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THE ONE-TO-ONE RESTRICTIONS OF FUNCTIONS

Aleksandra Karasińska

ABSTRACT. A continuous and nowhere monotone function for which every set
having the Baire property, on which it is one-to-one, is of first category, is con-

structed here. Further, it is shown that every continuous and nowhere monotone
function has the above property. We also show that an analogous result fails to
hold if one does not assume that a set on which the function is one-to-one is

a Baire set.
In the second part of the paper we investigate the Lebesgue measure of a set on

which a continuous nowhere monotone function is one-to-one. Here the situation

turns out to be more varied. For each η ∈ [0, 1) we construct a continuous function
non-monotone on any interval with the following property: there exists a set
of measure η on which this function is one-to-one, and every set on which the

function is one-to-one has measure smaller or equal to η.

We construct in the proof of the following theorem a continuous and nowhere
monotone function f for which each set having the Baire property, on which
f is one-to-one, is of first category. Further, we will show that each continuous
and nowhere monotone function has this property; the construction below has,
however, some independent interest, and will be used in the next part.

Let f : [a, b] → R. We will say that a function f is nowhere monotone if it is not
monotone on any interval (c, d) ⊂ [a, b].Theorem 1. There exists a continuous and nowhere monotone function f : [0, 1]
→ R for which each set E ⊂ [0, 1] having the Baire property and such that f|E
is one-to-one, is of first category.

P r o o f. Let us construct by induction a sequence of functions {fn}n∈N as fol-
lows. Let θ denote the Cantor function on interval [0, 1]. It is defined in a follow-
ing way: θ is constant on open component intervals of the complement of Cantor
set C to interval [0, 1] and is equal to 1

2
on interval

(

1
3
, 2

3

)

, is equal to 1
4

and 3
4

on

intervals
(

1
9 , 2

9

)

and
(

7
9 , 8

9

)

, respectively. Proceed inductively. On the 2n−1 open
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intervals appearing at the n-th stage θ, takes the values

1

2n
,

3

2n
, . . . ,

2n − 1

2n

on these intervals and if x and y are members of different nth stage intervals
with x < y, then f(x) < f(y). This description defines θ on the complement of
Cantor set C. Extend θ to all points of [0, 1] by defining θ(0) = 0 and for x 6= 0,
θ(x) = sup

{

θ(t) : t < x, t ∈ [0, 1] \ C
}

.

Put

f1(x) =

{

1
2θ(2x) if x ∈

[

0, 1
2

]

,
1
2
θ(2 − 2x) if x ∈

(

1
2
, 1

]

.

For every n, let In be a collection of all intervals on which the function fn is
constant. Put

fn+1(x) =

{

(b − a)f1

(

x−a
b−a

)

+ fn(a) if x ∈ (a, b) for some [a, b] ∈ In,

fn(x) otherwise.

Let us note first, that if [a, b] is an interval, where the function fn is constant,
then for each x ∈ [a, b] we have

|fn+1(x) − fn(x)| ≤

∣

∣

∣

∣

fn+1

(

a + b

2

)

− fn(a)

∣

∣

∣

∣

=
1

2
(b − a). (1)

It is not difficult to prove that for each n ∈ N the function fn is continuous
and the sequence {fn}n∈N fulfils the Cauchy condition of uniform convergence
on interval [0, 1]. Let us denote by f the limit of the sequence {fn}n∈N. We
show that f is a required function. Observe that f is nowhere monotone. It
follows from the fact that the union of intervals on which the Cantor function
θ is constant is a dense subset of interval [0, 1] and the lengths of intervals on
which fn is constant tend to zero when n tends to infinity. Consequently, in
each interval there exists some subinterval (a, b) on which some function fn is
constant. Thus

f(a) = fn(a) < fn+1

(

a + b

2

)

= f

(

a + b

2

)

and

f(b) = fn(b) < fn+1

(

a + b

2

)

= f

(

a + b

2

)

.

We will show that each set E ⊂ [0, 1] having the Baire property such that
f|E is one-to-one is of first category. Let us take any set E with the required
property. Then there exist an open set G and a set P of first category such that
E = G △ P. We will prove that G = ∅. Suppose, on the contrary, that G 6= ∅.
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As it was observed earlier there exists an nonempty interval (a, b) ⊂ G on which
some function fn is constant. Then

fm

(

a + b

2
+ t

)

= fm

(

a + b

2
− t

)

for all m > n and t ∈
(

0, b−a
2

)

. Consequently,

f

(

a + b

2
+ t

)

= f

(

a + b

2
− t

)

for t ∈
(

0, b−a
2

)

. Let P1 be a set symmetrical to P with respect to the point a+b
2

,

i.e., P1 =
{

(a+b−x) : x ∈ P
}

. Then (a, b)\(P∪P1) is nonempty and symmetrical

with respect to the point a+b
2 . Moreover, (a, b) \ (P ∪ P1) ⊂ G \ P ⊂ E. Let

x ∈ (a, b) \ (P ∪ P1) and x 6= a+b
2 . Then a + b − x ∈ (a, b) \ (P ∪ P1) and

f(x) = f(a + b − x) which is not possible, because f|E is one-to-one. �

Obviously, if f : [a, b] → R is continuous and strictly increasing function on
some interval [c, d], then there exists a set E having the Baire property and of
the second category such that f|E is one-to-one. Moreover, if f : [a, b] → R is
continuous and the union of intervals on which f is constant is a residual set,
then every set E such that f|E is one-to-one is of first category and even nowhere
dense.Lemma 2 ([BDL], Lemma 1). Let f : [a, b] → R be a continuous function,
not constant on any interval. If A ⊂ R is a nowhere dense set then f−1(A) is
nowhere dense in the interval [a, b].Corollary 3 ([BDL], Lemma 1). If a function f : [a, b] → [c, d] is continuous
and not constant on any interval, then f−1(E) is residual in [a, b] if E is residual
in [c, d].Lemma 4 ([BDL], Lemma 2). Let f : [a, b] → [c, d] be a continuous function,
not constant on any interval. If E ⊂ [a, b] is a Gδ set dense in [a, b], then f(E)
is residual in f([a, b]).Corollary 5. If a function f : [a, b] → R is continuous, not constant on any
interval and D ⊂ [a, b] is residual in [a, b], then f(D) is residual in f

(

[a, b]
)

.

P r o o f. The set D is residual in [a, b], so it contains a Gδ set E which is dense
in [a, b]. By Lemma 4 we have that f(E) is residual in f

(

[a, b]
)

. Moreover, f(E)

⊂ f(D). Thus f(D) is residual in f
(

[a, b]
)

. �

Now, we will present the result which will reduce the essence of Theorem 1
by showing an example of a continuous and nowhere monotone function with
the desired property.
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ALEKSANDRA KARASIŃSKATheorem 6. Let f : [a, b] → R be continuous and nowhere monotone. Then
each set E having the Baire property such that f|E is one-to-one, is of first
category.

P r o o f. Let E be a set having the Baire property such that f|E is one-to-one
and suppose that E is not of first category. Of course, E = G △ P, where G is
a nonempty open set and P is of first category. Let P =

⋃

n∈N
Pn, where Pn is

nowhere dense for every n ∈ N. There exists a nonempty interval (c, d) ⊂ G. The
function f is not monotone on (c, d), so there exist three points x1, x2, x3 ∈ (c, d)
such that x1 < x2 < x3, and

a) f(x1) < f(x2), f(x3) < f(x2) or

b) f(x1) > f(x2), f(x3) > f(x2).

Let us consider case a) and assume additionally that f(x1) < f(x3). Let z2 ∈
(x1, x3) be a point at which f attains its maximum on interval (x1, x3). Let

z1 = sup
{

x ∈ [x1, z2] : f(x) = f(x3)
}

,

z3 = inf
{

x ∈ [z2, x3] : f(x) = f(x3)},

z4 = inf
{

x ∈ [z1, z2] : f(x) = f(z2)
}

,

z5 = sup
{

x ∈ [z2, z3] : f(x) = f(z2)
}

.

Such points exist by the continuity and Darboux property of the function f .
Then

f
(

[z1, z4]
)

= f
(

[z5, z3]
)

=
[

f(z1), f(z2)
]

=
[

f(x3), f(z2)
]

.

Let us put

E1 = (c, d) \
⋃

n∈N

(

Pn ∩ (c, d)
)

.

We have

E1 ⊂ (c, d) \
⋃

n∈N

(

Pn ∩ (c, d)
)

= (c, d) \ P ⊂ G \ P ⊂ E.

Obviously, E1 is a Gδ set dense in interval (c, d). Clearly, E1 ∩ [x1, z4] and
E1 ∩ [z5, z3] are Gδ sets which are dense, the first one in [x1, z4], the second
one in [z5, z3]. Thus by Lemma 4 we obtain that f

(

E1 ∩ [x1, z4]
)

is residual in
[

f(x3), f(z2)
]

and f
(

E1 ∩ [z5, z3]
)

is residual in
[

f(x3), f(z2)
]

. The intersection
of these sets is a residual set, so it has at least two points, which is contrary to
the fact that f is one-to-one on E1. �

Let f : [a, b] → R be a continuous and non-constant function. Let us put

Bf =
{

y ∈ f
(

[a, b]
)

: f−1
(

{y}
)

is of the first category
}

and
Cf = f−1(Bf ).
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Obviously, since the set f−1
(

{y}
)

is closed, it is of first category if and only if it
does not contain an interval. If θ is Cantor function, then Cθ is nowhere dense
because it is contained in Cantor set C. If f is a function from Theorem 1 then
Cf = [a, b].

If f : [a, b] → R is constant, then each set E such that f|E is one-to-one, is of
first category, because it is a singleton.

Let us put

Df =
{

y ∈ f
(

[a, b]
)

: f−1
(

{y}
)

is not of the first category
}

.

If y ∈ Df , then f−1
(

{y}
)

contains a non-degenerate interval. For points y1, y2

∈ Df such that y1 6= y2 we have f−1
(

{y1}
)

∩f−1
(

{y2}
)

= ∅, so Df is countable.Lemma 7. The set Cf is either nowhere dense or residual in some interval.

P r o o f. If Cf is not residual in I then the set I \ Cf =
⋃

y∈Df
I ∩ f−1

(

{y}
)

is

not of first category. Since Df is countable, one of the sets I ∩f−1
(

{y}
)

, y ∈ Df

must contain an interval J , and Cf is disjoint with J . Therefore, if there is no
interval I such that Cf is residual in I then Cf is nowhere dense. �Theorem 8. If a function f : [a, b] → R is continuous and the set Cf is of first
category, then each set E such that f|E is one-to-one, is of first category.

P r o o f. Obviously, f−1(Df) = [a, b] \ Cf . Thus f−1(Df ) is residual in the in-
terval [a, b]. Let us take a set E such that f|E is one-to-one. Thus E = E1 ∪E2,

where E1 = E∩Cf and E2 = E∩(Cf )′. Obviously, E1 is of first category and the
set E2 has at most one common point with each set f−1

(

{y}
)

for y ∈ Df , so E2

is countable, because card(Df) ≤ χ0. Consequently, E is of first category. �

The following theorem shows that the assumpion in Theorem 6 that E has the
Baire property cannot be removed. If we consider the function f from Theorem 1,
we can obtain the set E ⊂ [0, 1] such that E is not of first category and f|E is
one-to-one. Obviously, the set E does not have the Baire property.Theorem 9 (CH). If the set Cf is not of first category, then there exists a set
E ⊂ [a, b] such that E is not of first category and f|E is one-to-one.

P r o o f. Let {Fα}α<ω1
be a well-ordering of all Fσ sets contained in interval

[a, b] which are of first category (ω1 is the first uncountable ordinal number). As
a result every set Fα has only countably many predecessors. Let x0 ∈ Cf \ F0

and let α < ω1. Assume we have already chosen xγ for γ < α. Choose a point
xα ∈ Cf such that

xα 6∈
⋃

γ<α

Fγ ∪
⋃

γ<α

f−1
(

{

f(xγ)
}

)

.
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It is possible because the set Cf is not of first category and xγ ∈ Cf for γ < α,
thus f(xγ) ∈ Bf and f−1

(

{f(xγ)}
)

is of first category for γ < α. The set
⋃

γ<α Fγ ∪
⋃

γ<α f−1
(

{f(xγ)}
)

is of first category since it is a countable union
of sets of first category.

Let us put E = {xα : α < ω1}. Clearly, E is not of first category because E 6⊂ Fα

for any α < ω1 and f|E is one-to-one. �

The previous theorem is also true if we replace (CH) by Martin’s Axiom
(MA) or by the assumption that the additivity of an ideal of the sets of first
category equals to the cardinality of continuum (add(M) = c). That is in the
proof of Theorem 9, where we only need the assumption that the union of less
than continuum many sets of first category is also a set of first category.

Let f : [a, b] → R. Put

A1 =
{

x ∈ [a, b] : x = sup
{

t ∈ [a, b] : f(x) = f(t)
}

}

.Lemma 10. If f is a continuous and nowhere monotone function, then the set
A1 is nowhere dense.

P r o o f. Consider an interval I contained in [a, b] and assume that card(A1 ∩ I)
≥ 2. Let x1, x2 ∈ A1 ∩ I and x1 < x2. Without loss of generality we can assume
that f(x1) < f(x2). Let us put

x3 = inf
{

x ∈ [x1, x2] : f(x) = f(x2)
}

.

By the definition of the points x1, x3 and Darboux property we have f(x1) <

f(x) < f(x3) for x ∈ (x1, x3). Moreover, the function f is nowhere monotone,
so there exist points x4, x5 ∈ (x1, x3) such that x4 < x5 and f(x4) > f(x5). Let
us put

x6 = sup
{

x ∈ [x4, x5] : f(x) = f(x4)
}

and
x7 = inf

{

x ∈ [x6, x5] : f(x) = f(x5)
}

.

Obviously, x4 ≤ x6 < x7 ≤ x5. Moreover, for x ∈ (x6, x7) we have f(x7) <

f(x) < f(x6). Of course, (x6, x7) ⊂ I and (x6, x7) 6= ∅. We will show that
(x6, x7) ∩ A1 = ∅. Suppose that there exists a point x0 such that x0 ∈ A1

∩ (x6, x7). Clearly,

f(x5) = f(x7) < f(x0) < f(x6) = f(x4) < f(x3).

Since f(x0) ∈
(

f(x5), f(x3)
)

and the function f is continuous, there exists a
point x′′ ∈ (x5, x3) such that f(x′′) = f(x0) and x0 < x′′. This is impossible
because x0 ∈ A1. Consequently, A1 is nowhere dense. �

We will say that a function f : R → R fulfils (N)-Lusin condition for category
if f(E) is a set of first category for each set E ⊂ R of first category.
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THE ONE-TO-ONE RESTRICTIONS OF FUNCTIONSTheorem 11. Let f : [a, b] → R be a continuous and nowhere monotone func-
tion. Then f does not fulfil (N)-Lusin condition for category.

P r o o f. By Lemma 10 we obtain that A1 is the set of first category. By [HS],
Ex. 6.101 we have f(A1) = f

(

[a, b]
)

. The set f
(

[a, b]
)

is not of first category, so
the function f does not fulfil (N)-Lusin condition for category. �

It is natural to ask what one can say about the Lebesgue measure of a set on
which a continuous nowhere monotone function is one-to-one. It turns out that
for the case of measure the situation is more complicated than for category.Theorem 12. There exists a continuous and nowhere monotone function f :
[0, 1] → R for which each measurable set E such that f|E is one-to-one has
measure zero.

P r o o f. The function f constructed in the proof of Theorem 1 posesses this
property. Indeed, let E ⊂ [0, 1] be a measurable set such that f|E is one-to-one.
Let us denote by D the union of all Cantor-like sets used in the construction
of f . Clearly m(D) = 0. We have E = (E ∩ D) ∪ (E \ D). It suffices to examine
the measure of E \ D. Let x0 ∈ E \ D. Let us note that {x0} =

⋂∞
n=1 In, where

In is an interval with the function fn constant. Let us take any positive integer
n. Let In = (a, b). Obviously, x0 6= a+b

2 .

Assume that x0 ∈
(

a, a+b
2

)

and let (c, d) denote the longest interval contained

in
(

a+b
2

, b
)

on which fn+1 is constant. The set E ∩ (c, d) is measurable and has
the following property: if z ∈ (c, d) ∩ E then the point symmetrical to z with
respect to the point c+d

2
does not belong to (c, d) ∩ E. Let us put

A1 = E ∩

(

c,
c + d

2

)

, A2 = E ∩

(

c + d

2
, d

)

.

The sets A1, A2 are measurable and disjoint. Let us remark that

m(A1 ∪ A2) = m(A1) + m(A2) ≤
1

2
(d − c).

Indeed, suppose that m(A1∪A2) > 1
2
(d−c) and let A∗

2 be symmetrical reflection

of the set A2 with respect to the point c+d
2

. We have m(A∗
2) = m(A2). Obviously,

A1 ∩ A∗
2 = ∅ and A1 ∪ A∗

2 ⊂
(

c, c+d
2

)

. Then

m(A1 ∪ A∗
2) = m(A1) + m(A∗

2) = m(A1) + m(A2) = m(A1 ∪ A2) >
1

2
(d − c),

which is impossible. Thus we have shown that m(A1 ∪ A2) ≤
1
2 (d − c). Then

m
(

E′ ∩ (c, d)
)

≥
1

2
(d − c) =

1

12
(b − a).
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Consequently,

m
(

E′ ∩ (x0, d)
)

d − x0
>

m
(

E′ ∩ (c, d)
)

d − a
≥

1
12

(b − a)
5
6
(b − a)

=
1

10
.

Hence, we obtain

lim sup
h→0+

m
(

E′ ∩ [x0, x0 + h]
)

h
≥

1

10
.

Thus, x0 is not a density point of the set E, and so the set E \D has no density
point. The same we can obtain if x0 ∈

(

a+b
2

, b
)

. Finally, the set E \ D does
not have density points, so by the Lebesgue density theorem, E \ D is a set of
measure zero. �Theorem 13. For each number η ∈ (0, 1) there exist a continuous and nowhere
monotone function g : [0, 1] → R and a set F ⊂ [0, 1] such that m(F ) = η,
the function g|F is one-to-one and for each measurable set E ⊂ [0, 1], if g|E is
one-to-one then m(E) ≤ η.

P r o o f. Let η ∈ (0, 1) and let Cη denote the Cantor-like set with measure η

constructed on the interval [0, 1]. Let θη denote the Cantor-type function on
interval [0, 1] connected with the set Cη. Put

g(x) =

{

θη(x) for x ∈ Cη,

(b − a)f
(

x−a
b−a

)

+ θη(a) for x ∈ (a, b),

where (a, b) is an arbitrary contiguous interval of the set Cη and f is the function
constructed in the proof of Theorem 1. It is not difficult to prove that the
function g is continuous on interval [0, 1]. The function g is nowhere monotone
because the union of intervals where θη is constant is dense on interval [0, 1],
and the function f by Theorem 1 is nowhere monotone.

Let H be an arbitrary measurable set such that g|H is one-to-one. Obviously,

H =
(

H ∩ Cη

)

∪
(

H ∩ C ′
η

)

,

and m(H) = m
(

H ∩Cη

)

+m
(

H ∩C ′
η

)

. Moreover, m
(

H ∩Cη

)

≤ η. We will show

that m
(

H ∩ C ′
η

)

= 0. Notice that

H ∩ C ′
η =

⋃

(c,d)⊂C′

η

H ∩ (c, d),

where (c, d) is an interval on which θη is constant. Then

m
(

H ∩ C ′
η

)

=
∑

(c,d)⊂C′

η

m
(

H ∩ (c, d)
)

.
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Since we define the function g on interval (c, d) as the composition of the function
f and a linear function, by a property of the Lebesgue measure and by the proof
of Theorem 1 we have m

(

H ∩ C ′
η

)

= 0. Consequently, m(H) ≤ η.

Let A be the set of all right ends of intervals on which the function θη is
constant. Let us put E = Cη \A. Obviously, g|E = θη|E . Therefore the function

g|E is one-to-one. Moreover, m(E) = m(Cη) = η. �

By [BBT, Ex. 10:6.6] we have that the set of all continuous functions which
are one-to-one almost everywhere on interval [a, b] is residual in the space of
the continuous function on interval [a, b], so the typical (in the sense of Baire)
continuous function defined on [a, b] is one-to-one a.e. on [a, b]. It is well-known
that the typical continuous function is nowhere differentiable, so it is nowhere
monotone. Consequently, the typical continuous function is nowhere monotone
and one-to-one almost everywhere on [a, b].
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