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ON A FUNCTIONAL RELATION DEFINED BY THE

EQUALITY OF THE CLOSURES OF GRAPHS

Zbigniew Grande — Halina Wiśniewska

ABSTRACT. Some common properties (continuity, quasicontinuity, symmetri-
cal quasicontinuity, . . . ) of functions whose graphs have the same closures are

investigated.

If (X,TX) and (Y, TY ) are topological spaces and f, g : X → Y are functions,
then we will say that

fρ g if and only if cl
(

Gr(f)
)

= cl
(

Gr(g)
)

,

where cl denotes the closure operation and Gr(f) denotes the graph of the
function f . Evidently, ρ is an equivalence in the class of all functions from X
to Y . In the case where X = Y is a metric compact space, the relation ρ was
investigated in [3].

Remark 1. Assume that (Y, TY ) is a Hausdorff space and that f, g : X → Y
are functions such that fρ g. If f is continuous at a point x, then f(x) = g(x)
and

(a)
{

y ∈ Y ; (x, y) ∈ cl
(

Gr(g)
)

}

=
{

g(x)
}

.

Moreover, if (Y, TY ) is a regular space, then g is continuous at x.

P r o o f. Assume by contradiction that there is a point y ∈ Y with y 6= f(x) and
(x, y) ∈ cl

(

Gr(g)
)

= cl
(

Gr(f)
)

. Since (Y, TY ) is a Hausdorff space, there are sets
V1, V2 ∈ TY such that y ∈ V1, f(x) ∈ V2 and V1 ∩ V2 = ∅. But f is continuous
at x, so there is a set U ∈ TX containing x with f(U) ⊂ V2. Consequently,

(U × V1) ∩ cl
(

Gr(g)
)

= (U × V1) ∩ cl
(

Gr(f)
)

= ∅,

and

(x, y) /∈ cl
(

Gr(g)
)

.
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This contradiction implies (a) and the equality g(x) = f(x). For the proof of
the second part, assume by contradiction that the space (Y, TY ) is regular and
g is not continuous at x. Then there is a set V ∈ TY containing g(x) such that
for each set U ∈ TX containing X there exists a point u ∈ U with g(u) /∈ V .
From the regularity of the space (Y, TY ) it follows that there are disjoint sets
V3, V4 ∈ TY such that g(x) ∈ V3 and Y \ V ⊂ V4. Since f is continuous at x
and V3 ∋ g(x) = f(x), there is a set U1 ∈ TX containing x with U1 ⊂ U
and f(U1) ⊂ V3. There is a point u1 ∈ U1 with g(u) ∈ Y \ V ⊂ V4. Since
cl

(

Gr(g)
)

= cl
(

Gr(f)
)

, there is a point u2 ∈ U1 with f(u2) ∈ V4, a contradiction
with V3 ∩ V4 = ∅ and f(U1) ⊂ V3. This finishes the proof. �

Observe that the hypothesis in Remark 1 that (Y, TY ) is a Hausdorff space is
important, as the example below shows.

Example 1. Let X = Y = N be the set of all positive integers and let

TX = TY = {∅} ∪ {N \A;A is finite}.

Then the space (X,TX) = (Y, TY ) is not Hausdorff, but it satisfies (T1)-axiom
and the functions f, g : X → Y defined by

f(x) = x and g(x) = x+ 1 for x ∈ X,

are continuous, and cl
(

Gr(f)
)

= cl
(

Gr(g)
)

= X × Y .

Remark 2. Let f, g : X → Y be functions such that fρ g. If x ∈ X is a point
such that the point

(

x, f(x)
)

is isolated in Gr(f), then f(x) = g(x).

P r o o f. There are sets U ∈ TX and V ∈ TY such that x ∈ U , f(x) ∈ V and
(U × V ) ∩Gr(f) =

{

(x, f(x))
}

. So,

cl

(

Gr(f) \
{

(

x, f(x)
)

}

)

⊂ (X × Y ) \ (U × V ),

and consequently

cl

(

Gr(g) \
{

(

x, f(x)
)

}

)

= cl

(

Gr(f) \
{

(

x, f(x)
)

}

)

⊂ (X × Y ) \ (U × V ).

Since
(

x, f(x)
)

∈ cl
(

Gr(g)
)

, we have f(x) = g(x). �

In [3] it is proved that if (X,d) is a metric compact space and f, g : X → X
are such that fρ g, then the quasicontinuity of f implies the quasicontinuity of g.
Recall that a function f : X → Y is quasicontinuous at a point x ∈ X if for all
the sets U ∈ TX containing x and V ∈ TY containing f(x) there is a nonempty
set W ∈ TX contained in U such that f(W ) ⊂ V ([6],[8]).
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ON A FUNCTIONAL RELATION DEFINED BY EQUALITY OF CLOSURES OF GRAPHSTheorem 1. Assume that (Y, TY ) is a regular space. Let f, g : X → Y be
functions such that fρ g. If f is quasicontinuous at a point x, then also g is
quasicontinuous at x.

P r o o f. Let U ∈ TX and V ∈ TY be sets such that x ∈ U and f(x) ∈ V . Since
(Y, TY ) is a regular space, there is a set V1 ∈ TY such that x ∈ V1 ⊂ cl(V1) ⊂ V .
From the quasicontinuity of f at x it follows that there is a nonempty set U1 ⊂ U
such that U1 ∈ TX and f(U1) ⊂ V1. Since

cl
(

Gr(g)
)

∩
(

U1 × cl(V1)
)

= cl
(

Gr(f)
)

∩
(

U1 × cl(V1)
)

⊂ cl
(

Gr(f)
)

∩ (U1 × V ),

we obtain that g(U1) ⊂ V . This finishes the proof. �

Now, consider the functions of two variables. Let (Z, TZ) be a topological
space and let f : X × Y → Z be a function. Then the functions fx(y) =
f(x, y) and fy(x) = f(x, y), where x ∈ X and y ∈ Y , are said to be the
sections of f . A function f is said to be separately continuous (resp. separately
quasicontinuous) if the sections fx and fy, x ∈ X and y ∈ Y , are continuous
(resp. quasicontinuous).

Example 2. Let X = Y = Z = IR and TX = TY = TZ = Te, where Te is the
natural topology in IR. Let

A =

{

(x, y); x > 0 and
x

2
≤ y ≤ 2x

}

and let f : IR2 → [0, 1] be a function such that

f(x, x) = 1 for x > 0

and

f(x, y) = 0 for (x, y) ∈ IR2 \A,

and f is continuous at each point (x, y) 6= (0, 0). Then f is separately continuous.
The function

g(x, y) = f(x, y) for (x, y) 6= 0 and g(0, 0) = 1

is not separately continuous (it is not even separately quasicontinuous), but fρ g.
Note that both f and g are quasicontinuous.

However, the following is true.

Remark 3. Assume that (X,dX) is a complete metric space, (Y, dY ) is a com-
pact metric space and (Z, dZ) is a metric space. If functions f, g : X × Y → Z
are separately continuous and fρ g, then f = g.
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P r o o f. There is a residual set A ⊂ X such that the function f is continuous at
each point (x, y) ∈ A × Y ([10], p. 172, Exercise 6). By Remark 1 the equality
g(x, y) = f(x, y) is true at each point (x, y) ∈ A × Y . Assume by contradiction
that there is a point (x1, y1) ∈ X × Y at which f(x1, y1) 6= g(x1, y1). Let

r =
|f(x1, y1) − g(x1, y1)|

2
.

Then r > 0 and from the continuity of the sections gy1 and fy1 at x1 it follows
that there exists an open neighbourhood U ⊂ X of x1 such that

max |g(u, y1) − g(x1, y1)|, |f(u, y1) − f(x1, y1)| < r for u ∈ U.

Since (X,dX) is a complete metric space and A is a residual subset of X, the
intersection A ∩ U 6= ∅. Let w be an element of U ∩A. Then

g(w, y1) = f(w, y1),

|g(w, y1) − g(x1, y1)| < r,

|f(w, y1) − f(x1, y1)| < r.

So,

2r = |g(x1, y1) − f(x1, y1)|

≤ |g(x1, y1) − g(w, y1)| + |g(w, y1) − f(x1, y1)|

< r + |f(w, y1) − f(x1, y1)| < r + r = 2r,

and this contradiction finishes the proof. �

Since there are different quasicontinuous functions f, g : IR → IR with fρ g
(for example f(x) = g(x) = sin 1

x
for x 6= 0, and f(0) = 0 and g(0) = 1),

a quasicontinuous analogy of Remark 3 is not true.

In [8] (see also [6], [7]) Z . P i o t r o w s k i and R . V a l l i n investigate some
very special notions of the quasicontinuity of functions of two variables. Let
(Z, TZ) be a topological space.

A function f : X × Y → Z is said to be:

(1) quasicontinuous at a point (x1, y1) ∈ X × Y with respect to x (alterna-
tively y) if for every set U ×V ∈ TX × TY containing (x1, y1) and for each
set W ⊂ TZ containing f(x1, y1) there are nonempty sets U ′ ∈ TX con-
tained in U and V ′ ∈ TY contained in V such that x1 ∈ U ′ (alternatively
y1 ∈ V ′) and f(U ′ × V ′) ⊂ W ([8]);

(2) symmetrically quasicontinuous at (x1, y1) if it is quasicontinuous at (x1, y1)
with respect to x and with respect to y ([8]).

Analogously as in the case of Theorem 1 we can prove the following.
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ON A FUNCTIONAL RELATION DEFINED BY EQUALITY OF CLOSURES OF GRAPHSTheorem 2. Assume that (Z, TZ) is a regular space. Let f, g : X × Y → Z be
functions such that fρ g. If f is quasicontinuous at a point (x1, y1) ∈ X × Y
with respect to x (alternatively y) [alternatively symmetrically quasicontinuous],
then g has the same kind of quasicontinuity as f at this point.

Some similar results are true for cliquishness. Let (M,d) be a metric space.

Recall that a function f : X →M is cliquish at a point x ∈ X if for every real
η > 0 and for every set U ∈ TX containing x there is a nonempty set U1 ∈ TX

contained in U such that the diameter diam
(

f(U1)
)

= sup
{

d(f(x1), f(x2));

x1, x2 ∈ U1

}

< η ([7]).Theorem 3. Let f, g : X → Y be functions such that fρ g. If f is cliquish at
a point x, then also g is cliquish at x.

P r o o f. Fix a real η > 0 and a set U ∈ TX such that x ∈ U . Because of the
cliquishness of f at x it follows that there is a nonempty set U1 ⊂ U belonging
to TX such that diam

(

f(U1)
)

< η
3
. Fix a point u ∈ U1 and let V1 = K

(

f(u), η
3

)

be the ball with the center f(u) and the radius η
3
. Since

cl
(

Gr(g)
)

∩
(

U1 × cl(V1)
)

= cl
(

Gr(f)
)

∩
(

U1 × cl(V1)
)

and

diam(V1) = diam
(

cl(V1)
)

≤
2η

3
< η,

we have diam
(

g(U1)
)

< η. This completes the proof. �

Remark 4. Let S ⊂ IR2 be a Sierpiński nonmeasurable set of full outer Lebesgue
measure such that for each straight line p the cardinality card(p ∩ S) ≤ 2 ([9]),
and let f be the characteristic function of S. Then f is separately cliquish and
cl

(

Gr(f)
)

= IR2 ×{0, 1}. Let Q denote the set of all rationals and let g be the
characteristic functions of the set Q × Q. Then fρ g and g is not separately
cliquish.

A function f : X × Y →M is said to be:

(1) cliquish at a point (x1, y1) ∈ X × Y with respect to x (alternatively y) if
for every set U × V ∈ TX × TY containing (x1, y1) and for each real η > 0
there are nonempty sets U ′ ∈ TX contained in U and V ′ ∈ TY contained
in V such that x1 ∈ U ′ (alternatively y1 ∈ V ′) and diam

(

f(U ′ × V ′)
)

< η
([4]);

(2) symmetrically cliquish at (x1, y1) if it is cliquish at (x1, y1) with respect to
x and with respect to y ([4]).

Analogously as in the case of Theorem 3 we can prove the following.
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ZBIGNIEW GRANDE — HALINA WIŚNIEWSKATheorem 4. Let f, g : X × Y →M be functions such that fρ g. If f is cliquish
at a point (x1, y1) ∈ X × Y with respect to x (alternatively y) [alternatively
symmetrically cliquish], then g is the same at this point.

Remark 5. Let (X,dX) and (Y, dY ) be metric spaces and let I be a proper
ideal of subsets of X. Let f : X → Y be a function such that the set D(f) of all
its discontinuity points belongs to I. If the relation f ρ g works for a function
g : X → Y , then D(g) ∈ I.

P r o o f. If f is continuous at a point x ∈ X, then by Remark 1 the function g
is continuous at x and g(x) = f(x). So, D(g) ⊂ D(f) ∈ I. �Corollary 1. Let (X,dX) and (Y, dY ) be metric spaces and let f : X → Y
be a function such that the set D(f) is of the first category. If the relation fρ g
works for a function g : X → Y , then D(g) is also of the first category.

Example 3. If C ⊂ [0, 1] is a ternary Cantor set and A ⊂ C is a nonborelien
set, then the characteristic function f = κC is in Baire 1 class (it is even in the
discrete Baire 1 class), the characteristic function g = κA is nonborelien and
fρ g.

Recall that a function f : IRn → IR is in the discrete Baire 1 class if there
is a sequence of continuous functions fn : IRn → IR such that for each x ∈ IRn

there is a positive integer n(x) with fn(x) = f(x) for n > n(x) ([2]). f belongs
to the discrete Baire 1 class if and only if for each nonempty closed set H ⊂ IRn

there is an open set G such that G∩H 6= ∅ and the restricted function f/(G∩H)
is continuous.

From Remark 1 we also obtain.Corollary 2. If a function f : IRn → IR is almost everywhere continuous
(with respect to Lebesgue measure), then each function g : IRn → IR such that
fρ g is also almost everywhere continuous.

Example 4. Observe that the functions

f(x) = 0 for x ≤ 0 and f(x) = 1 for x > 0,

and

g(x) = 0 for x < 0 and g(x) = 1 for x ≥ 0

are different, D(f) and D(g) belong to I according to Remark 5, and fρ g.

Still consider Riemann’s integral quasicontinuities. For this let Te denote the
Euclidean topology in IRn and Tod (Tsd) the ordinary (strong) density topology
in IRn ([7]). Moreover, let µ denote the Lebesgue measure in IRn.

We will say that a function f : IRn → IR is R-integrally quasicontinuous at
a point x ∈ IRn (belongs to Qr,s(x)) [belongs to Qr,o(x)] if for each real η > 0
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and for each set U ∈ Te (U ∈ Tsd) [U ∈ Tod] containing x there is a bounded
Jordan measurable set I ⊂ U such that int(I) 6= ∅, f/I is integrable in the sense
of Riemann, I ⊂ U ([int(I) ∩ U 6= ∅] and

∣

∣

∣

∣

∫

I

f(t) dt

µ(I)
− f(x)

∣

∣

∣

∣

< r,

∣

∣

∣

∣

∫

I∩U

f(t) dt

µ(I ∩ U)
− f(x)

∣

∣

∣

∣

< r.

Remark 6. If a function f : IRn → IR is R-integrally quasicontinuous at a point
x ∈ IRn, then each function g : IRn → IR such that fρ g and f(x) = g(x) is also
R-integrally quasicontinuous at x.

P r o o f. Fix a real r > 0 and a set U ∈ Te containing x. Since f is R-integrally
quasicontinuous at x, there is a bounded Jordan measurable set I ⊂ U such that
int(I) 6= ∅, f/I is integrable in the sense of Riemann and

∣

∣

∣

∣

∣

∣

∫

I

f(t) dt

µ(I)
− f(x)

∣

∣

∣

∣

∣

∣

< r.

However, the restricted function f/I is integrable in the sense of Riemann, so f
is continuous almost everywhere on I and consequently, by Remark 1, we have
g = f almost everywhere on I and g is continuous almost everywhere on I. From
the equality f(x) = g(x) it follows that

∣

∣

∣

∣

∣

∣

∫

I

g(t) dt

µ(I)
− g(x)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

I

f(t) dt

µ(I)
− f(x)

∣

∣

∣

∣

∣

∣

< r.

�Analogously we can prove the following.

Remark 7. If a function f : IRn → IR belongs to Qr.o(x) (Qr,s(x)), then each
function g : IRn → IR such that fρ g and f(x) = g(x) belongs also to Qr,o(x)
(Qr,s(x)).

Example 5. The function

f

(

1

n

)

= 1 for n = 1, 2, . . .

and

f(t) = 0 otherwise on IR,
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belongs to Qs,o(0) and

g(0) = g

(

1

n

)

= 1 for n = 1, 2, . . .

and

g(t) = 0 otherwise on IR,

is not R-integrally quasicontinuous at 0, but fρ g.

Now, we will consider the Darboux property of functions from IR to IR. Let
X = Y = IR and TX = TY = Te, where Te denotes the natural topology in IR.
We start with the following example.

Example 6. Let A ⊂ IR be a nowhere dense (in Te) nonempty Fσ-set belonging
to the density topology ([1]). By Zahorski’s lemma ([1]) there is an approximately
continuous and upper semi-continuous function f : IR → [0, 1] such that f(A) =
(0, 1], f−1(0) = IR \A and f is continuous at points x ∈ IR \A. Let B ⊂ A
be a countable set such that the set E =

{

(x, f(x));x ∈ B
}

is dense in the
graph Gr(f/A) of the restricted function f/A. Let y ∈ (0, 1) be a real such that
f−1(y) ∩B = ∅. Put

g(x) = 0 for x ∈ f−1(y)

and

g(x) = f(x) otherwise on IR .

Then g ρ f , f has Darboux property, and g does not have Darboux property.

Moreover, let

h(x) =
f(x)

2
for x ∈ IR .

Then the function h is approximately continuous and f 6= h.

Observe that by modification of functions f and h on the components of
the set IR \cl(A) we can define approximately continuous and simultaneously
quasicontinuous functions φ and ψ such that φ ρ ψ and φ 6= ψ.Theorem 5. Let H be a class of almost everywhere (with respect to Lebesgue
measure) continuous functions f : IR → IR satisfying the following condition

(i) if x is a discontinuity point of f ∈ H, then either the point
(

x, f(x)
)

is
isolated in Gr(f) or for each function g ∈ H, if g/C(f) = f/C(f), then
g(x) = f(x) (C(f) denotes the set of all continuity points of f).

Then two arbitrary functions f, g ∈ H such that fρ g are equal.

P r o o f. Let f, g ∈ H be such that fρ g. By Remark 1 we have f(x) = g(x) for
x ∈ C(f). If x is a discontinuity point of f and the point

(

x, f(x)
)

is isolated in
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Gr(f), then f(x) = g(x) by Remark 2. For other discontinuity points of f the
equality f(x) = g(x) follows from condition (i). �

Observe that the family Cae of all almost everywhere continuous and every-
where approximately continuous functions or the family ∆ae of all almost every-
where continuous locally integrable derivatives may be used as some examples
of families H satisfying condition (i) of last theorem.
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