

ON A FUNCTIONAL RELATION DEFINED BY THE EQUALITY OF THE CLOSURES OF GRAPHS

Zbigniew Grande — Halina Wiśniewska

ABSTRACT. Some common properties (continuity, quasicontinuity, symmetrical quasicontinuity, \dots) of functions whose graphs have the same closures are investigated.

If (X, T_X) and (Y, T_Y) are topological spaces and $f, g : X \to Y$ are functions, then we will say that

$$f \rho g$$
 if and only if $cl(Gr(f)) = cl(Gr(g))$,

where cl denotes the closure operation and Gr(f) denotes the graph of the function f. Evidently, ρ is an equivalence in the class of all functions from X to Y. In the case where X = Y is a metric compact space, the relation ρ was investigated in [3].

Remark 1. Assume that (Y, T_Y) is a Hausdorff space and that $f, g: X \to Y$ are functions such that $f \rho g$. If f is continuous at a point x, then f(x) = g(x) and

(a)
$$\left\{ y \in Y; (x,y) \in cl(Gr(g)) \right\} = \left\{ g(x) \right\}.$$

Moreover, if (Y, T_Y) is a regular space, then g is continuous at x.

Proof. Assume by contradiction that there is a point $y \in Y$ with $y \neq f(x)$ and $(x, y) \in cl(Gr(g)) = cl(Gr(f))$. Since (Y, T_Y) is a Hausdorff space, there are sets $V_1, V_2 \in T_Y$ such that $y \in V_1$, $f(x) \in V_2$ and $V_1 \cap V_2 = \emptyset$. But f is continuous at x, so there is a set $U \in T_X$ containing x with $f(U) \subset V_2$. Consequently,

$$(U \times V_1) \cap cl(Gr(g)) = (U \times V_1) \cap cl(Gr(f)) = \emptyset,$$

and

$$(x,y) \notin cl(Gr(g)).$$

²⁰⁰⁰ Mathematics Subject Classification: 26A15, 26A21, 54C05.

Keywords: equivalence, continuity, quasicontinuity, symmetrical quasicontinuity, product spaces.

This contradiction implies (a) and the equality g(x) = f(x). For the proof of the second part, assume by contradiction that the space (Y, T_Y) is regular and g is not continuous at x. Then there is a set $V \in T_Y$ containing g(x) such that for each set $U \in T_X$ containing X there exists a point $u \in U$ with $g(u) \notin V$. From the regularity of the space (Y, T_Y) it follows that there are disjoint sets $V_3, V_4 \in T_Y$ such that $g(x) \in V_3$ and $Y \setminus V \subset V_4$. Since f is continuous at xand $V_3 \ni g(x) = f(x)$, there is a set $U_1 \in T_X$ containing x with $U_1 \subset U$ and $f(U_1) \subset V_3$. There is a point $u_1 \in U_1$ with $g(u) \in Y \setminus V \subset V_4$. Since cl(Gr(g)) = cl(Gr(f)), there is a point $u_2 \in U_1$ with $f(u_2) \in V_4$, a contradiction with $V_3 \cap V_4 = \emptyset$ and $f(U_1) \subset V_3$. This finishes the proof. \Box

Observe that the hypothesis in Remark 1 that (Y, T_Y) is a Hausdorff space is important, as the example below shows.

EXAMPLE 1. Let X = Y = N be the set of all positive integers and let

$$T_X = T_Y = \{\emptyset\} \cup \{N \setminus A; A \text{ is finite}\}.$$

Then the space $(X, T_X) = (Y, T_Y)$ is not Hausdorff, but it satisfies (T_1) -axiom and the functions $f, g: X \to Y$ defined by

$$f(x) = x$$
 and $g(x) = x + 1$ for $x \in X$,

are continuous, and $cl(Gr(f)) = cl(Gr(g)) = X \times Y$.

Remark 2. Let $f, g: X \to Y$ be functions such that $f \rho g$. If $x \in X$ is a point such that the point (x, f(x)) is isolated in Gr(f), then f(x) = g(x).

Proof. There are sets $U \in T_X$ and $V \in T_Y$ such that $x \in U$, $f(x) \in V$ and $(U \times V) \cap Gr(f) = \{(x, f(x))\}$. So,

$$cl\left(Gr(f)\setminus\left\{\left(x,f(x)\right)\right\}\right)\subset (X\times Y)\setminus(U\times V),$$

and consequently

$$cl\left(Gr(g) \setminus \left\{ \left(x, f(x)\right) \right\} \right) = cl\left(Gr(f) \setminus \left\{ \left(x, f(x)\right) \right\} \right) \subset (X \times Y) \setminus (U \times V).$$

Since $(x, f(x)) \in cl(Gr(g))$, we have $f(x) = g(x)$.

In [3] it is proved that if (X, d) is a metric compact space and $f, g : X \to X$ are such that $f \rho g$, then the quasicontinuity of f implies the quasicontinuity of g. Recall that a function $f : X \to Y$ is quasicontinuous at a point $x \in X$ if for all the sets $U \in T_X$ containing x and $V \in T_Y$ containing f(x) there is a nonempty set $W \in T_X$ contained in U such that $f(W) \subset V$ ([6],[8]).

ON A FUNCTIONAL RELATION DEFINED BY EQUALITY OF CLOSURES OF GRAPHS

THEOREM 1. Assume that (Y, T_Y) is a regular space. Let $f, g : X \to Y$ be functions such that $f \rho g$. If f is quasicontinuous at a point x, then also g is quasicontinuous at x.

Proof. Let $U \in T_X$ and $V \in T_Y$ be sets such that $x \in U$ and $f(x) \in V$. Since (Y, T_Y) is a regular space, there is a set $V_1 \in T_Y$ such that $x \in V_1 \subset cl(V_1) \subset V$. From the quasicontinuity of f at x it follows that there is a nonempty set $U_1 \subset U$ such that $U_1 \in T_X$ and $f(U_1) \subset V_1$. Since

$$cl(Gr(g)) \cap (U_1 \times cl(V_1)) = cl(Gr(f)) \cap (U_1 \times cl(V_1)) \subset cl(Gr(f)) \cap (U_1 \times V),$$

we obtain that $g(U_1) \subset V$. This finishes the proof.

Now, consider the functions of two variables. Let (Z, T_Z) be a topological space and let $f : X \times Y \to Z$ be a function. Then the functions $f_x(y) = f(x,y)$ and $f^y(x) = f(x,y)$, where $x \in X$ and $y \in Y$, are said to be the sections of f. A function f is said to be separately continuous (resp. separately quasicontinuous) if the sections f_x and f^y , $x \in X$ and $y \in Y$, are continuous (resp. quasicontinuous).

EXAMPLE 2. Let $X = Y = Z = \mathbb{R}$ and $T_X = T_Y = T_Z = T_e$, where T_e is the natural topology in \mathbb{R} . Let

$$A = \left\{ (x, y); \, x > 0 \quad \text{and} \quad \frac{x}{2} \le y \le 2x \right\}$$

and let $f : \mathbb{R}^2 \to [0,1]$ be a function such that

$$f(x,x) = 1 \qquad \text{for} \quad x > 0$$

and

$$f(x,y) = 0$$
 for $(x,y) \in \mathbb{R}^2 \setminus A$,

and f is continuous at each point $(x, y) \neq (0, 0)$. Then f is separately continuous. The function

$$g(x,y) = f(x,y)$$
 for $(x,y) \neq 0$ and $g(0,0) = 1$

is not separately continuous (it is not even separately quasicontinuous), but $f \rho g$. Note that both f and g are quasicontinuous.

However, the following is true.

Remark 3. Assume that (X, d_X) is a complete metric space, (Y, d_Y) is a compact metric space and (Z, d_Z) is a metric space. If functions $f, g: X \times Y \to Z$ are separately continuous and $f \rho g$, then f = g.

Proof. There is a residual set $A \subset X$ such that the function f is continuous at each point $(x, y) \in A \times Y$ ([10], p. 172, Exercise 6). By Remark 1 the equality g(x, y) = f(x, y) is true at each point $(x, y) \in A \times Y$. Assume by contradiction that there is a point $(x_1, y_1) \in X \times Y$ at which $f(x_1, y_1) \neq g(x_1, y_1)$. Let

$$r = \frac{|f(x_1, y_1) - g(x_1, y_1)|}{2}$$

Then r > 0 and from the continuity of the sections g^{y_1} and f^{y_1} at x_1 it follows that there exists an open neighbourhood $U \subset X$ of x_1 such that

$$\max |g(u, y_1) - g(x_1, y_1)|, |f(u, y_1) - f(x_1, y_1)| < r \quad \text{for} \quad u \in U.$$

Since (X, d_X) is a complete metric space and A is a residual subset of X, the intersection $A \cap U \neq \emptyset$. Let w be an element of $U \cap A$. Then

$$g(w, y_1) = f(w, y_1),$$

$$|g(w, y_1) - g(x_1, y_1)| < r,$$

$$|f(w, y_1) - f(x_1, y_1)| < r.$$

So,

$$\begin{aligned} 2r &= |g(x_1, y_1) - f(x_1, y_1)| \\ &\leq |g(x_1, y_1) - g(w, y_1)| + |g(w, y_1) - f(x_1, y_1)| \\ &< r + |f(w, y_1) - f(x_1, y_1)| < r + r = 2r, \end{aligned}$$

and this contradiction finishes the proof.

Since there are different quasicontinuous functions $f, g : \mathbb{R} \to \mathbb{R}$ with $f \rho g$ (for example $f(x) = g(x) = \sin \frac{1}{x}$ for $x \neq 0$, and f(0) = 0 and g(0) = 1), a quasicontinuous analogy of Remark 3 is not true.

In [8] (see also [6], [7]) Z. Piotrowski and R. Vallin investigate some very special notions of the quasicontinuity of functions of two variables. Let (Z, T_Z) be a topological space.

A function $f: X \times Y \to Z$ is said to be:

- (1) quasicontinuous at a point $(x_1, y_1) \in X \times Y$ with respect to x (alternatively y) if for every set $U \times V \in T_X \times T_Y$ containing (x_1, y_1) and for each set $W \subset T_Z$ containing $f(x_1, y_1)$ there are nonempty sets $U' \in T_X$ contained in U and $V' \in T_Y$ contained in V such that $x_1 \in U'$ (alternatively $y_1 \in V'$) and $f(U' \times V') \subset W$ ([8]);
- (2) symmetrically quasicontinuous at (x_1, y_1) if it is quasicontinuous at (x_1, y_1) with respect to x and with respect to y ([8]).

Analogously as in the case of Theorem 1 we can prove the following.

THEOREM 2. Assume that (Z, T_Z) is a regular space. Let $f, g: X \times Y \to Z$ be functions such that $f \rho g$. If f is quasicontinuous at a point $(x_1, y_1) \in X \times Y$ with respect to x (alternatively y) [alternatively symmetrically quasicontinuous], then g has the same kind of quasicontinuity as f at this point.

Some similar results are true for cliquishness. Let (M, d) be a metric space.

Recall that a function $f: X \to M$ is cliquish at a point $x \in X$ if for every real $\eta > 0$ and for every set $U \in T_X$ containing x there is a nonempty set $U_1 \in T_X$ contained in U such that the diameter diam $(f(U_1)) = \sup\{d(f(x_1), f(x_2)); x_1, x_2 \in U_1\} < \eta$ ([7]).

THEOREM 3. Let $f, g : X \to Y$ be functions such that $f \rho g$. If f is cliquish at a point x, then also g is cliquish at x.

Proof. Fix a real $\eta > 0$ and a set $U \in T_X$ such that $x \in U$. Because of the cliquishness of f at x it follows that there is a nonempty set $U_1 \subset U$ belonging to T_X such that diam $(f(U_1)) < \frac{\eta}{3}$. Fix a point $u \in U_1$ and let $V_1 = K(f(u), \frac{\eta}{3})$ be the ball with the center f(u) and the radius $\frac{\eta}{3}$. Since

$$cl(Gr(g)) \cap (U_1 \times cl(V_1)) = cl(Gr(f)) \cap (U_1 \times cl(V_1))$$

and

$$\operatorname{diam}(V_1) = \operatorname{diam}(cl(V_1)) \le \frac{2\eta}{3} < \eta$$

we have diam $(g(U_1)) < \eta$. This completes the proof.

Remark 4. Let $S \subset \mathbb{R}^2$ be a Sierpiński nonmeasurable set of full outer Lebesgue measure such that for each straight line p the cardinality $card(p \cap S) \leq 2$ ([9]), and let f be the characteristic function of S. Then f is separately cliquish and $cl(Gr(f)) = \mathbb{R}^2 \times \{0, 1\}$. Let Q denote the set of all rationals and let g be the characteristic functions of the set $Q \times Q$. Then $f \rho g$ and g is not separately cliquish.

A function $f: X \times Y \to M$ is said to be:

- (1) cliquish at a point $(x_1, y_1) \in X \times Y$ with respect to x (alternatively y) if for every set $U \times V \in T_X \times T_Y$ containing (x_1, y_1) and for each real $\eta > 0$ there are nonempty sets $U' \in T_X$ contained in U and $V' \in T_Y$ contained in V such that $x_1 \in U'$ (alternatively $y_1 \in V'$) and diam $(f(U' \times V')) < \eta$ ([4]);
- (2) symmetrically cliquish at (x_1, y_1) if it is cliquish at (x_1, y_1) with respect to x and with respect to y ([4]).

Analogously as in the case of Theorem 3 we can prove the following.

THEOREM 4. Let $f, g: X \times Y \to M$ be functions such that $f \rho g$. If f is cliquish at a point $(x_1, y_1) \in X \times Y$ with respect to x (alternatively y) [alternatively symmetrically cliquish], then g is the same at this point.

Remark 5. Let (X, d_X) and (Y, d_Y) be metric spaces and let \mathcal{I} be a proper ideal of subsets of X. Let $f: X \to Y$ be a function such that the set D(f) of all its discontinuity points belongs to \mathcal{I} . If the relation $f \rho g$ works for a function $g: X \to Y$, then $D(g) \in \mathcal{I}$.

Proof. If f is continuous at a point $x \in X$, then by Remark 1 the function g is continuous at x and g(x) = f(x). So, $D(g) \subset D(f) \in \mathcal{I}$.

COROLLARY 1. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$ be a function such that the set D(f) is of the first category. If the relation $f \rho g$ works for a function $g : X \to Y$, then D(g) is also of the first category.

EXAMPLE 3. If $C \subset [0,1]$ is a ternary Cantor set and $A \subset C$ is a nonborelien set, then the characteristic function $f = \kappa_C$ is in Baire 1 class (it is even in the discrete Baire 1 class), the characteristic function $g = \kappa_A$ is nonborelien and $f \rho g$.

Recall that a function $f : \mathbb{R}^n \to \mathbb{R}$ is in the discrete Baire 1 class if there is a sequence of continuous functions $f_n : \mathbb{R}^n \to \mathbb{R}$ such that for each $x \in \mathbb{R}^n$ there is a positive integer n(x) with $f_n(x) = f(x)$ for n > n(x) ([2]). f belongs to the discrete Baire 1 class if and only if for each nonempty closed set $H \subset \mathbb{R}^n$ there is an open set G such that $G \cap H \neq \emptyset$ and the restricted function $f/(G \cap H)$ is continuous.

From Remark 1 we also obtain.

COROLLARY 2. If a function $f : \mathbb{R}^n \to \mathbb{R}$ is almost everywhere continuous (with respect to Lebesgue measure), then each function $g : \mathbb{R}^n \to \mathbb{R}$ such that $f \rho g$ is also almost everywhere continuous.

EXAMPLE 4. Observe that the functions

$$f(x) = 0$$
 for $x \le 0$ and $f(x) = 1$ for $x > 0$,

and

g(x) = 0 for x < 0 and g(x) = 1 for $x \ge 0$

are different, D(f) and D(g) belong to \mathcal{I} according to Remark 5, and $f \rho g$.

Still consider Riemann's integral quasicontinuities. For this let T_e denote the Euclidean topology in \mathbb{R}^n and T_{od} (T_{sd}) the ordinary (strong) density topology in \mathbb{R}^n ([7]). Moreover, let μ denote the Lebesgue measure in \mathbb{R}^n .

We will say that a function $f : \mathbb{R}^n \to \mathbb{R}$ is R-integrally quasicontinuous at a point $x \in \mathbb{R}^n$ (belongs to $Q_{r,s}(x)$) [belongs to $Q_{r,o}(x)$] if for each real $\eta > 0$

and for each set $U \in T_e$ $(U \in T_{sd})$ $[U \in T_{od}]$ containing x there is a bounded Jordan measurable set $I \subset U$ such that $int(I) \neq \emptyset$, f/I is integrable in the sense of Riemann, $I \subset U$ ($[int(I) \cap U \neq \emptyset]$ and

$$\left| \frac{\int\limits_{I} f(t) \, \mathrm{d}t}{\mu(I)} - f(x) \right| < r,$$
$$\left| \frac{\int\limits_{I \cap U} f(t) \, \mathrm{d}t}{\mu(I \cap U)} - f(x) \right| < r.$$

Remark 6. If a function $f : \mathbb{R}^n \to \mathbb{R}$ is R-integrally quasicontinuous at a point $x \in \mathbb{R}^n$, then each function $g : \mathbb{R}^n \to \mathbb{R}$ such that $f \rho g$ and f(x) = g(x) is also R-integrally quasicontinuous at x.

Proof. Fix a real r > 0 and a set $U \in T_e$ containing x. Since f is R-integrally quasicontinuous at x, there is a bounded Jordan measurable set $I \subset U$ such that $int(I) \neq \emptyset$, f/I is integrable in the sense of Riemann and

$$\left| \frac{\int\limits_{I} f(t) \, \mathrm{d}t}{\mu(I)} - f(x) \right| < r.$$

However, the restricted function f/I is integrable in the sense of Riemann, so f is continuous almost everywhere on I and consequently, by Remark 1, we have g = f almost everywhere on I and g is continuous almost everywhere on I. From the equality f(x) = g(x) it follows that

$$\left| \frac{\int\limits_{I} g(t) \,\mathrm{d}t}{\mu(I)} - g(x) \right| = \left| \frac{\int\limits_{I} f(t) \,\mathrm{d}t}{\mu(I)} - f(x) \right| < r.$$

Analogously we can prove the following.

Remark 7. If a function $f : \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_{r,o}(x)$ $(Q_{r,s}(x))$, then each function $g : \mathbb{R}^n \to \mathbb{R}$ such that $f \rho g$ and f(x) = g(x) belongs also to $Q_{r,o}(x)$ $(Q_{r,s}(x))$.

EXAMPLE 5. The function

$$f\left(\frac{1}{n}\right) = 1$$
 for $n = 1, 2, \dots$

and

$$f(t) = 0$$
 otherwise on \mathbb{R} ,

31

belongs to $Q_{s,o}(0)$ and

$$g(0) = g\left(\frac{1}{n}\right) = 1$$
 for $n = 1, 2, ...$

and

$$g(t) = 0$$
 otherwise on IR,

is not R-integrally quasicontinuous at 0, but $f \rho g$.

Now, we will consider the Darboux property of functions from \mathbb{R} to \mathbb{R} . Let $X = Y = \mathbb{R}$ and $T_X = T_Y = T_e$, where T_e denotes the natural topology in \mathbb{R} . We start with the following example.

EXAMPLE 6. Let $A \subset \mathbb{R}$ be a nowhere dense (in T_e) nonempty F_{σ} -set belonging to the density topology ([1]). By Zahorski's lemma ([1]) there is an approximately continuous and upper semi-continuous function $f : \mathbb{R} \to [0, 1]$ such that f(A) = $(0, 1], f^{-1}(0) = \mathbb{R} \setminus A$ and f is continuous at points $x \in \mathbb{R} \setminus A$. Let $B \subset A$ be a countable set such that the set $E = \{(x, f(x)); x \in B\}$ is dense in the graph Gr(f/A) of the restricted function f/A. Let $y \in (0, 1)$ be a real such that $f^{-1}(y) \cap B = \emptyset$. Put

$$g(x) = 0 \qquad \text{for} \quad x \in f^{-1}(y)$$

and

$$g(x) = f(x)$$
 otherwise on IR.

Then $g \rho f$, f has Darboux property, and g does not have Darboux property. Moreover, let

$$h(x) = \frac{f(x)}{2}$$
 for $x \in \mathbb{R}$.

Then the function h is approximately continuous and $f \neq h$.

Observe that by modification of functions f and h on the components of the set $\mathbb{IR} \setminus cl(A)$ we can define approximately continuous and simultaneously quasicontinuous functions ϕ and ψ such that $\phi \rho \psi$ and $\phi \neq \psi$.

THEOREM 5. Let \mathcal{H} be a class of almost everywhere (with respect to Lebesgue measure) continuous functions $f : \mathbb{R} \to \mathbb{R}$ satisfying the following condition

(i) if x is a discontinuity point of f ∈ H, then either the point (x, f(x)) is isolated in Gr(f) or for each function g ∈ H, if g/C(f) = f/C(f), then g(x) = f(x) (C(f) denotes the set of all continuity points of f).

Then two arbitrary functions $f, g \in \mathcal{H}$ such that $f \rho g$ are equal.

Proof. Let $f, g \in \mathcal{H}$ be such that $f\rho g$. By Remark 1 we have f(x) = g(x) for $x \in C(f)$. If x is a discontinuity point of f and the point (x, f(x)) is isolated in

Gr(f), then f(x) = g(x) by Remark 2. For other discontinuity points of f the equality f(x) = g(x) follows from condition (i).

Observe that the family C_{ae} of all almost everywhere continuous and everywhere approximately continuous functions or the family Δ_{ae} of all almost everywhere continuous locally integrable derivatives may be used as some examples of families \mathcal{H} satisfying condition (i) of last theorem.

REFERENCES

- [1] BRUCKNER, A. M.: Differentiation of Real Functions, Springer-Verlag, Berlin, 1978.
- [2] CSÁSZÁR, A.—LACZKOVICH, M.: Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463–472.
- [3] CRANNELL, A.—FRANTZ, M.—LEMASURIER, M.: Closed relations and equivalence classes of quasicontinuous functions, Real Anal. Exchange 31 (2005/2006), 409–423.
- [4] GRANDE, Z.: Some observations on the symmetrical quasicontinuity of Piotrowski and Vallin, Real Anal. Exchange 31 (2005/2006), 309–314.
- [5] GRANDE, Z.: On Riemann integral quasicontinuity, Real Anal. Exchange 31 (2005/2006), 239–253.
- [6] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
- [7] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988/1989), 259–306.
- [8] PIOTROWSKI, Z.—VALLIN, R. W.: Conditions which imply continuity, Real Anal. Exchange 29 (2003/2004), 211–217.
- [9] SIERPIŃSKI, W.: Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 2 (1921), 41–49.
- [10] SIKORSKI, R.: Real Functions, PWN, Warsaw, 1957. (In Polish)

Received October 31, 2006

Zbigniew Grande The University of Computer Science and Economics TWP Olsztyn ul. Barczewskiego 11 PL-10-061 Olsztyn POLAND E-mail: grande@ukw.edu.pl

Halina Wiśniewska Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 PL-85-072 Bydgoszcz POLAND