
�

�
�����������	
��	�����
��

DOI: 10.1515/tmmp-2016-0039
Tatra Mt. Math. Publ. 67 (2016), 191–203

OBLIVIOUS LOOKUP-TABLES

Markus Stefan Wamser — Stefan Rass — Peter Schartner

ABSTRACT. Evaluating arbitrary functions on encrypted data is one of the
holy grails of cryptography, with Fully Homomorphic Encryption (FHE) being
probably the most prominent and powerful example. FHE, in its current state
is, however, not efficient enough for practical applications. On the other hand,
simple homomorphic and somewhat homomorphic approaches are not powerful

enough to support arbitrary computations.
We propose a new approach towards a practicable system for evaluating func-

tions on encrypted data. Our approach allows to chain an arbitrary number
of computations, which makes it more powerful than existing efficient schemes.
As with basic FHE we do not encrypt or in any way hide the function, that is eval-

uated on the encrypted data. It is, however, sufficient that the function description
is known only to the evaluator. This situation arises in practice for software as
a Software as a Service (SaaS)-scenarios, where an evaluator provides a function
only known to him and the user wants to protect his data. Another application
might be the analysis of sensitive data, such as medical records.

In this paper we restrict ourselves to functions with only one input parameter,

which allow arbitrary transformations on encrypted data.

1. Introduction

Encryption is an effective way to hide information, but almost equally effective
is it in preventing its manipulation. With known exceptions like homomorphic
encryption that permit restricted forms of plaintext processing, the question
whether arbitrary processing of this kind can be done under the disguise of an
encryption has long remained an unresolved issue. The breakthrough came in
2009 with G e n t r y’ s first proposal [5] of a fully homomorphic encryption that
provides a trapdoor oneway ring homomorphism. Ever since then, a tremen-
dous lot of (successful) work has been done on improving the construction and
designing different schemes based on the novel ideas underlying the first one.

c© 2016 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 94A60; Secondary 68M07, 68P25,
68Q05, 68W99, 94C10.

Keywords: OLUT, homomorphic encryption, function evaluation.

191

MARKUS STEFAN WAMSER — STEFAN RASS — PETER SCHARTNER

In this work, we explore the problem from the same starting point as before
2009, namely the question whether arbitrary data processing is possible based
on group homomorphic encryption only. The herein proposed concept of an
Oblivious Lookup Table (OLUT)1 is a simple such concept that allows the evalu-
ation of an arbitrary function f : X → Y, given an encrypted value Enc(x) to re-
turn an encrypted result Enc

(
f(x)

)
, without ever needing to decrypt the input

or an intermediate result. This construction works under the premise that the
cardinalities of X and Y are identical and sufficiently small to be tabulated
(as the evaluation takes polynomial time in the size of X). Our idea is based
on the fact that every function on a finite field can be expressed as a polynomial
over that field.

Possible applications of OLUTs are simple SaaS-applications, such as data
transformation followed by aggregation, which is a setting commonly found
in sensor networks. We also demonstrate how OLUTs can be used to solve Yao’s
Millionaire’s Problem in the honest player setting.

The paper is structured as follows: In Section 2 we first develop OLUTs on un-
encrypted data. We then show that these carry over directly to the encrypted
setting by giving an evaluation rule in Section 3. In Section 4 we have a look
at the security implications of OLUTs. Next, Section 5 considers different homo-
morphic schemes as underlying primitives. We continue in Section 6 with consid-
ering efficiency and parameters for practical implementations before extending
our approach to a transform-then-aggregate scheme in Section 7. Finally, we sum
up our results and give suggestions for further research (Sections 8 and 9).

2. Oblivious lookup tables

We consider the following setting: let f : X → Y be a mapping between
finite sets. Assume that the sizes of X and Y are sufficiently small to permit
a specification of f via a lookup-table.

We want to construct an Oblivious Lookup Table, that is a set of values de-
pending on X and Y, and a single generic evaluation function that takes an
input xi ∈ X, properly encoded in a special form and with the OLUT and the
generic evaluation function produces an output yi ∈ Y. The evaluation opera-
tion is oblivious to the actual value of xi and computes f(xi) for all admissible
inputs, using the same values from the OLUT upon each invocation. To keep our
OLUT compact, we can safely assume that all values are used.

1We are fully aware that the Finnish language already claims the word “olut” for something

more important and apologise for any confusion that this may cause.

192

OBLIVIOUS LOOKUP-TABLES

While this seems moot at first sight, it has the advantage that the computa-
tional effort for evaluation is independent of the function f and is determined
only by the cardinalities of X and Y.

To be more specific, let p = 2q+1 be a safe prime (i.e., q is a Sophie-Germain-
-prime), and let G ⊂ Zp denote a q-order subgroup generated by some element
g ∈ Zp.

Let X = {x1, . . . , xn} ⊆ G be an enumeration of (distinct) values to be
looked up. As per our requirement a lookup of xi needs to combine xi with all en-
tries of the OLUT as determined by the evaluation function, which then returns
f(xi) = yi. A natural approach to this problem is to encode xi into a vector vi
that has as many entries as the OLUT, which we will also write as a vector �� with
entries from a set W. The evaluation function is then simply the inner product
of vectors. Mappings X →W and W → Y, which are independent of f, are also
applied by the evaluation function as needed.

Writing down the vectors vi for all xi ∈ X we obtain a matrix V with the vi
as rows. Collecting the yi into a vector �y we get

V · �� = �y (1)

and to find �� from �y we simply need V to be invertible, namely a square matrix
of full rank |X| = n. We therefore have to expand each value xi into a vector vi
of length n, such that the vi are all linearly independent. We can easily fulfil
these requirements by defining V as a Vandermonde-Matrix

V =

⎛⎜⎜⎜⎝
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
1 xn x2

n . . . xn−1
n

⎞⎟⎟⎟⎠,

so an arbitrary input xi is represented by the vector

�vi =
(
xk
i

)n
k=1

=
(
1, xi, x

2
i , . . . , x

n−1
i

)
.

Evaluation is then �vi · �� and the result of such an evaluation is a single scalar
value. To allow chaining of OLUT-lookups this value has to be expanded again
into a Vandermonde-vector, either by computing the powers directly or by con-
structing an OLUT for each component of the vector. This will result in a se-
ries �0 . . . , �n of OLUT-vectors of dimension n, comprising the columns of the
OLUT-matrix L and evaluation is the the inner product of the vector vi with
the matrix L.

While the latter approach clearly requires more computational effort, it is
one of the only feasible ones when it comes to encrypted data. The matrix
V = diag(x1, . . . , xn) is a possible alternative representation. By virtue of the

193

MARKUS STEFAN WAMSER — STEFAN RASS — PETER SCHARTNER

semantic security of the underlying encryption, ciphertexts embodying a zero
are indistinguishable from encryptions of a random value. This slightly improves
the efficiency of encryption, as no powers of the plaintext need to be computed.
On the other hand, decryption requires an additional application of the all-one-
-OLUT, whenever the result is returned in the vector format.

2.1. Proper encoding of X and Y

As the attentive reader has already recognised, we silently assumed that
the invertibility of the matrix V is not hampered by the selection of the mod-
ulus, e.g., elements are from Zq. However, to be more general, especially for
the case when X is just a set of subsequent integers, we need to map X into a
proper (sub)group. Such a mapping can be realised by selecting an element h
of (additive) order q and a matching function X �→ 〈h〉. As X is of sufficiently
small size to be tabulated, computing the mapping and its inverse is possible by
generating a simple substitution table.

To ease matters concerning the regularity of the matrix V, it is convenient
to work in a group of prime order. This can either be a subgroup of an elliptic
curve group (offering the additional appeal of being already additively homomor-
phic), or we can work in a qth order subgroup of Zp, when p = 2q + 1 is a safe
prime (which is independently required to avoid the small subgroup attack).
In this setting, Damg̊ard’s ElGamal (DEG) encryption can be made additively
homomorphic by encrypting the commitment hm instead of m, when the order
of h in Zp is q. Note that h and g can be, but need not be the same elements
as long as they are from the same subgroup.2 For simplicity, we will just use g
throughout the paper.

3. Application to encrypted data

We wish to re-use the OLUT computed from unencrypted values for encrypted
inputs. This leads to two demands on the employed encryption scheme: we need
to be able to multiply ciphertexts with unencrypted values and we need to be
able to add ciphertexts. Both can be matched by any homomorphic encryption
scheme where the homomorphic operation leads to addition of the plaintexts.

For illustrative purposes, we will use a modification of Damg̊ard’s ElGamal
DEG [4] encryption. Alternatives are discussed in Section 5. The presentation
of DEG is taken from [10]. In our case we have a group G = 〈g〉 of order q =
(p− 1)/2 and k is a security parameter.

2Otherwise h0gsk·r and h1gsk·r might be distinguishable, e.g., by their Jacobian symbol.

194

OBLIVIOUS LOOKUP-TABLES

Key generation Gen(1k): Randomly select a pair of secret keys sk1,

sk2
$← Zq. Compute the public keys pk1 = gsk1 and pk2 = gsk2 .

Let sk = (sk1, sk2), pk = (pk1, pk2) and publish pk.

Encryption Encpk(m; ·): Return ⊥ if m /∈ G. Otherwise, select a random

r
$← Zq and set Encpk(m; r)← (

gr, pkr1 ,m · pkr2
)
.

Decryption Decsk(c): Parse c = (c1, c2, c3) and return ⊥ if any of the ci /∈ G

or if c2 �= csk1
1 . Otherwise return Decsk(c)← c3/c

sk2
1

The cryptosystem (Gen,Enc,Dec) as described above enjoys a multiplicative-
multiplicative homomorphic property:

Encpk(m1) ∗Encpk(m2) = Encpk(m1 ·m2),

where “∗” is component-wise multiplication of the ciphertexts and “·” is the
simple multiplication in G.

For our purposes, however, we want

Encpk(m1) ∗ Encpk(m2) = Encpk(m1 +m2)

with + being addition in Zq = G ∪ {0}.
Therefore we slightly alter Enc and Dec. We do not encrypt m directly, but

a commitment for m into G. That is, ciphertexts are now produced by

Encpk(m; r)← (
gr, pkr1, g

m · pkr2
)

(2)

and decryption is given by

Decsk(c)← logg
(
c3/c

sk2
1

)
. (3)

All other conditions and computations are left untouched. One might object that
computing the discrete log in Z∗

q is hard, but as we confine our message space
to X and the nth powers thereof, we can simply tabulate the O(n) possible
values of gm and incorporate an inverse lookup in the decryption step. It is easy
to see that the desired homomorphy property holds and both required opera-
tions can be realised. Addition of two messages is accomplished by multiplying
the corresponding ciphertexts component-wise and multiplications with a public
value corresponds to taking the power of the ciphertext (component-wise), which
is shorthand for multiplying a ciphertext repeatedly with itself.

Finally, OLUTs require a specially crafted vector of values instead of a single
value for input, as established in Section 2. Therefore we encrypt a value m into
a vector of encrypted commitments by

Ẽncpk(m) =
(
Encpk

(
gm

0)
, Encpk

(
gm

1)
, Encpk

(
gm

2)
, . . . , Encpk

(
gm

n−1))
and for decryption we simply drop all but the second entry of the vector.

195

MARKUS STEFAN WAMSER — STEFAN RASS — PETER SCHARTNER

We can now reuse the OLUTs we had computed for unencrypted values.

Let xi be the input and �� one column from an OLUT-matrix for a function f.

To evaluate f, let the encrypted input value xi be given as c = Ẽncpk(xi).
Then, we can compute the lookup value Encpk

(
f(xi)

)
as

n∏
k=1

c�kk =

n∏
k=1

Encpk
(
gx

k−1
i
)�k =

n∏
k=1

Encpk(g
vik)�k

= Encpk
(
g
∑n

k=1 vik�k
)
= Encpk

(
gf(xi)

)
. (4)

Adoptions for other homomorphic schemes are discussed in Section 5.

If two or more OLUTs shall be chained, a new vector Ẽncpk
(
f(xi)

)
has to be

produced. As only linear combinations of values can be produced by multiplica-
tions of available ciphertexts, all n columns of the OLUT-matrix L need to be
evaluated to generate encryptions of the powers of f(xi), as already mentioned
at the end of Section 2. There is one caveat to circumvent: As the entries of the
OLUT now resemble exponents, by virtue of Fermat’s little theorem, inversion
of V would occur modulo p− 1. Working in a prime-order subgroup (as stated
in Subsection 2.1) avoids the problem, since the inversion is modulo the order
of g, which is prime.

4. Security

The analysis of the security of a function evaluation via OLUT must be divided
into confidentiality of the input and outputs, and the confidentiality of the func-
tion itself. More specifically, the former refers to the attacker’s inability to deduce
anything about the input or output based on a given ciphertext (input). The
second requirement refers to a scenario where the attacker seeks to learn all
input/output pairs that constitute the function f.

4.1. On hiding the inputs and outputs

Since our construction is completely generic, the (concrete) security of an
OLUT is determined by the security of the underlying encryption. For general-
ity, let us assume that the attacker has oracle access to the OLUT3 and seeks
to disclose a given ciphertext (input or output to/from the OLUT).

Essentially, the attacker can thus mount a chosen plaintext or chosen cipher-
text attack, and depending on what the OLUT does, the respective security
games are defined exactly as for conventional encryption, with the only addition
of allowing oracle access to the OLUT under consideration.

3In fact, the attacker may just produce his own OLUT.

196

OBLIVIOUS LOOKUP-TABLES

Remember that application of an OLUT is basically just a series of multipli-
cations of ciphertexts, independent of the encrypted values. For a given homo-
morphic public-key system IND-CPA resp. IND-CPA1 security is preserved for the
application of the homomorphic property (which also rules out IND-CPA2 se-
curity). Security of OLUT application can then be trivially argumented using
induction over the number of multiplications.

4.2. On hiding f(x)

Oblivious Lookup Tables, as presented in this paper, do not hide the function
they represent, and this is not easy to achieve. This is in contrast to FHE, which
can evaluate encrypted functions on encrypted inputs without decrypting either,
e.g., by using Valiant’s Universal Circuit [8] as evaluation procedure and both,
function and data as encrypted inputs.

Note that anyone who is able to query the function with is own inputs can
learn the function at least partially, independently from the evaluation method.

Assume there is some way to obfuscate OLUTs. Now assume an attacker has
(oracle) access to such an obfuscated OLUT. Necessarily, as the domain and
image of the function realised by the OLUT are sufficiently small to allow ex-
haustive enumeration, an attacker can query the OLUT on all admissible inputs,
thereby learning the function that was supposed to be hidden. Note that for the
purpose of these queries, the attacker can generate the required inputs using his
own key pair, as the OLUT is oblivious to the actual encryption of the plaintexts.
The attacker can then decrypt the ciphertexts to obtain y. Further, the attacker
may use the evaluation formula for unencrypted data, hereby forgoing the issue
of encryption completely.

5. OLUTs from different homomorphic encryptions

Other homomorphic schemes than our variant of OLUT bring advantages
as well as disadvantages. We list some exemplary schemes that can be used
as replacement for DEG. We stress again that, once precomputed, OLUTs can be
reused as long as the group structures are preserved.

Benaloh, Paillier and Damg̊ard-Jurik: As these schemes are additively
homomorphic, the use of commitments is not necessary and the scheme
can be employed as-is. Evaluation is given by

n∏
k=1

c�kk =

n∏
k=1

Encpk
(
xk−1
i

)�k
=

n∏
k=1

Encpk(vik)
�k

=

n∏
k=1

Encpk(vik · �k) = Encpk

(
n∑

k=1

vik�k

)
= Encpk

(
f(xi)

)
.

197

MARKUS STEFAN WAMSER — STEFAN RASS — PETER SCHARTNER

Not all variants of these schemes are equally suitable: for example, Paillier-
-Pointcheval encryption is ruled out for lack of homomorphy (due to its se-
curity against adaptive chosen-ciphertext attacks); Paillier and Damg̊ard-
-Jurik offer the same level of security (IND-CCA1) as Damg̊ard’s ElGamal
(see [2] for proofs).

Goldwasser-Micali: The scheme of Goldwasser-Micali has an interesting
homomorphic property:

Enc(m1) ∗ Enc(m2) = Enc(m1 ⊕m2),

where ⊕ is bit-wise exclusive-or of the values. While this may at first seem
counter-intuitive, this property admits convenient vector-algebra within
the encryption as follows: observe that the XOR-operation on n plaintext
bits is effectively an addition within GF (2n). Thus, given X = {x1, x2, . . .
. . . , xn} where each xi is encoded using n bit again, we just need to make
sure that the 0-1-matrix composed row-wise from the binary representa-
tions is invertible in the Galois field with characteristic two. In that case, we

can work out the OLUT as usual, �� = V −1· �y, leaving the evaluation equa-
tion (4) unchanged, except for an additional nice effect: since the OLUT is
itself only a 0-1-vector, there are no exponentiations and only a reduced

number of multiplications (given by the Hamming weight of ��) required
to evaluate (4). A downside is the fact that the Goldwasser-Micali scheme
only offers IND-CPA security (see [6]).

Finally, schemes based on Elliptic Curve Cryptography (ECC) can also be em-
ployed. For example, an ECC-based implementation of DEG could deliver multi-
plicative-additive homomorphy directly, alleviating the need for commitments.
The same holds for Code-based cryptography [1], which can be employed, when
Post-Quantum security is sought.

6. Efficiency considerations

In this section we will assess the computational effort needed to evaluate
chainable OLUTs and give boundaries for possible tradeoffs through paralleliza-
tion. We will also discuss another optimisation technique from the literature.

To obtain an output from an OLUT-lookup, that can be used as input for an-
other lookup, n calls to the evaluation function are required. Those are inde-
pendent and therefore can be computed in parallel. Each call to the evaluation
function leads to n modular exponentiations and n− 1 modular multiplications.

198

OBLIVIOUS LOOKUP-TABLES

A strongly parallelized architecture would compute O(n2) modular exponenti-
ations in parallel before doing a tree-like reduction for multiplication. This re-
quires O(n) parallel multipliers. The total computation time is then O(1) expo-
nentiations and O(log n) multiplications, combined O(log n) multiplications in
Zp. The other extreme is an architecture that works strictly sequential. It oper-
ates with O(1) exponentiations and multiplication modules and has a runtime
of O(n2) exponentiations and O(n) multiplications.

Both cases illustrate that for practical purposes n should be reasonably small
(e.g., 28), as the runtime grows exponentially with the bit-length of the inputs.
We suggest that slicing-techniques should be employed on an algorithmic level,
whenever possible.

The evaluation function has a very characteristic structure: first all factors
of the product are taken to some power, then all the results are multiplied
into a single value. This can be sped up, by merging the multiplication process
with the exponentiation process. This batch-exponentiation technique is due
to [12]. Assume we are employing the square-and-multiply approach for comput-
ing the powers. Then, instead of squaring each factor independently, we square
the accumulator. In the multiply step, we multiply each factor into the accumu-
lator depending on the value of the exponent-bit at the respective position.
This effectively brings the evaluation complexity down to O(log n) modular
squarings and O(n logn) modular multiplication, together O(n log n) modular
multiplications.

7. Example applications

Data Aggregation: Oblivious Lookup Tables allow for outsourcing of computa-
tions with aggregation in a restricted sense, as shall be demonstrated with a sce-
nario based on aggregating sensor data. For this we assume a set S of sen-
sors that take measurements. Each sensor encrypts the measurement results
as a Vandermonde-vector as explained in Section 3. The encrypted values are
then sent to a central server that may apply different OLUTs on the received
values, e.g., for normalising the scale of measurements or applying calibration
values. Finally, this server can aggregate all values into a single value by comput-
ing an arbitrary linear combination (which is equivalent to applying an OLUT)
of the encrypted values. The encrypted result can then be decrypted by the
data-owner at convenience. Note that after aggregation it is not possible to apply
an OLUT, since it is not possible to generate the required Vandermonde-vector
through the application of OLUTs.4

4OLUTs represent (weighted) linear combinations of values and can therefore not produce

linearly independent values.

199

MARKUS STEFAN WAMSER — STEFAN RASS — PETER SCHARTNER

Yao’s Millionaire’s Problem: OLUTs also provide a simple solution to Yao’s
well-known Millionaire’s problem for two honest participants: suppose that Al-
ice and Bob (both being rich), prepare an OLUT with the following function:
let a be Alice’s wealth (for Bob’s view of the protocol a has to be replaced by b),
then the OLUT implements the following mapping on the input x : x ≤ a �→ −1
and x > a �→ +1. Bob sends his encrypted value to Alice, who applies the OLUT

and returns the encrypted result to Bob. After decryption, Bob learns whether
he is richer or not.5

Simultaneously, Bob can prepare his OLUT and process the encrypted input
from Alice. Obviously this protocol relies on both parties being honest in en-
crypting their wealth and producing the OLUTs.

Yao’s Millionaire’s Problem can be used to solve far more problems.
For a detailed discussion see [13].

8. Extensions and open problems

OLUTs in the way as presented here already show that simple problems, es-
sentially all those that require only logarithmic time to solve, are computable by
group homomorphic encryption only. To prove this, let f be a function that can
be evaluated on an input w of length n in O(log n) space. That is, there is a Tur-
ing machine M that upon an initial configuration including the word w carries
to completion in no more than 2O(logn) = O(nα) for some α, i.e., polynomially
many steps (as the number of intermediate configurations of M is polynomially
bounded). It is then a simple matter to define an OLUT that computes exactly
the sequence of configurations that takes M into the halting state, so as to
compute the function f. Summarising, we have proven

������� 1� Any function that can be computed in logarithmic space, can also
be computed under disguise of a group-homomorphic encryption.

Extending this result to functions that can be computed in polynomial time
calls for an extension of OLUTs to two inputs (the necessity to extend the con-
struction is not surprising, especially in light of related results like [9]). To this
end, a straightforward possibility would be using an encryption that can do
multiplications and additions, which is essentially equivalent to FHE. As a fur-
ther benefit, given that we could compute both, Encpk(x · y) and Encpk(x+ y),
from Encpk(x), Encpk(y) we would get two improvements to our OLUT con-

struction: first, we could compute the full vector
(
Encpk(x

i)
)n−1

i=0
from Encpk(x)

only, but also compute any function whose evaluation complexity is polynomial

5If Alice returned a special value for equality Bob would be able to learn Alice’s wealth in the

equality case, which is a stronger result than just learning whether he is richer or not.

200

OBLIVIOUS LOOKUP-TABLES

in time (simply define OLUTs to perform all the intermediate calculations). Ap-
proaching FHE from this new direction offers some appealing insights: first, note
that we do not even require homomorphy w.r.t. multiplications, as any non-
linearity (giving a precomputable, but not necessarily meaningful result) would
already suffice to create an invertible matrix V, suitable to define an OLUT.
For example, we can define an OLUT that uses a 4 × 4-matrix V to resem-
ble a universal NAND-gate, from which any boolean circuit (and thus function)
can be constructed. In essence, we can thus state that something like an “almost-
-homomorphic encryption“, i.e., an encryption that is homomorphic w. r. t. ad-
dition and furthermore allows to compute an arbitrary nonlinear function on its
input, in connection with an OLUT is the same as FHE (and maybe a much sim-
pler way to this end). Searching for a separation of these seemingly simpler cryp-
tographic primitives from FHE—or proving that there is no separation—and dis-
cussing their relation to shift-type homomorphic encryption [3] is an interesting
open problem.

From another viewpoint, OLUTs can be applied on top of FHE or Multiparty
Computation MPC as both allow addition and multiplication over encrypted
data. In this case the straightforward adoption leads to the matrix Vxy being
the Kronecker product of Vx and Vy. W. l. o. g. |Vx| = |Vy| = n can be assumed.
Then every entry of Vxy can be computed with O(log n) (homomorphic) multipli-
cations. This trivially gives an upper bound on the required depth of levelled FHE

or rounds in Multiparty Computation (MPC) to compute any function on Vx×Vy,
including Valiant’s Universal Circuit, the Universal Arithmetic Circuit (UAC) of
[11] and the S-universal circuits of [7].

Finally, a connection between OLUTs and Private Information Retrieval
or 1-out-of-n-Oblivious Transfer can be observed. The interesting part is the
reversed bandwith requirement compared to other Private Information Retrieval
PIR schemes. The request consists of a ciphertext-vector of the size of the data-
base which is used as the OLUT. Only a single ciphertext is then returned.
ForOblivious Transfer (OT), the OLUT is destroyed after computing the response,
for Private Information Retrieval (PIR), it is kept.

9. Conclusion

We have presented a method to compute arbitrary transformations (in the sen-
se of unary functions) on encrypted data. Given reasonable input sizes, our ap-
proach is computationally efficient and practicable.

We also demonstrated that our approach is independent from a concrete in-
stantiation of the underlying homomorphic encryption scheme. Our OLUTs can
even be computed before the underlying scheme is selected.

201

MARKUS STEFAN WAMSER — STEFAN RASS — PETER SCHARTNER

For practical use a transform-then-aggregate scheme is often not enough.
A way to enable oblivious lookups for functions with two (or more) parame-
ters is therefore an obvious next step in research.

List of acronyms

DEG: Damg̊ard’s ElGamal

ECC: Elliptic Curve Cryptography

FHE: Fully Homomorphic Encryption

MPC: Multiparty Computation

OLUT: Oblivious Lookup Table

OT: Oblivious Transfer

PIR: Private Information Retrieval

SaaS: Software as a Service

UAC: Universal Arithmetic Circuit

REFERENCES

[1] ARMKNECHT, F.—AUGOT, D.—PERRET, L.—SADEGHI, A.-R.: On constructing
homomorphic encryption schemes from coding theory, Cryptology ePrint Archive, Report
2011/309, June 2011.

[2] ARMKNECHT, F.—KATZENBEISSER, S.—PETER, A.: Group homomorphic encryp-
tion: characterizations, impossibility results, and applications, Cryptology ePrint Archive,
Report 2010/501, 2010, http://eprint.iacr.org/

[3] ARMKNECHT, F.—KATZENBEISSER, S.—PETER, A.: Shift-type homomorphic en-
cryption and its application to fully homomorphic encryption, in: Progress in Crypto-

logy—AFRICACRYPT’12, 5th Internat. Conf. on Cryptology in Africa (A. Mitrokotsa
and S. Vaudenay, eds.), Ifrance, Morocco, 2012, Springer-Verlag, Berlin, 2012,
pp. 234–251.

[4] DAMGÅRD, I.: Towards practical public key systems secure against chosen ciphertext
attacks, in: Advances in Cryptology—CRYPTO’91 (J. Feigenbaum, ed.), Lecture Notes
in Comput. Sci., Vol. 576, Springer-Verlag, Berlin, 1992, pp. 445–456.

[5] GENTRY, C.: Computing arbitrary functions of encrypted data, Commun. ACM 53
(2010), 97–105.

[6] KATZ, J.—LINDELL, Y.: Introduction to Modern Cryptography—Principles and Proto-
cols, Chapman and Hall/CRC Press, London, 2007.

[7] KENNEDY, W. S.—KOLESNIKOV, V.—WILFONG, G.: Overlaying circuit clauses for
secure computation, Cryptology ePrint Archive, Report 2016/685, 2016,

http://eprint.iacr.org/2016/685

[8] KISS, Á.—SCHNEIDER, T.: Valiant’s universal circuit is practical, Cryptology ePrint
Archive, Report 2016/093, February 2016.

[9] BOGDANOV, A.—LEE, CH. H.: Homomorphic evaluation requires depth, Cryptology
ePrint Archive, Report 2015/1044, 2015,

http://eprint.iacr.org/

202

http://eprint.iacr.org/
http://eprint.iacr.org/2016/685
http://eprint.iacr.org/

OBLIVIOUS LOOKUP-TABLES

[10] LIPMAA, H.: On the CCA1-Security of Elgamal and Damg̊ard’s Elgamal, Cryptology

ePrint Archive, Report 2008/234, 2008, http://eprint.iacr.org/2008/234
[11] LIPMAA, H.—PAYMAN, M.—SAEED, S.: Valiant’s universal circuit: improvements,

implementation, and applications, Cryptology ePrint Archive, Report 2016/017, Janu-
ary 2016.

[12] OTTOY, G.—PRENEEL, B.—GOEMAERE, J.-P.—DE STRYCKER, L.: Flexible design
of a modular simultaneous exponentiation core for embedded platforms, in: Reconfigurable

Computing: Architectures, Tools and Applications (P. Brisk et al., eds.), Lecture Notes
in Comput. Sci., Vol. 7806, Springer-Verlag, Berlin, pp. 115–121.

[13] SHELAT, A.—MUTHURAMAKRISHNAN, V.: Secure computation from millionaire,
in: Advances in Cryptology—ASIACRYPT’15, 21st Internat. Conf. on the Theory and
Appl. of Cryptology and Inform. Security (T. Iwata and J. H. Cheon, eds.), Auckland,
New Zealand, 2015, Lecture Notes in Comp. Sci., Vol. 9452, Springer-Verlag, Berlin,

pp. 736–757.

Received November 2, 2015 Markus Stefan Wamser
Lehrstuhl für Sicherheit
in der Informationstechnik
Technische Universität München

Arcisstraße 21
D–80333 München
GERMANY

E-mail : wamser@tum.de

Stefan Rass
Peter Schartner
Institut für Angewandte Informatik
Alpen-Adria-Universität Klagenfurt
Universitätsstrasse 65-67
A–9020 Klagenfurt

AUSTRIA

E-mail : stefan.rass@aau.at
peter.schartner@aau.at

203

http://eprint.iacr.org/2008/234

	1. Introduction
	2. Oblivious lookup tables
	2.1. Proper encoding of X and Y

	3. Application to encrypted data
	4. Security
	4.1. On hiding the inputs and outputs
	4.2. On hiding f(x)

	5. OLUTs from different homomorphic encryptions
	6. Efficiency considerations
	7. Example applications
	8. Extensions and open problems
	9. Conclusion
	List of acronyms

	REFERENCES

