ON A FUNCTIONAL RELATION DEFINED BY THE EQUALITY OF THE CLOSURES OF GRAPHS

Zbigniew Grande - Halina Wiśniewska

ABSTRACT. Some common properties (continuity, quasicontinuity, symmetrical quasicontinuity, ...) of functions whose graphs have the same closures are investigated.

If $\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ are topological spaces and $f, g: X \rightarrow Y$ are functions, then we will say that

$$
f \rho g \quad \text { if and only if } \quad \operatorname{cl}(G r(f))=\operatorname{cl}(G r(g)),
$$

where $c l$ denotes the closure operation and $\operatorname{Gr}(f)$ denotes the graph of the function f. Evidently, ρ is an equivalence in the class of all functions from X to Y. In the case where $X=Y$ is a metric compact space, the relation ρ was investigated in [3].

Remark 1. Assume that $\left(Y, T_{Y}\right)$ is a Hausdorff space and that $f, g: X \rightarrow Y$ are functions such that $f \rho g$. If f is continuous at a point x, then $f(x)=g(x)$ and
(a)

$$
\{y \in Y ;(x, y) \in \operatorname{cl}(G r(g))\}=\{g(x)\} .
$$

Moreover, if $\left(Y, T_{Y}\right)$ is a regular space, then g is continuous at x.
Proof. Assume by contradiction that there is a point $y \in Y$ with $y \neq f(x)$ and $(x, y) \in c l(G r(g))=c l(G r(f))$. Since $\left(Y, T_{Y}\right)$ is a Hausdorff space, there are sets $V_{1}, V_{2} \in T_{Y}$ such that $y \in V_{1}, f(x) \in V_{2}$ and $V_{1} \cap V_{2}=\emptyset$. But f is continuous at x, so there is a set $U \in T_{X}$ containing x with $f(U) \subset V_{2}$. Consequently,

$$
\left(U \times V_{1}\right) \cap c l(G r(g))=\left(U \times V_{1}\right) \cap c l(G r(f))=\emptyset,
$$

and

$$
(x, y) \notin c l(G r(g)) .
$$

[^0]This contradiction implies (a) and the equality $g(x)=f(x)$. For the proof of the second part, assume by contradiction that the space $\left(Y, T_{Y}\right)$ is regular and g is not continuous at x. Then there is a set $V \in T_{Y}$ containing $g(x)$ such that for each set $U \in T_{X}$ containing X there exists a point $u \in U$ with $g(u) \notin V$. From the regularity of the space $\left(Y, T_{Y}\right)$ it follows that there are disjoint sets $V_{3}, V_{4} \in T_{Y}$ such that $g(x) \in V_{3}$ and $Y \backslash V \subset V_{4}$. Since f is continuous at x and $V_{3} \ni g(x)=f(x)$, there is a set $U_{1} \in T_{X}$ containing x with $U_{1} \subset U$ and $f\left(U_{1}\right) \subset V_{3}$. There is a point $u_{1} \in U_{1}$ with $g(u) \in Y \backslash V \subset V_{4}$. Since $c l(G r(g))=c l(G r(f))$, there is a point $u_{2} \in U_{1}$ with $f\left(u_{2}\right) \in V_{4}$, a contradiction with $V_{3} \cap V_{4}=\emptyset$ and $f\left(U_{1}\right) \subset V_{3}$. This finishes the proof.

Observe that the hypothesis in Remark 1 that $\left(Y, T_{Y}\right)$ is a Hausdorff space is important, as the example below shows.

Example 1. Let $X=Y=N$ be the set of all positive integers and let

$$
T_{X}=T_{Y}=\{\emptyset\} \cup\{N \backslash A ; A \quad \text { is finite }\} .
$$

Then the space $\left(X, T_{X}\right)=\left(Y, T_{Y}\right)$ is not Hausdorff, but it satisfies $\left(T_{1}\right)$-axiom and the functions $f, g: X \rightarrow Y$ defined by

$$
f(x)=x \quad \text { and } \quad g(x)=x+1 \quad \text { for } \quad x \in X
$$

are continuous, and $c l(G r(f))=c l(G r(g))=X \times Y$.
Remark 2. Let $f, g: X \rightarrow Y$ be functions such that $f \rho g$. If $x \in X$ is a point such that the point $(x, f(x))$ is isolated in $\operatorname{Gr}(f)$, then $f(x)=g(x)$.

Proof. There are sets $U \in T_{X}$ and $V \in T_{Y}$ such that $x \in U, f(x) \in V$ and $(U \times V) \cap G r(f)=\{(x, f(x))\}$. So,

$$
c l(G r(f) \backslash\{(x, f(x))\}) \subset(X \times Y) \backslash(U \times V)
$$

and consequently

$$
c l(G r(g) \backslash\{(x, f(x))\})=c l(G r(f) \backslash\{(x, f(x))\}) \subset(X \times Y) \backslash(U \times V)
$$

Since $(x, f(x)) \in \operatorname{cl}(G r(g))$, we have $f(x)=g(x)$.
In [3] it is proved that if (X, d) is a metric compact space and $f, g: X \rightarrow X$ are such that $f \rho g$, then the quasicontinuity of f implies the quasicontinuity of g. Recall that a function $f: X \rightarrow Y$ is quasicontinuous at a point $x \in X$ if for all the sets $U \in T_{X}$ containing x and $V \in T_{Y}$ containing $f(x)$ there is a nonempty set $W \in T_{X}$ contained in U such that $f(W) \subset V([6],[8])$.

Theorem 1. Assume that $\left(Y, T_{Y}\right)$ is a regular space. Let $f, g: X \rightarrow Y$ be functions such that fog. If f is quasicontinuous at a point x, then also g is quasicontinuous at x.

Proof. Let $U \in T_{X}$ and $V \in T_{Y}$ be sets such that $x \in U$ and $f(x) \in V$. Since $\left(Y, T_{Y}\right)$ is a regular space, there is a set $V_{1} \in T_{Y}$ such that $x \in V_{1} \subset \operatorname{cl}\left(V_{1}\right) \subset V$. From the quasicontinuity of f at x it follows that there is a nonempty set $U_{1} \subset U$ such that $U_{1} \in T_{X}$ and $f\left(U_{1}\right) \subset V_{1}$. Since
$c l(G r(g)) \cap\left(U_{1} \times c l\left(V_{1}\right)\right)=c l(G r(f)) \cap\left(U_{1} \times c l\left(V_{1}\right)\right) \subset c l(G r(f)) \cap\left(U_{1} \times V\right)$, we obtain that $g\left(U_{1}\right) \subset V$. This finishes the proof.

Now, consider the functions of two variables. Let $\left(Z, T_{Z}\right)$ be a topological space and let $f: X \times Y \rightarrow Z$ be a function. Then the functions $f_{x}(y)=$ $f(x, y)$ and $f^{y}(x)=f(x, y)$, where $x \in X$ and $y \in Y$, are said to be the sections of f. A function f is said to be separately continuous (resp. separately quasicontinuous) if the sections f_{x} and $f^{y}, x \in X$ and $y \in Y$, are continuous (resp. quasicontinuous).

Example 2. Let $X=Y=Z=\mathbb{R}$ and $T_{X}=T_{Y}=T_{Z}=T_{e}$, where T_{e} is the natural topology in \mathbb{R}. Let

$$
A=\left\{(x, y) ; x>0 \quad \text { and } \quad \frac{x}{2} \leq y \leq 2 x\right\}
$$

and let $f: \mathbb{R}^{2} \rightarrow[0,1]$ be a function such that

$$
f(x, x)=1 \quad \text { for } \quad x>0
$$

and

$$
f(x, y)=0 \quad \text { for } \quad(x, y) \in \mathbb{R}^{2} \backslash A
$$

and f is continuous at each point $(x, y) \neq(0,0)$. Then f is separately continuous. The function

$$
g(x, y)=f(x, y) \quad \text { for } \quad(x, y) \neq 0 \quad \text { and } \quad g(0,0)=1
$$

is not separately continuous (it is not even separately quasicontinuous), but $f \rho g$. Note that both f and g are quasicontinuous.

However, the following is true.
Remark 3. Assume that $\left(X, d_{X}\right)$ is a complete metric space, $\left(Y, d_{Y}\right)$ is a compact metric space and $\left(Z, d_{Z}\right)$ is a metric space. If functions $f, g: X \times Y \rightarrow Z$ are separately continuous and $f \rho g$, then $f=g$.

Proof. There is a residual set $A \subset X$ such that the function f is continuous at each point $(x, y) \in A \times Y$ ([10], p. 172, Exercise 6). By Remark 1 the equality $g(x, y)=f(x, y)$ is true at each point $(x, y) \in A \times Y$. Assume by contradiction that there is a point $\left(x_{1}, y_{1}\right) \in X \times Y$ at which $f\left(x_{1}, y_{1}\right) \neq g\left(x_{1}, y_{1}\right)$. Let

$$
r=\frac{\left|f\left(x_{1}, y_{1}\right)-g\left(x_{1}, y_{1}\right)\right|}{2}
$$

Then $r>0$ and from the continuity of the sections $g^{y_{1}}$ and $f^{y_{1}}$ at x_{1} it follows that there exists an open neighbourhood $U \subset X$ of x_{1} such that

$$
\max \left|g\left(u, y_{1}\right)-g\left(x_{1}, y_{1}\right)\right|,\left|f\left(u, y_{1}\right)-f\left(x_{1}, y_{1}\right)\right|<r \quad \text { for } \quad u \in U
$$

Since $\left(X, d_{X}\right)$ is a complete metric space and A is a residual subset of X, the intersection $A \cap U \neq \emptyset$. Let w be an element of $U \cap A$. Then

$$
\begin{aligned}
g\left(w, y_{1}\right) & =f\left(w, y_{1}\right) \\
\left|g\left(w, y_{1}\right)-g\left(x_{1}, y_{1}\right)\right| & <r \\
\left|f\left(w, y_{1}\right)-f\left(x_{1}, y_{1}\right)\right| & <r
\end{aligned}
$$

So,

$$
\begin{aligned}
2 r & =\left|g\left(x_{1}, y_{1}\right)-f\left(x_{1}, y_{1}\right)\right| \\
& \leq\left|g\left(x_{1}, y_{1}\right)-g\left(w, y_{1}\right)\right|+\left|g\left(w, y_{1}\right)-f\left(x_{1}, y_{1}\right)\right| \\
& <r+\left|f\left(w, y_{1}\right)-f\left(x_{1}, y_{1}\right)\right|<r+r=2 r
\end{aligned}
$$

and this contradiction finishes the proof.
Since there are different quasicontinuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ with $f \rho g$ (for example $f(x)=g(x)=\sin \frac{1}{x}$ for $x \neq 0$, and $f(0)=0$ and $g(0)=1$), a quasicontinuous analogy of Remark 3 is not true.

In [8] (see also [6], [7]) Z. Piotrowski and R. V allin investigate some very special notions of the quasicontinuity of functions of two variables. Let $\left(Z, T_{Z}\right)$ be a topological space.

A function $f: X \times Y \rightarrow Z$ is said to be:
(1) quasicontinuous at a point $\left(x_{1}, y_{1}\right) \in X \times Y$ with respect to x (alternatively y) if for every set $U \times V \in T_{X} \times T_{Y}$ containing $\left(x_{1}, y_{1}\right)$ and for each set $W \subset T_{Z}$ containing $f\left(x_{1}, y_{1}\right)$ there are nonempty sets $U^{\prime} \in T_{X}$ contained in U and $V^{\prime} \in T_{Y}$ contained in V such that $x_{1} \in U^{\prime}$ (alternatively $\left.y_{1} \in V^{\prime}\right)$ and $f\left(U^{\prime} \times V^{\prime}\right) \subset W([8]) ;$
(2) symmetrically quasicontinuous at $\left(x_{1}, y_{1}\right)$ if it is quasicontinuous at $\left(x_{1}, y_{1}\right)$ with respect to x and with respect to y ([8]).
Analogously as in the case of Theorem 1 we can prove the following.

Theorem 2. Assume that $\left(Z, T_{Z}\right)$ is a regular space. Let $f, g: X \times Y \rightarrow Z$ be functions such that $f \rho g$. If f is quasicontinuous at a point $\left(x_{1}, y_{1}\right) \in X \times Y$ with respect to x (alternatively y) [alternatively symmetrically quasicontinuous], then g has the same kind of quasicontinuity as f at this point.

Some similar results are true for cliquishness. Let (M, d) be a metric space.
Recall that a function $f: X \rightarrow M$ is cliquish at a point $x \in X$ if for every real $\eta>0$ and for every set $U \in T_{X}$ containing x there is a nonempty set $U_{1} \in T_{X}$ contained in U such that the diameter $\operatorname{diam}\left(f\left(U_{1}\right)\right)=\sup \left\{d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)\right.$; $\left.x_{1}, x_{2} \in U_{1}\right\}<\eta([7])$.

Theorem 3. Let $f, g: X \rightarrow Y$ be functions such that $f \rho g$. If f is cliquish at a point x, then also g is cliquish at x.

Proof. Fix a real $\eta>0$ and a set $U \in T_{X}$ such that $x \in U$. Because of the cliquishness of f at x it follows that there is a nonempty set $U_{1} \subset U$ belonging to T_{X} such that $\operatorname{diam}\left(f\left(U_{1}\right)\right)<\frac{\eta}{3}$. Fix a point $u \in U_{1}$ and let $V_{1}=K\left(f(u), \frac{\eta}{3}\right)$ be the ball with the center $f(u)$ and the radius $\frac{\eta}{3}$. Since

$$
c l(G r(g)) \cap\left(U_{1} \times \operatorname{cl}\left(V_{1}\right)\right)=\operatorname{cl}(G r(f)) \cap\left(U_{1} \times \operatorname{cl}\left(V_{1}\right)\right)
$$

and

$$
\operatorname{diam}\left(V_{1}\right)=\operatorname{diam}\left(c l\left(V_{1}\right)\right) \leq \frac{2 \eta}{3}<\eta
$$

we have $\operatorname{diam}\left(g\left(U_{1}\right)\right)<\eta$. This completes the proof.
Remark 4. Let $S \subset \mathbb{R}^{2}$ be a Sierpiński nonmeasurable set of full outer Lebesgue measure such that for each straight line p the cardinality $\operatorname{card}(p \cap S) \leq 2$ ([9]), and let f be the characteristic function of S. Then f is separately cliquish and $c l(G r(f))=\mathbb{R}^{2} \times\{0,1\}$. Let Q denote the set of all rationals and let g be the characteristic functions of the set $Q \times Q$. Then $f \rho g$ and g is not separately cliquish.

A function $f: X \times Y \rightarrow M$ is said to be:
(1) cliquish at a point $\left(x_{1}, y_{1}\right) \in X \times Y$ with respect to x (alternatively y) if for every set $U \times V \in T_{X} \times T_{Y}$ containing $\left(x_{1}, y_{1}\right)$ and for each real $\eta>0$ there are nonempty sets $U^{\prime} \in T_{X}$ contained in U and $V^{\prime} \in T_{Y}$ contained in V such that $x_{1} \in U^{\prime}\left(\right.$ alternatively $\left.y_{1} \in V^{\prime}\right)$ and $\operatorname{diam}\left(f\left(U^{\prime} \times V^{\prime}\right)\right)<\eta$ ([4]);
(2) symmetrically cliquish at $\left(x_{1}, y_{1}\right)$ if it is cliquish at $\left(x_{1}, y_{1}\right)$ with respect to x and with respect to y ([4]).

Analogously as in the case of Theorem 3 we can prove the following.

Theorem 4. Let $f, g: X \times Y \rightarrow M$ be functions such that $f \rho g$. If f is cliquish at a point $\left(x_{1}, y_{1}\right) \in X \times Y$ with respect to x (alternatively y) [alternatively symmetrically cliquish], then g is the same at this point.

Remark 5. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let \mathcal{I} be a proper ideal of subsets of X. Let $f: X \rightarrow Y$ be a function such that the set $D(f)$ of all its discontinuity points belongs to \mathcal{I}. If the relation $f \rho g$ works for a function $g: X \rightarrow Y$, then $D(g) \in \mathcal{I}$.

Proof. If f is continuous at a point $x \in X$, then by Remark 1 the function g is continuous at x and $g(x)=f(x)$. So, $D(g) \subset D(f) \in \mathcal{I}$.

Corollary 1. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let $f: X \rightarrow Y$ be a function such that the set $D(f)$ is of the first category. If the relation $f \rho g$ works for a function $g: X \rightarrow Y$, then $D(g)$ is also of the first category.
Example 3. If $C \subset[0,1]$ is a ternary Cantor set and $A \subset C$ is a nonborelien set, then the characteristic function $f=\kappa_{C}$ is in Baire 1 class (it is even in the discrete Baire 1 class), the characteristic function $g=\kappa_{A}$ is nonborelien and $f \rho g$.

Recall that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is in the discrete Baire 1 class if there is a sequence of continuous functions $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that for each $x \in \mathbb{R}^{n}$ there is a positive integer $n(x)$ with $f_{n}(x)=f(x)$ for $n>n(x)([2]) . f$ belongs to the discrete Baire 1 class if and only if for each nonempty closed set $H \subset \mathbb{R}^{n}$ there is an open set G such that $G \cap H \neq \emptyset$ and the restricted function $f /(G \cap H)$ is continuous.

From Remark 1 we also obtain.
Corollary 2. If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is almost everywhere continuous (with respect to Lebesgue measure), then each function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f \rho g$ is also almost everywhere continuous.
Example 4. Observe that the functions

$$
f(x)=0 \quad \text { for } x \leq 0 \quad \text { and } \quad f(x)=1 \quad \text { for } \quad x>0,
$$

and

$$
g(x)=0 \quad \text { for } x<0 \quad \text { and } \quad g(x)=1 \quad \text { for } \quad x \geq 0
$$

are different, $D(f)$ and $D(g)$ belong to \mathcal{I} according to Remark 5 , and $f \rho g$.
Still consider Riemann's integral quasicontinuities. For this let T_{e} denote the Euclidean topology in \mathbb{R}^{n} and $T_{o d}\left(T_{s d}\right)$ the ordinary (strong) density topology in $\mathbb{R}^{n}([7])$. Moreover, let μ denote the Lebesgue measure in \mathbb{R}^{n}.

We will say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is R -integrally quasicontinuous at a point $x \in \mathbb{R}^{n}$ (belongs to $Q_{r, s}(x)$) [belongs to $Q_{r, o}(x)$] if for each real $\eta>0$
and for each set $U \in T_{e}\left(U \in T_{s d}\right)\left[U \in T_{o d}\right]$ containing x there is a bounded Jordan measurable set $I \subset U$ such that $\operatorname{int}(I) \neq \emptyset, f / I$ is integrable in the sense of Riemann, $I \subset U([\operatorname{int}(I) \cap U \neq \emptyset]$ and

$$
\begin{gathered}
\left|\frac{\int_{I} f(t) \mathrm{d} t}{\mu(I)}-f(x)\right|<r, \\
\left|\frac{\int_{\cap U} f(t) \mathrm{d} t}{\mu(I \cap U)}-f(x)\right|<r .
\end{gathered}
$$

Remark 6. If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is R -integrally quasicontinuous at a point $x \in \mathbb{R}^{n}$, then each function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f \rho g$ and $f(x)=g(x)$ is also R -integrally quasicontinuous at x.

Proof. Fix a real $r>0$ and a set $U \in T_{e}$ containing x. Since f is R-integrally quasicontinuous at x, there is a bounded Jordan measurable set $I \subset U$ such that $\operatorname{int}(I) \neq \emptyset, f / I$ is integrable in the sense of Riemann and

$$
\left|\frac{\int_{I} f(t) \mathrm{d} t}{\mu(I)}-f(x)\right|<r .
$$

However, the restricted function f / I is integrable in the sense of Riemann, so f is continuous almost everywhere on I and consequently, by Remark 1, we have $g=f$ almost everywhere on I and g is continuous almost everywhere on I. From the equality $f(x)=g(x)$ it follows that

$$
\left|\frac{\int_{I} g(t) \mathrm{d} t}{\mu(I)}-g(x)\right|=\left|\frac{\int_{I} f(t) \mathrm{d} t}{\mu(I)}-f(x)\right|<r .
$$

Analogously we can prove the following.
Remark 7. If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ belongs to $Q_{r . o}(x)\left(Q_{r, s}(x)\right)$, then each function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f \rho g$ and $f(x)=g(x)$ belongs also to $Q_{r, o}(x)$ $\left(Q_{r, s}(x)\right)$.

Example 5. The function

$$
f\left(\frac{1}{n}\right)=1 \quad \text { for } \quad n=1,2, \ldots
$$

and

$$
f(t)=0 \quad \text { otherwise on } \quad \mathbb{R},
$$

belongs to $Q_{s, o}(0)$ and

$$
g(0)=g\left(\frac{1}{n}\right)=1 \quad \text { for } \quad n=1,2, \ldots
$$

and

$$
g(t)=0 \quad \text { otherwise on } \quad \mathbb{R}
$$

is not R -integrally quasicontinuous at 0 , but $f \rho g$.
Now, we will consider the Darboux property of functions from \mathbb{R} to \mathbb{R}. Let $X=Y=\mathbb{R}$ and $T_{X}=T_{Y}=T_{e}$, where T_{e} denotes the natural topology in \mathbb{R}. We start with the following example.

ExAmple 6. Let $A \subset \mathbb{R}$ be a nowhere dense (in T_{e}) nonempty F_{σ}-set belonging to the density topology ([1]). By Zahorski's lemma ([1]) there is an approximately continuous and upper semi-continuous function $f: \mathbb{R} \rightarrow[0,1]$ such that $f(A)=$ $(0,1], f^{-1}(0)=\mathbb{R} \backslash A$ and f is continuous at points $x \in \mathbb{R} \backslash A$. Let $B \subset A$ be a countable set such that the set $E=\{(x, f(x)) ; x \in B\}$ is dense in the graph $\operatorname{Gr}(f / A)$ of the restricted function f / A. Let $y \in(0,1)$ be a real such that $f^{-1}(y) \cap B=\emptyset$. Put

$$
g(x)=0 \quad \text { for } \quad x \in f^{-1}(y)
$$

and

$$
g(x)=f(x) \quad \text { otherwise on } \quad \mathbb{R}
$$

Then $g \rho f, f$ has Darboux property, and g does not have Darboux property.
Moreover, let

$$
h(x)=\frac{f(x)}{2} \quad \text { for } \quad x \in \mathbb{R}
$$

Then the function h is approximately continuous and $f \neq h$.
Observe that by modification of functions f and h on the components of the set $\mathbb{R} \backslash c l(A)$ we can define approximately continuous and simultaneously quasicontinuous functions ϕ and ψ such that $\phi \rho \psi$ and $\phi \neq \psi$.

Theorem 5. Let \mathcal{H} be a class of almost everywhere (with respect to Lebesgue measure) continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following condition
(i) if x is a discontinuity point of $f \in \mathcal{H}$, then either the point $(x, f(x))$ is isolated in $G r(f)$ or for each function $g \in \mathcal{H}$, if $g / C(f)=f / C(f)$, then $g(x)=f(x)(C(f)$ denotes the set of all continuity points of $f)$.
Then two arbitrary functions $f, g \in \mathcal{H}$ such that $f \rho g$ are equal.
Proof. Let $f, g \in \mathcal{H}$ be such that $f \rho g$. By Remark 1 we have $f(x)=g(x)$ for $x \in C(f)$. If x is a discontinuity point of f and the point $(x, f(x))$ is isolated in
$G r(f)$, then $f(x)=g(x)$ by Remark 2. For other discontinuity points of f the equality $f(x)=g(x)$ follows from condition (i).

Observe that the family $C_{a e}$ of all almost everywhere continuous and everywhere approximately continuous functions or the family $\Delta_{a e}$ of all almost everywhere continuous locally integrable derivatives may be used as some examples of families \mathcal{H} satisfying condition (i) of last theorem.

REFERENCES

[1] BRUCKNER, A. M.: Differentiation of Real Functions, Springer-Verlag, Berlin, 1978.
[2] CSÁSZÁR, A.-LACZKOVICH, M.: Discrete and equal convergence, Studia Sci. Math. Hungar. 10 (1975), 463-472.
[3] CRANNELL, A.-FRANTZ, M.-LEMASURIER, M.: Closed relations and equivalence classes of quasicontinuous functions, Real Anal. Exchange 31 (2005/2006), 409-423.
[4] GRANDE, Z.: Some observations on the symmetrical quasicontinuity of Piotrowski and Vallin, Real Anal. Exchange 31 (2005/2006), 309-314.
[5] GRANDE, Z.: On Riemann integral quasicontinuity, Real Anal. Exchange 31 (2005/2006), 239-253.
[6] KEMPISTY, S.: Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
[7] NEUBRUNN, T.: Quasi-continuity, Real Anal. Exchange 14 (1988/1989), 259-306.
[8] PIOTROWSKI, Z.-VALLIN, R. W.: Conditions which imply continuity, Real Anal. Exchange 29 (2003/2004), 211-217.
[9] SIERPIŃSKI, W.: Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 2 (1921), 41-49.
[10] SIKORSKI, R.: Real Functions, PWN, Warsaw, 1957. (In Polish)

Received October 31, 2006
Zbigniew Grande
The University of Computer Science
and Economics
TWP Olsztyn
ul. Barczewskiego 11
PL-10-061 Olsztyn
POLAND
E-mail: grande@ukw.edu.pl
Halina Wiśniewska
Institute of Mathematics
Kazimierz Wielki University
Plac Weyssenhoffa 11
PL-85-072 Bydgoszcz
POLAND

[^0]: 2000 Mathematics Subject Classification: $26 \mathrm{~A} 15,26 \mathrm{~A} 21,54 \mathrm{C} 05$.
 Keywords: equivalence, continuity, quasicontinuity, symmetrical quasicontinuity, product spaces.

