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ON A FUNCTIONAL RELATION DEFINED BY THE
EQUALITY OF THE CLOSURES OF GRAPHS

ZBIGNIEW GRANDE — HALINA WISNIEWSKA

ABSTRACT. Some common properties (continuity, quasicontinuity, symmetri-
cal quasicontinuity, ...) of functions whose graphs have the same closures are
investigated.

If (X,Tx) and (Y, Ty) are topological spaces and f,g : X — Y are functions,
then we will say that

fryg if and only if cl(Gr(f)) = cl(GT(g)),

where ¢l denotes the closure operation and Gr(f) denotes the graph of the
function f. Evidently, p is an equivalence in the class of all functions from X
to Y. In the case where X = Y is a metric compact space, the relation p was
investigated in [3].

Remark 1. Assume that (Y,7Ty) is a Hausdorff space and that f,g : X — Y
are functions such that fpg. If f is continuous at a point z, then f(z) = g(x)
and

() {veVi(@y ea(Grg)} = {g@)}.
Moreover, if (Y, Ty ) is a regular space, then g is continuous at .

Proof. Assume by contradiction that there is a point y € Y with y # f(x) and
(z,y) € cl(Gr(g)) = cl(Gr(f)). Since (Y, Ty) is a Hausdorff space, there are sets
V1,Va € Ty such that y € Vq, f(z) € Vo and V3 NV, = (. But f is continuous
at x, so there is a set U € T'x containing x with f(U) C V5. Consequently,

(U xVi)Nel(Gr(g)) = (U x Vi) Nel(Gr(f)) =0,

and

(z,y) & cl(Gr(g)).
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This contradiction implies (a) and the equality g(x) = f(z). For the proof of
the second part, assume by contradiction that the space (Y,Ty) is regular and
g is not continuous at x. Then there is a set V' € Ty containing g(x) such that
for each set U € T'x containing X there exists a point u € U with g(u) ¢ V.
From the regularity of the space (Y,Ty) it follows that there are disjoint sets
V3,Vy € Ty such that g(x) € V3 and Y \ V C V4. Since f is continuous at z
and V3 > g(x) = f(z), there is a set Uy € Tx containing = with U; C U
and f(Up) C Va. There is a point u; € Uy with g(u) € Y\ V C Vj. Since
cl(Gr(g)) = cl(Gr(f)), there is a point uy € Uy with f(us) € V4, a contradiction
with V3N V4 =0 and f(U;) C V3. This finishes the proof. O

Observe that the hypothesis in Remark 1 that (Y, 7Ty ) is a Hausdorff space is
important, as the example below shows.

EXAMPLE 1. Let X =Y = N be the set of all positive integers and let
Tx =Ty ={0}U{N\ A; A is finite}.

Then the space (X,Tx) = (Y,Ty) is not Hausdorff, but it satisfies (7} )-axiom
and the functions f,g: X — Y defined by

flx)=2 and g(z)=x+1 for z e X,
are continuous, and cl(Gr(f)) = cl(Gr(g)) =X x Y.

Remark 2. Let f,g: X — Y be functions such that fpg. If x € X is a point
such that the point (z, f(x)) is isolated in Gr(f), then f(z) = g(z).

Proof. There are sets U € Tx and V € Ty such that x € U, f(x) € V and
(U= V)NGr(f) = {(z,f(x))}. So,

a(6rn\ {(@.1@)}) € X x VO x v,

and consequently
(6o {(e£@) }) =at(6r 0\ {(@ 1) }) € (X x V@ 0.
Since (z, f(z)) € cl(Gr(g)), we have f(z) = g(x). O
In [3] it is proved that if (X, d) is a metric compact space and f,g: X — X
are such that fp g, then the quasicontinuity of f implies the quasicontinuity of g.
Recall that a function f : X — Y is quasicontinuous at a point x € X if for all

the sets U € T'x containing x and V' € Ty containing f(x) there is a nonempty
set W € Tx contained in U such that f(W) C V ([6],[8]).
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THEOREM 1. Assume that (Y,Ty) is a reqular space. Let f,g : X — Y be
functions such that fpg. If f is quasicontinuous at a point x, then also g is
quasicontinuous at x.

Proof. Let U € Tx and V € Ty be sets such that z € U and f(z) € V. Since
(Y, Ty) is a regular space, there is a set V; € Ty such that 2 € V; C cl(V;) C V.
From the quasicontinuity of f at x it follows that there is a nonempty set Uy C U
such that U; € Tx and f(U;) C V. Since

Cl(GT(Q)) N (Ul X Cl(vl)) = Cl(GT’(f)) N (Ul X Cl(vl)) C Cl(GT’(f)) N (Ul X V),
we obtain that g(U;) C V. This finishes the proof. O

Now, consider the functions of two variables. Let (Z,T%) be a topological
space and let f : X x Y — Z be a function. Then the functions f,(y) =
f(z,y) and fY(x) = f(z,y), where x € X and y € Y, are said to be the
sections of f. A function f is said to be separately continuous (resp. separately
quasicontinuous) if the sections f, and fY, = € X and y € Y, are continuous
(resp. quasicontinuous).

EXAMPLE 2. Let X =Y =Z=R and Tx =1y =T, = T,, where T, is the
natural topology in IR. Let

A= {(:E,y); x>0 and

and let f : IR* — [0, 1] be a function such that

flx,z)=1 for >0
and

fly)=0 for (z,y) € R*\A4,

and f is continuous at each point (z,y) # (0,0). Then f is separately continuous.
The function

g(z,y) = f(z,y)  for (x,y)#0 and g(0,0)=1

is not separately continuous (it is not even separately quasicontinuous), but fp g.
Note that both f and g are quasicontinuous.

However, the following is true.

Remark 3. Assume that (X,dy) is a complete metric space, (Y,dy) is a com-
pact metric space and (Z,dz) is a metric space. If functions f,g: X xY — Z
are separately continuous and fpg, then f = g.
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Proof. Thereis a residual set A C X such that the function f is continuous at
each point (x,y) € A x Y ([10], p. 172, Exercise 6). By Remark 1 the equality
g(x,y) = f(x,y) is true at each point (z,y) € A x Y. Assume by contradiction
that there is a point (z1,y1) € X x Y at which f(z1,y1) # g(z1,y1). Let

_ [f(z1,91) — g(z1,51)|

5 .
Then r > 0 and from the continuity of the sections ¢g¥* and f¥* at x; it follows
that there exists an open neighbourhood U C X of z; such that

max |g(u,y1) — g(z1,y1)|s [f(w, 1) — flzr,p0)l <7 for wel.
Since (X,dx) is a complete metric space and A is a residual subset of X, the
intersection ANU # (). Let w be an element of U N A. Then
g(w,y1) = flw, ),
l9(w,y1) — g(x1,91)| <,
|f(w,y1) = f(z1,01)] <7

So,
2r = |g(x1,91) — f(z1,91)]
< |g($1,y1) _g(w>y1)| + |g(w>y1) - f(CE1,y1)|
<T+‘f(w7y1) _f(x17y1)| <T+T:2T7
and this contradiction finishes the proof. O

Since there are different quasicontinuous functions f,g : IR — IR with fpg
(for example f(z) = g(z) = sini for  # 0, and f(0) = 0 and g(0) = 1),
a quasicontinuous analogy of Remark 3 is not true.

In [8] (see also [6], [7]) Z. Piotrowski and R. Vallin investigate some
very special notions of the quasicontinuity of functions of two variables. Let
(Z,Tz) be a topological space.

A function f: X x Y — Z is said to be:

(1) quasicontinuous at a point (x1,y1) € X X Y with respect to = (alterna-
tively y) if for every set U x V' € T'x x Ty containing (x1,y;) and for each
set W C Tz containing f(x1,y1) there are nonempty sets U’ € Tx con-
tained in U and V' € Ty contained in V such that z; € U’ (alternatively
y1 € V') and f(U' x V') C W ([8]);

(2) symmetrically quasicontinuous at (z1,y1) if it is quasicontinuous at (x1,y;)
with respect to x and with respect to y ([8]).

Analogously as in the case of Theorem 1 we can prove the following.

28



ON A FUNCTIONAL RELATION DEFINED BY EQUALITY OF CLOSURES OF GRAPHS

THEOREM 2. Assume that (Z,T7) is a reqular space. Let f,g: X xY — Z be
functions such that fpg. If f is quasicontinuous at a point (z1,y1) € X XY
with respect to x (alternatively y) [alternatively symmetrically quasicontinuous],
then g has the same kind of quasicontinuity as f at this point.

Some similar results are true for cliquishness. Let (M, d) be a metric space.

Recall that a function f : X — M is cliquish at a point x € X if for every real
n > 0 and for every set U € Tx containing x there is a nonempty set Uy € T'x
contained in U such that the diameter diam(f(U1)) = sup{d(f(z1), f(z2));
xr1,To € Ul} <n ([7])

THEOREM 3. Let f,g: X — Y be functions such that fpg. If f is cliquish at
a point x, then also g is cliquish at x.

Proof. Fix areal n > 0 and a set U € Tx such that x € U. Because of the
cliquishness of f at x it follows that there is a nonempty set U; C U belonging
to T'x such that diam(f(U;)) < 2. Fix a point u € Uy and let Vi = K (f(u), 2)

be the ball with the center f(u) and the radius 7. Since

c(Gr(g)) N (Uy x cl(V1)) = el(Gr(f)) N (Ur x cl(V1))

and
2
diam(V;) = diam(cl(V;)) < ?77 <,
we have diam (g(Ul)) < n. This completes the proof. (]

Remark 4. Let S ¢ IR? be a Sierpiiiski nonmeasurable set of full outer Lebesgue
measure such that for each straight line p the cardinality card(pn S) < 2 (]9]),
and let f be the characteristic function of S. Then f is separately cliquish and
c(Gr(f)) = R* x{0,1}. Let @ denote the set of all rationals and let g be the
characteristic functions of the set ) x . Then fpg and ¢ is not separately
cliquish.

A function f: X x Y — M is said to be:

(1) cliquish at a point (z1,y1) € X x Y with respect to x (alternatively y) if
for every set U x V € T'x x Ty containing (z1,y1) and for each real n > 0
there are nonempty sets U’ € T'x contained in U and V' € Ty contained
in V such that z; € U’ (alternatively y; € V) and diam(f(U’ x V')) <7
([4]);

(2) symmetrically cliquish at (z1,y7) if it is cliquish at (x7,y1) with respect to
x and with respect to y ([4]).

Analogously as in the case of Theorem 3 we can prove the following.
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THEOREM 4. Let f,g: X XY — M be functions such that fpg. If f is cliquish
at a point (r1,y1) € X x Y with respect to x (alternatively y) [alternatively
symmetrically cliquish/, then g is the same at this point.

Remark 5. Let (X,dx) and (Y,dy) be metric spaces and let Z be a proper
ideal of subsets of X. Let f: X — Y be a function such that the set D(f) of all
its discontinuity points belongs to Z. If the relation f p g works for a function
g: X — Y, then D(g) € Z.

Proof. If f is continuous at a point x € X, then by Remark 1 the function g
is continuous at x and g(z) = f(x). So, D(g) C D(f) € T. O

COROLLARY 1. Let (X,dx) and (Y,dy) be metric spaces and let f : X — Y
be a function such that the set D(f) is of the first category. If the relation fpg
works for a function g : X — 'Y, then D(g) is also of the first category.

ExaMpPLE 3. If C C [0,1] is a ternary Cantor set and A C C is a nonborelien
set, then the characteristic function f = k¢ is in Baire 1 class (it is even in the
discrete Baire 1 class), the characteristic function ¢ = k4 is nonborelien and
frg.

Recall that a function f : IR"™ — IR is in the discrete Baire 1 class if there
is a sequence of continuous functions f, : IR™ — IR such that for each x € IR"
there is a positive integer n(z) with f,(z) = f(x) for n > n(z) ([2]). f belongs
to the discrete Baire 1 class if and only if for each nonempty closed set H C IR"
there is an open set G such that GNH # () and the restricted function f/(GNH)
is continuous.

From Remark 1 we also obtain.

COROLLARY 2. If a function f : IR" — IR is almost everywhere continuous
(with respect to Lebesgue measure), then each function g : IR" — IR such that
fpg is also almost everywhere continuous.

EXAMPLE 4. Observe that the functions
flx)=0 forz <0 and flx)=1 for x>0,

and
g(z)=0 forx <0 and g(z)=1 for >0

are different, D(f) and D(g) belong to Z according to Remark 5, and fpg.
Still consider Riemann’s integral quasicontinuities. For this let T, denote the
Euclidean topology in IR"™ and T,q (Tsq) the ordinary (strong) density topology
in IR™ ([7]). Moreover, let 1 denote the Lebesgue measure in IR".
We will say that a function f : IR™ — IR is R-integrally quasicontinuous at
a point x € IR™ (belongs to @, s(z)) [belongs to @, ()] if for each real n > 0
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and for each set U € T, (U € Tsq) [U € T,4] containing = there is a bounded
Jordan measurable set I C U such that int(I) # 0, f/I is integrable in the sense
of Riemann, I C U ([int(Z) NU # (] and

[ f(t)de
I’LLT—JE(QT) <,
mef(t)dt
WINT) — fz)| <.

Remark 6. If a function f : IR™ — IR is R-integrally quasicontinuous at a point
x € IR", then each function g : R" — IR such that fpg and f(x) = g(z) is also
R-integrally quasicontinuous at z.

Proof. Fix areal r > 0 and a set U € T, containing z. Since f is R-integrally
quasicontinuous at x, there is a bounded Jordan measurable set I C U such that
int(I) # 0, f/I is integrable in the sense of Riemann and

[ f)de
I

— — flx)| <

(1)
However, the restricted function f/I is integrable in the sense of Riemann, so f
is continuous almost everywhere on I and consequently, by Remark 1, we have
g = f almost everywhere on I and g is continuous almost everywhere on I. From
the equality f(z) = g(x) it follows that

Jo(t)dt Jf(t)dt
I I
— —g(x)| = |———— — f(x)| <
e I o R
Analogously we can prove the following. g

Remark 7. If a function f : IR" — IR belongs to Q,..(x) (Qr s(x)), then each
function g : IR™ — IR such that fpg and f(x) = g(z) belongs also to Q. ()
(Qr,s(2)).

EXAMPLE 5. The function

and
f)=0 otherwise on 1R,
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belongs to Qs,,(0) and

g(())zg(—): for n=1,2,...
and
g(t)=0 otherwise on IR,

is not R-integrally quasicontinuous at 0, but fpg.

Now, we will consider the Darboux property of functions from IR to IR. Let
X =Y =1R and Tx = Ty = T, where T, denotes the natural topology in IR.
We start with the following example.

ExXAMPLE 6. Let A C IR be a nowhere dense (in T, ) nonempty F,-set belonging
to the density topology ([1]). By Zahorski’s lemma ([1]) there is an approximately
continuous and upper semi-continuous function f : IR — [0, 1] such that f(A) =
(0,1], f~%0) = R\A and f is continuous at points z € IR\A. Let B C A
be a countable set such that the set E = {(z, f(z));z € B} is dense in the
graph Gr(f/A) of the restricted function f/A. Let y € (0,1) be a real such that
f~Y(y)NnB=0. Put

g(x) =0 for z € f'(y)
and
g(z) = f(z) otherwiseon IR.
Then g p f, f has Darboux property, and g does not have Darboux property.
Moreover, let

h(z) = —= for zeIR.

Then the function A is approximately continuous and f # h.

Observe that by modification of functions f and h on the components of
the set IR \cl(A) we can define approximately continuous and simultaneously
quasicontinuous functions ¢ and 1 such that ¢ p ¥ and ¢ # 1.

THEOREM 5. Let H be a class of almost everywhere (with respect to Lebesgue
measure) continuous functions f : IR — IR satisfying the following condition

(i) if x is a discontinuity point of f € H, then either the point (:E,f(x)) 18
isolated in Gr(f) or for each function g € H, if g/C(f) = f/C(f), then
g(x) = f(x) (C(f) denotes the set of all continuity points of f).

Then two arbitrary functions f,g € H such that fpg are equal.

Proof. Let f,g € H be such that fp g. By Remark 1 we have f(z) = g(z) for
z € C(f). If z is a discontinuity point of f and the point (z, f(z)) is isolated in
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Gr(f), then f(x) = g(x) by Remark 2. For other discontinuity points of f the
equality f(z) = g(x) follows from condition (i). O

Observe that the family C,. of all almost everywhere continuous and every-
where approximately continuous functions or the family A, of all almost every-
where continuous locally integrable derivatives may be used as some examples
of families H satisfying condition (i) of last theorem.
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