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ON EXTREMAL I-LIMIT POINTS OF DOUBLE

SEQUENCES

Pratulananda Das — Prasanta Malik

ABSTRACT. In this paper the concepts of I-limit points, I-cluster points and
I-limit superior and limit inferior of double sequences are introduced. We prove

some basic properties.

1. Introduction

After F a s t [6] introduced the theory of statistical convergence of a real
sequence, it has become popular among mathematicians ([2], [7]–[9], [17]). The
ideas of statistical limit superior and limit inferior were first extensively studied
by F r i d y and O r h a n [9]. After K o s t y r k o et al. [10] extended the idea of
statistical convergence to I-convergence using the concept of an ideal I of the
set of positive integers, much work has been done on different aspects of this
convergence including I-limit points, I-cluster points, I-limit superior and limit
inferior ( see [2], [4], [10]–[13]).

Recently M u r s a l e e n and E d e l y [14] have introduced the concept of
statistical convergence of double sequences and proved several basic properties.
This was followed by D a s , K o s t y r k o , W i l c z y ń s k i and M a l i k [3] who
introduced I and I∗-convergence of double sequences. As a natural consequence,
in this paper, we introduce the concepts of I-limit points, I-cluster points, I-limit
superior and limit inferior (automatically including the corresponding ideas with
respect to statistical convergence) for double sequences, and we prove several
results.
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2. Preliminaries

Throughout the paper, N and R denote the set of all positive integers and
the set of all real numbers, respectively.

The idea of convergence of a double sequence was introduced by P r i n g -
s h e i m in [16]. A double sequence x = (xjk) of real numbers is said to converge
to ξ ∈ R in Pringsheim’s sense if for any ǫ > 0, there exists nǫ ∈ N such that
|xjk − ξ| < ǫ, whenever both j, k ≥ nǫ. It is denoted by P − lim

j,k
xjk = ξ.

Now, we recall the concept of double natural density. Let K ⊂ N × N. Let
K(n,m) be the numbers of (j, k) ∈ K such that j ≤ n, k ≤ m. If the sequence
(

K(n,m)
nm

)

has a limit in Pringsheim’s sense, then we say that K has a double

natural density and is denoted by

d2(K) = P − lim
n,m

K(n,m)

nm
.Definition 1 ([14]). A double sequence x = (xjk) of real numbers is said to be

statistically convergent to ξ ∈ R, if for any ǫ > 0, we have d2

(

A(ǫ)
)

= 0, where

A(ǫ) =
{

(j, k) ∈ N×N; |xjk − ξ| ≥ ǫ
}

.

We now recall the following definitions, where X represents an arbitrary set.Definition 2. Let X 6= φ. A class I of subsets of X is said to be an ideal on X
provided

(i) φ ∈ I,

(ii) A,B ∈ I implies A
⋃

B ∈ I,

(iii) A ∈ I,B ⊂ A implies B ∈ I.

I is called a nontrivial ideal if X /∈ I.Definition 3 ([3]). A nontrivial ideal I on X is called admissible if {x} ∈ I
for each x ∈ X.

Throughout the paper I stands for a nontrivial ideal of N ×N.Definition 4 ([3]). A nontrivial ideal I on N×N is called strongly admissible
if {i} ×N and N × {i} belong to I for each i ∈ N.

It is evident that a strongly admissible ideal is also admissible.Definition 5 ([3]). A double sequence x = (xjk) of real numbers is said to
converge to ξ ∈ R with respect to the ideal I, if for every ǫ > 0 the set

A(ǫ) =
{

(j, k) ∈ N ×N; |xjk − ξ| ≥ ǫ
}

∈ I.

In this case we say that x is I-convergent and we write I–limj,k xjk = ξ.
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If I is strongly admissible, then clearly P -convergence of x implies I-conver-
gence of x. However, the converse is not true. If we take I = I0 =

{

A ⊂

N × N; ∃ m(A) ∈ N such that (i, j) /∈ A whenever both of i, j ≥ m(A)
}

,
then I-convergence coincides with P -convergence and, if we take I = {A ⊂
N ×N; d2(A) = 0}, then I-convergence becomes statistical convergence.

3. I-limit points and I-cluster points

In [15], the concept of an ordinary limit point for a single sequence was gen-
eralized for Pringsheim limit point of a double sequence in R. In this paper, we
extend this concept to statistical and I-limit points and cluster points for double
sequences. We also consider the underlying space to be a metric space (X,d).Definition 6. Let K be a subset of N×N such that for each (i, j) ∈ N×N,
there exists (m,n) ∈ K such that (m,n) > (i, j) with respect to the dictionary
ordering. If x = (xjk) is a double sequence in (X,d), then we define {x}K =
{

xmn; (m,n) ∈ K
}

as a subsequence of x.Definition 7. An element l ∈ X is said to be Pringsheim limit point of a double
sequence x = (xjk) in a metric space (X,d) if there exists a subsequence of x
which is P -convergent to l.Definition 8. Let (X,d) be a metric space and x = (xjk) be a double sequence
in X. An element β ∈ X is said to be an I-limit point of x if there exists a set
M =

{

(mj ,mk); j, k ∈ N
}

⊂ N×N such that M /∈ I and P − lim
mj,mk

xmjmk
= β.

We now introduce the notations L2
x and I(∧x) to denote the set of all Pring-

sheim limit points and I-limit points of x = (xjk), respectively. In general, L2
x

and I(∧x) may be quite different as can be seen from the following example.

Example 1. Let I =
{

A ⊂ N × N; d2(A) = 0
}

. We define a double sequence
x = (xjk) in the following way

xjk =

{

1 if j = k,
k otherwise.

Then L2
x = {1}. However, I-limit point does not exist, i.e., I(∧x) = φ.Definition 9. An element α ∈ X is said to be an I-cluster point of a double

sequence x = (xjk) in a metric space (X,d) if and only if for each ǫ > 0 the set
{

(j, k); d(xjk, α) < ǫ
}

/∈ I.

We denote the set of all I-cluster points of x by I(Γx). We now study the
relationship between I(∧x) and I(Γx).
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PRATULANANDA DAS — PRASANTA MALIKTheorem 1. Let I be a strongly admissible ideal. Then for any double sequence

x = (xjk) in (X,d) we have I(∧x) ⊂ I(Γx).

P r o o f. Let α ∈ I(∧x). Then there exists a set

M =
{

(mj ,mk) ∈ N×N; j, k ∈ N
}

/∈ I

such that
P − lim

mj ,mk

xmjmk
= α. (1)

Let ǫ > 0. Then by (1), there exists k0 ∈ N such that for mj ≥ k0, mk ≥ k0,
we have d(xmjmk

, α) < ǫ. So, we have
{

(j, k); d(xjk, α) < ǫ
}

⊃ M \
{

(mj ,mk),

either mj ≤ (k0 − 1) or mk ≤ (k0 − 1)
}

. Since I is strongly admissible, so
{

(j, k); d(xjk, α) < ǫ
}

/∈ I.

This implies α ∈ I(Γx), which completes the proof. �Theorem 2. Let I be a strongly admissible ideal of N ×N. Then

(i) The set I(Γx) is closed in X for each double sequence x in (X,d).

(ii) Let (X,d) be a separable metric space and let there exist a disjoint sequence

of the sets (An) such that An ⊂ N × N and An /∈ I; n ∈ N. Then for

each closed set P ⊂ X, there exists a sequence x = (xjk) ∈ X such that

P = I(Γx).

P r o o f. The proof is similar to the proof of Theorem 4.1 ([10]) and so is omitted.
�

4. I-limit superior and limit inferior

The concept of I-limit superior and limit inferior for single sequences of real
numbers was introduced in [4]. In this paper we generalize this concept for double
sequences of real numbers and call it I-limit superior and I-limit inferior.Definition 10 ([15]). Let x = (xjk) be a double sequence of real numbers, and
let αn = sup {xjk; j, k ≥ n} for each n. Then Pringsheim limit superior of x is
defined as follows:

(i) if αn = +∞ for each n, then P − lim sup x = ∞,

(ii) if αn < ∞ for some n, then P − lim sup x = inf
n

αn.

Similarly, let βn = inf{xjk; j, k ≥ n}. Then Pringsheim limit inferior of x is
defined as follows:

(i) if βn = −∞ for each n, then P − lim inf x = −∞,
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(ii) if βn > −∞ for some n, then P − lim inf x = sup
n

βn.

We now introduce the definitions of I-limit superior and I-limit inferior.

Let I be a strongly admissible ideal of N × N and let x = (xjk) be a double
sequence of real numbers. Let

Bx =
{

b ∈ R;
{

(j, k); xjk > b
}

/∈ I
}

,

and

Ax =
{

a ∈ R;
{

(j, k); xjk < a
}

/∈ I
}

.

Then I-limit superior and I-limit inferior of x are defined as follows:

I − lim sup x =

{

sup Bx if Bx 6= φ,
−∞ if Bx = φ,

I − lim inf x =

{

inf Ax if Ax 6= φ,
∞ if Ax = φ.

If I = I0 then I-limit superior and I-limit inferior coincide with P -limit superior
and P -limit inferior.

Throughout the section, I stands for a nontrivial strongly admissible ideal of
N × N, (xjk), (yjk) etc. are double sequences of real numbers and are denoted
by x, y etc, for short.Theorem 3.

(i) I − lim supx = α (finite) if and only if for any ǫ > 0,
{

(j, k); xjk > α − ǫ
}

/∈ I and
{

(j, k);xjk > α + ǫ
}

∈ I.

(ii) I − lim infx = β(finite) if and only if for any ǫ > 0,
{

(j, k); xjk < β + ǫ
}

/∈ I and
{

(j, k); xjk < β − ǫ
}

∈ I.

P r o o f. The proof is straightforward. �Theorem 4. The inequality

I − lim inf x ≤ I − lim sup x

holds for each double sequence x = (xjk) of real numbers.

P r o o f. The proof is similar to the proof of Theorem 3 ([4]) and is omitted. �Theorem 5. Let x = (xjk) be a double sequence of real numbers. Then

P − lim inf x ≤ I − lim inf x ≤ I − lim sup x ≤ P − lim sup x.
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P r o o f. We first prove that P − lim inf x ≤ I − lim inf x. If P − lim inf x = −∞,
then it is obvious. Let P − lim inf x = α > −∞. Then

α = sup
n

αn,

where
αn = inf{xjk; j, k ≥ n}.

Then
{

(j, k); xjk < αn

}

⊂
{

(j, k), either j ≤ (n − 1) or k ≤ (n − 1)
}

.

Since I is strongly admissible, then

{(j, k); either j ≤ (n − 1) or k ≤ (n − 1)} ∈ I,

so
{(j, k); xjk < αn} ∈ I.

Now, let β = I − lim inf x = inf Ax, where

Ax =
{

a ∈ R; {(j, k);xjk < a} /∈ I
}

.

Now, if β < αn, then there exists a′ ∈ Ax such that β ≤ a′ < αn. However,
{

(j, k);xjk < a′
}

⊂
{

(j, k);xjk < αn

}

∈ I,

which yields a′ /∈ Ax, which is a contradiction. Then β ≥ αn for all n. Therefore,

α ≤ β, i.e.,P − lim inf x ≤ I − lim inf x.

Similarly we can show I − lim sup x ≤ P − lim sup x.

Combining these two results with Theorem 4 we get the desired result.

Recall that the core of a single sequence x = (xn) is defined by

core{x} = [ lim inf x, lim sup x].

In [11] this idea was generalized for I-convergence. In this paper we extend this
idea for double sequences of real numbers. �Definition 11 ([15]). Let x = (xjk) be a double sequence of real numbers.
Then Pringsheim core of x is defined by

P − core{x} = [P − lim inf x, P − lim sup x].Definition 12. Let x = (xjk) be a double sequence of real numbers. Then
I-core of x is defined by

I − core{x} = [I − lim inf x, I − lim sup x].

Then, by Theorem 5, we have the following result.Corollary 1. For any double sequence x of real numbers we have

I − core{x} ⊂ P − core{x}.
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ON EXTREMAL I-LIMIT POINTS OF DOUBLE SEQUENCESDefinition 13. A double sequence x = (xjk) is said to be I-bounded if there
exists a real number M > 0 such that

{

(j, k); | xjk |> M
}

∈ I.Theorem 6. An I-bounded double sequence x = (xjk) is I-convergent if and

only if I − lim sup x = I − lim inf x.

P r o o f. The proof is similar to that of Theorem 4 ([4]). �

We now introduce the following definition which will be useful to prove the
next theorem.Definition 14. A double sequence x = (xjk) is said to be I-convergent to ∞
(or −∞) if for every real number G > 0,

{

(j, k); xjk ≤ G
}

∈ I or
{

(j, k);xjk ≥ −G
}

∈ I.Theorem 7. If I − lim sup x = p, then there exists a subsequence of x that is

I-convergent to p.

P r o o f. Since φ ∈ I and I is strongly admissible ideal of N × N, we consider
the double sequence x = (xjk) to be a non constant double sequence of which
xjk are distinct whenever both of j, k run over the infinite subsets of N .

Now, p has three possibilities:

(i) p = −∞,

(ii) p = ∞,

(iii) −∞ < p < ∞.

Case (i). When p = −∞, then Bx = φ. So, for any M > 0, we have
{(j, k); xjk ≥ −M} ∈ I. This implies I − lim x = −∞.

Case (ii). When p = ∞, then Bx = R. Hence for any b ∈ R,
{

(j, k);xjk > b
}

/∈ I.

Let xn1m1
be an arbitrary member of x and let

An1m1
=

{

(j, k);xjk > xn1m1
+ 1

}

.

Then An1m1
/∈ I, so An1m1

6= φ. Now, there exists (n2,m2) ∈ An1m1
such that

n2 > n1, m2 > m1, otherwise,

An1m1
⊂ {(j, k); either j ≤ n1 or k ≤ m1} ∈ I,

a contradiction. Proceeding in this way, we obtain a subsequence x′ = (xnkmk
)

of x with xnkmk
> xnk−1mk−1

+ 1 for all k > 1. Then for any L > 0,
{

(nk,mk); xnkmk
≤ L

}

∈ I,

since I is strongly admissible. Hence I − lim x′ = ∞.
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Case (iii). When −∞ < p < ∞, then by Theorem 3
{

(j, k); xjk > p−1
}

/∈ I,

so
{

(j, k); xjk > p−1
}

6= φ. Now, there exists at least one element, say (n1,m1)

in
{

(j, k); xjk > p − 1
}

for which xn1m1
≤ p + 1

2 , otherwise,

{

(j, k); xjk > p − 1
}

⊂
{

(j, k); xjk > p + 1
2

}

∈ I

which gives a contradiction. Hence, we have

p − 1 < xn1m1
≤ p + 1

2
< p + 1.

Now, we proceed to choose an element xn2m2
from x with n2 > n1, m2 > m1

such that p− 1
2

< xn2m2
< p + 1

2
. We claim that there is at least one (j, k) with

j > n1 and k > m1 for which xjk > p − 1
2
. For otherwise,

{

(j, k); xjk > p − 1
2

}

⊂
{

(j, k); either j ≤ n1 or k ≤ m1

}

∈ I,

which yields a contradiction to Theorem 3. So, the set

A′

n1m1
=

{

(j, k); j > n1, k > m1 and xjk > p −
1

2

}

6= φ.

Now, we claim that there is at least one (j, k) ∈ A′

n1m1
, such that xjk < p + 1

2 .
For otherwise,

A′

n1m1
⊂

{

(j, k); xjk ≥ p + 1
2

}

⊂
{

(j, k); xjk > p + 1
4

}

.

Now, by Theorem 3,
{

(j, k); xjk > p + 1
4

}

∈ I, so A′

n1m1
∈ I. Again, since

{

(j, k); xjk > p − 1
2

}

⊂
{

(j, k); either j ≤ n1 or k ≤ m1

}
⋃

A′

n1m1
,

and I is strongly admissible, then the union on the right hand side is in I giving
{

(j, k); xjk > p − 1
2

}

∈ I, which is a contradiction to Theorem 3. Hence, our

claim is established. We put j = n2 and k = m2. Thus there are n2 > n1,
m2 > m1 such that

p − 1
2 < xn2m2

< p + 1
2 .

Proceeding in this way we obtain a subsequence x′ = (xnkmk
) of x with nk >

nk−1, mk > mk−1 such that p− 1
k

< xnkmk
< p+ 1

k
for each k. The subsequence x′

is P -convergent to p and hence I-convergent to p. This proves the theorem. �Theorem 8. If I − lim inf x = m, then there exists a subsequence of x that is

I-convergent to m.

P r o o f. The proof is similar to the proof of Theorem 7 and is omitted. �
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The following example shows that I-limit point and I-limit superior of a dou-
ble sequence are quite different.

Example 2. Let IP =
{

A ⊂ N ×N ; d2(A) = 0
}

then it is a nontrivial ideal on
N ×N. Now, let

Ap =
{

2p−1(2k − 1); k ∈ N
}

, p = 1, 2, . . .

Then clearly,

Ap

⋂

Aq = φ for p 6= q.

Now, we define

Dpq = Ap × Aq.

Then

Dpq

⋂

Drs = φ for (p, q) 6= (r, s) and d2(Dpq) =
1

2p2q
(p, q = 1, 2, . . . ).

Now we define a double sequence x = (xmn) as follows

xmn = 1 − 1
pq

, (m,n) ∈ Dpq, (p, q = 1, 2, . . . ).

Then each number 1− 1
pq

is an IP -limit point of x. Again from the definition of

I-limit superior we have IP − lim sup x = 1.

Now, we show that 1 is not IP -limit point of x. If possible, let 1 be an IP -limit
point of x. Then there is a set

M =
{

(mj ,mk); j, k ∈ N
}

⊂ N×N

such that M /∈ IP and

lim
mj ,mk

xmjmk
= 1. (A)

The definition of x and (A) imply that there is r ∈ N such that

M
⋂

Dpq =
{

(j, k); either j ≤ r or k ≤ r
}

, (p, q = 1, 2, . . . ).

Since

N ×N =
∞
⋃

p,q=1

Dpq,
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we have

M =

[

k
⋃

p,q=1

(

Dpq

⋂

M
)

]

⋃





k
⋃

p=1

∞
⋃

q=k+1

(

Dpq

⋂

M
)





⋃





k
⋃

q=1

∞
⋃

p=k+1

(

Dpq

⋂

M
)





⋃





∞
⋃

p,q=k+1

(

Dpq

⋂

M
)



 .

This holds for each k. Now, we have

d2(M) ≤
k

∑

p,q=1

d2

(

M
⋂

Dpq

)

+
k

∑

p=1

d2

(

Ep

)

+
k

∑

q=1

d2

(

Eq

)

+ d2(E),

where

Ep =

∞
⋃

q=k+1

(

Dpq

⋂

M
)

,

Eq =
∞
⋃

p=k+1

(

Dpq

⋂

M
)

and

E =
∞
⋃

p,q=k+1

(

Dpq

⋂

M
)

.

Since Ep ⊂
{

(s, q); q is multiple of 2k
}

, we have d2(Ep) ≤ 2−k. Similarly,

d2(Eq) ≤ 2−k and d2(E) ≤ 2−2k. Since this inequality is true for each k =
1, 2, . . . , then d2(M) = 0 which is a contradiction to M /∈ IP . Thus 1 is not
a IP -limit point of x.

This shows that the double sequence x = (xjk) has no greatest IP -limit point
though it has IP − lim sup x = 1.Theorem 9. Let x = (xjk) be a bounded double sequence of real numbers, then

(i) I − lim sup x = max I(Γx),

(ii) I − lim inf x = min I(Γx).

P r o o f. (i) Let α = I − lim sup x. Let us take a number α
′

> α. Now, we
have

α = supBx,
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where
Bx =

{

b ∈ R;
{

(j, k); xjk > b
}

/∈ I
}

.

Now, we choose ǫ > 0, such that α < α
′

− ǫ < α
′

. Then α
′

− ǫ /∈ Bx and so
{

(j, k);xjk > α
′

− ǫ
}

∈ I.

Then by the definition of I-cluster point we have α
′

/∈ I(Γx). Thus any
number greater than α cannot be a I-cluster point of x.

Now, we show that α ∈ I(Γx). Let ǫ > 0. Then by the definition of
I-limit superior, there exists r ∈ Bx such that α − ǫ < r ≤ α. Therefore

{

(j, k); xjk > r
}

/∈ I. (2)

Now, since α + ǫ
2 /∈ Bx, we have,

{

(j, k);xjk > α +
ǫ

2

}

∈ I. (3)

From (2) and (3) we get

{(j, k); | xjk − α |< ǫ} /∈ I and α ∈ I(Γx).

This completes the proof.

�

(ii) The proof is similar to the proof of (i) and is omitted.
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