. Let A be a regular matrix. Then the convergence field F(A) of the matrix A is a σ -porous set in S(A).

Proof. From the definition of F(A) we have

$$F(A) = \left\{ x \in S(A) : \text{there exists } \lim_{n \to \infty} t_n = \lim_{n \to \infty} \sum_{k=1}^{\infty} a_{nk} x_k \right\}$$
$$= \left\{ x \in S(A) : \forall (p \ge 1) \exists (q \ge 1) \forall (m \ge q) \forall (n \ge q) | t_m - t_n | < \frac{1}{p} \right\}$$
$$= \bigcap_{p=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{m \ge q} \bigcap_{n \ge q} F_{pqmn} ,$$

where

$$F_{pqmn} = \left\{ x \in S(A) : \left| \sum_{k=1}^{\infty} (a_{mk} - a_{nk}) x_k \right| < \frac{1}{p} \right\}$$

Put

$$F_{pqmn}(K) = \left\{ x \in S(A) : \left| \sum_{k=1}^{K} (a_{mk} - a_{nk}) x_k \right| \le \frac{1}{p} \right\}.$$

Then

$$F_{pqmn} \subset \bigcup_{L=1}^{\infty} \bigcap_{K \ge L} F_{pqmn}(K).$$

PAVEL KOSTYRKO

Due to the σ -porosity of F(A) in S(A) it suffices to show that for a given q there exist u > q and v > q such that $H(L) = \bigcap_{K \ge L} F_{pquv}(K)$ is porous in S(A). Then $F_{pquv} \subset \bigcup_{L=1}^{\infty} H(L)$ is σ -porous in S(A) and also $F(A) = \bigcap_{p=1}^{\infty} \bigcup_{q=1}^{\infty} F_{pq}$, where $F_{pq} = \bigcap_{m \ge q} \bigcap_{n \ge q} F_{pqmn}$ is σ -porous in S(A).

We choose $y \in S(A)$ and prove $\overline{p}(y, H(L)) > 0$. First, suppose

$$y = (y_k) \in H(L).$$

Let the positive integers Q, M, u and v have the meaning introduced in Lemma and let Q > L. Put $\delta = 1/2^{M-2}$ and define $z = (z_k)$ such that $z_k = y_k$ for $k \neq M$, and $z_M = A + B$, where

$$A = |y_M| + 1 + \left(1 + \frac{1}{p}\right) |a_{uM} - a_{vM}|^{-1} \text{ and } B = 2c |a_{uM} - a_{vM}|^{-1}$$

(c>0 is introduced in property (i) of a regular matrix). Obviously, $z_M>0.$ Then

$$\varrho(z,y) = 2^{-M} |y_M - z_M| (1 + |y_M - z_M|)^{-1} < 2^{-M} < \frac{\delta}{2} \quad \text{and} \quad z \in B(y,\delta).$$

Using $|z_M| > A$ we have

$$\sum_{k=1}^{M} (a_{uk} - a_{vk}) z_k \bigg| \ge |a_{uM} - a_{vM}| |z_M| - \bigg| \sum_{k=1}^{M-1} (a_{uk} - a_{vk}) y_k \bigg| \\> |a_{uM} - a_{vM}| (|y_M| + 1) + 1 + \frac{1}{p} - \frac{1}{p} > 1$$

and $z \notin F_{pquv}(M)$. Since M > L we have $z \notin H(L)$. Put $\eta = 1/2^{M+1}$. The inclusion $B(z,\eta) \subset B(y,\delta)$ follows from the facts that $\eta < \delta/2$ and $\varrho(y,z) < \delta/2$. We show $B(z,\eta) \cap H(L) = \emptyset$. Choose $x \in B(z,\eta)$ and put

$$I_P = \left| \sum_{k=1}^{P} (a_{uk} - a_{vk}) x_k \right|, \qquad P = 1, 2, \dots$$

Then

$$I_M \ge |a_{uM} - a_{vM}| |x_M| - I_{M-1}$$

$$\ge |a_{uM} - a_{vM}| |z_M| - |a_{uM} - a_{vM}| |x_M - z_M| - I_{M-1}.$$
(*)

146

Since $y_k = z_k$ for $k, 1 \le k \le M - 1$,

$$I_{M-1} = \left| \sum_{k=1}^{M-1} (a_{uk} - a_{vk}) x_k \right|$$

$$\leq \left| \sum_{k=1}^{M-1} (a_{uk} - a_{vk}) y_k \right| + \sum_{k=1}^{M-1} (|a_{uk}| + |a_{vk}|) \max_{1 \le k \le M-1} \{ |x_k - z_k| \}$$

$$\leq \frac{1}{p} + 2c \max_{1 \le k \le M-1} \{ |x_k - z_k| \}.$$

For each $k = 1, 2, \ldots, M$ we have

$$2^{-k}|x_k - z_k| \left(1 + |x_k - z_k|\right)^{-1} \le \varrho(x, z) < 2^{-M-1} \quad \text{and} \quad |x_k - z_k| < 1.$$

Hence $I_{M-1} < \frac{1}{p} + 2c$. Consequently, (see(*))

$$I_M > |a_{uM} - a_{vM}| (|y_M| + 1) + 1 + \frac{1}{p} + 2c - |a_{uM} - a_{vM}| - \frac{1}{p} - 2c > 1.$$

Hence $x \notin F_{pquv}(M)$ and $B(z,\eta) \cap H(L) = \emptyset$. Then

$$\gamma(y,\delta,H(L)) \ge \eta = \frac{1}{2^{M+1}}, \qquad \frac{\gamma(y,\delta,H(L))}{\delta} \ge \frac{2^{M-2}}{2^{M+1}} = \frac{1}{8} > 0$$
$$\overline{p}(y,H(L)) = \limsup_{\delta \to 0+} \frac{\gamma(y,\delta,H(L))}{\delta} > 0.$$

and

Suppose $y \notin H(L)$. Since H(L) is a closed set, $B(y, \delta) \cap H(L) = \emptyset$ holds for all sufficiently small $\delta > 0$, and $\overline{p}(y, H(L)) = 1$ in this case.

Consequently H(L) is porous and F(A) is σ -porous in S(A).

REFERENCES

- [Co] COOKE, R. G.: Infinite Matrices and Sequence Spaces, Moscow, 1960. (In Russian)
- [Ko] KOSTYRKO, P.: Convergence fields of regular matrix transformations, Tatra Mt. Math. Publ. 28 (2004), 153–157.
- [Pe] PETERSEN, G. M.: Regular Matrix Transformations, McGraw-Hill, New York, 1966.

[Za] ZAJÍČEK, L.: Porosity and σ -porosity, Real Anal. Exange 13 (1987-88), 314–350.

Received February 12, 2007

Department of Mathematics Faculty of Mathematics Physics and Informatics Comenius University SK-842-48 Bratislava 4 SLOVAKIA E-mail: kostyrko@fmph.uniba.sk