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SIMPLE POWER ANALYSIS ATTACK
ON THE QC-LDPC McELIECE CRYPTOSYSTEM

ToMAS FABSIC — ONDREJ GALLO — VILIAM HROMADA

ABSTRACT. It is known that a naive implementation of the decryption al-
gorithm in the McEliece cryptosystem allows an attacker to recover the secret
matrix P by measuring the power consumption. We demonstrate that a simi-
lar threat is present in the QC-LDPC variant of the McEliece cryptosystem. We
consider a naive implementation of the decryption algorithm in the QC-LDPC
McEliece cryptosystem. We demonstrate that this implementation leaks informa-
tion about positions of ones in the secret matrix Q). We argue that this leakage
allows an attacker to completely recover the matrix Q. In addition, we note that
the quasi-cyclic nature of the matrix @ allows to accelerate the attack signifi-
cantly.

1. Introduction

In 1978, McEliece proposed a public key cryptosystem based on coding
theory [6], now called the McEliece cryptosystem. The cryptosystem has never
been adopted widely, mainly due to the large size of the public key. The interest
in the McEliece cryptosystem has, however, risen recently, since it has become
a candidate for post-quantum cryptography.

Since the invention of the McEliece cryptosystem, a number of variants of the
cryptosystem have been proposed with the ambition to reduce the size of the
public key. An overview of the recent research on McEliece cryptosystem is
presented in [9].

In [1I], Baldi and Chiaraluce proposed to use quasi-cyclic low-density
parity-check codes (QC-LDPC codes) in the McEliece cryptosystem, in order
to reduce the size of the public key. Their cryptosystem is now known as the
QC-LDPC McEliece cryptosystem. However, in [§], Otmani, Tillich and
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Dallot showed that the proposed system had serious vulnerabilities. In [2],
Baldi et al. proposed an amended version of the cryptosystem which was im-
munized against the attacks of Otmani, Tillich and Dallot. An important role in
the cryptosystem is played by matrices which are formed by blocks of circulant
matrices. In [10], it was demonstrated that when the block size is chosen to be an
even number, a more efficient information-set decoding attack on the cryptosys-
tem can be executed. However, when the block size is odd, the system remains
unbroken. A related cryptosystem was proposed in [7] by Misoczki et al.

In the present paper, we demonstrate that a careless implementation of the
QC-LDPC McEliece cryptosystem can allow a simple power analysis attack to be
executed on the cryptosystem. The idea of the attack is very similar to the attack
on the classical McEliece cryptosystem presented in [4]. In [4], a simple power
analysis attack was executed to reveal a permutation matrix P which is a part
of the private key in the classical McEliece cryptosystem. The private key in
the QC-LDPC McEliece cryptosystem does not contain a permutation matrix P.
However, instead of P it contains a matrix ) which has a very small number of
ones in every row. In addition, ) has to be formed by blocks of circulant matrices.
Our attack recovers this matrix ). Moreover, we note that the block-circulant
structure of @ allows to speed up the attack significantly.

The paper is structured as follows. In Section 2 we review the QC-LDPC
McEliece cryptosystem. In Section B we describe our implementation of the
QC-LDPC McEliece cryptosystem. In Section ] we describe the attack to recover
the secret matrix ). In Section[5], we discuss a countermeasure against the attack
and conclude the paper.

2. The Qc-LbPCc McEliece cryptosystem

In [1], Baldi et al. proposed a variant of the McEliece cryptosystem based
on LDPC codes—QC-LDPC McEliece cryptosystem. A part of the private key in
this cryptosystem is formed by an (n— k) x n parity-check matrix H of an LDPC
code able to correct t errors. The matrix H is formed by a row {Hy,..., Hp,—1}
of ng = n/(n — k) binary circulant blocks with size p x p, where p = n — k. Each
block has a row weight (i.e., the number of ones in a row) equal to a number w
which is small compared to p. If H,,_; is invertible, a generator matrix G for
the code can be obtained as:

(H;' - Hy)"

7’7,()—1

G= |1 :
(H_ol—l ’ HnO_Z)T

n
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The remaining part of the private key is formed by two other matrices: a k x k
invertible matrix S and a sparse n X n invertible matrix Q). S and @ are formed
by blocks of p x p circulant matrices. In addition, @) has a fixed row weight m.
The public key is then computed as follows:

G'=5"tG-Q"

Encryption is done as follows. Let the original message be u. Then Alice
encrypts u as follows:
r=u-G +e,
where e is a randomly generated error vector of length n and weight wt(e) =
<L
= m"
When Bob receives the encrypted message x, he first computes:

P=z-Q=u-St-G+e Q.

Vector 2’ is a codeword of the LDPC code chosen by Bob (corresponding to
the information vector v/ = u - S~1), affected by the error vector e - @, whose
maximum weight is ¢. Bob is able to correct all the errors with very high prob-
ability, by means of LDPC decoding, thus recovering u/, and then u through a
post-multiplication by S.

In [8], Otmani et al. demonstrated that this cryptosystem is vulnerable
to attacks which exploit the fact that @ is block-diagonal and S is sparse. In order
to immunize their cryptosystem against these attacks, Baldi et al. proposed
a version of the QC-LDPC McEliece cryptosystem with the matrix S dense and
the matrix @ no longer block-diagonal in [2]. In [2], they proposed two variants
of their cryptosystem: the first with parameters ng = 4, w = 13, p = 4096,
m =7 and t’ = 27, and the second with parameters ng = 3, w = 13, p = 8192,
m = 11 and ' = 40. They further suggested to choose S, so that every block
in S has rows with weight approximately equal to p/2, with blocks along the
diagonal having rows with an odd weight and blocks away from the diagonal
having rows with an even weight. As for the matrix (, Baldi et al. suggest to
obtain @ in the first variant by constructing a matrix of 4 x 4 circulant blocks
with the blocks on the diagonal having rows of weight 1 and the blocks away
from the diagonal having rows of weight 2, and by randomly permuting its block
rows and columns. Similarly, in the second variant, they suggest to obtain @) by
constructing a matrix of 3 x 3 circulant blocks with the blocks on the diagonal
having rows of weight 3 and the blocks away from the diagonal having rows of
weight 4, and by randomly permuting its block rows and columns.

In [10], it was demonstrated that when the value of the block size is chosen
to be an even number a more efficient information-set decoding attack on the
cryptosystem can be executed. However, this attack is not applicable when the
block size is odd.
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3. Implementation details

We implemented the QC-LDPC McEliece cryptosystem with parameters
ng = 3, w = 13, p = 8192, m = 11 and ¢’ = 30. The matrices S and Q
in our implementation follow the above-mentioned recommendations from [2].
Thus every block in S has rows with weight approximately equal to p/2, with
blocks along the diagonal having rows with an odd weight and blocks away from
the diagonal having rows with an even weight. The matrix @ is obtained by
constructing a matrix of 3 x 3 circulant blocks with the blocks on the diagonal
having rows of weight 3 and the blocks away from the diagonal having rows of
weight 4, and by randomly permuting its block rows and columns.

We chose the parameter p = 8192 because it allows simple constructions of
the matrices S and @. The attack described in this paper targets the implemen-
tation of the decryption algorithm in the QC-LDPC McEliece cryptosystem. Our
implementation of the decryption algorithm does not contain any special features
allowed by the choice of p = 8192 (like using Winograd convolution for multipli-
cation by circulant matrices, for example). Thus, in instances of the QC-LDPC
McEliece cryptosystem with other values of p, the decryption algorithm can be
implemented in the same manner. Therefore, the attack presented in this paper
is equally feasible for instances of the QC-LDPC McEliece cryptosystem with
other values of p, including p odd.

Our implementation is based on the project BitPunch [3], which is a free
standalone cryptographic library containing implementations of various variants
of the McEliece cryptosystem. For decoding the LDPC code we use a bit-flipping
algorithm proposed in [7] (the algorithm is denoted as Approach IIT in [7]).
We implemented the cryptosystem on the STM32F407 microcontroller.

4. The attack

4.1. Previous SPA attack on the classical McEliece

Our attack is inspired by the attack on the classical McEliece cryptosystem
presented in [4]. In the classical McEliece, the private key is formed by a par-
ity check matrix Hgoppa for a Goppa code, by a “scrambling” matrix Sgoppa
and by a permutation matrix P. The public key is computed as G”Goppa =
S(_;éppa X Ggoppa X P71 where Ggoppa 18 a generator matrix for the Goppa
code. Encryption is done in the same manner as in the case of the QC-LDPC
cryptosystem: we add a vector of errors to the message v multiplied by ’Goppa.
To decrypt, we firstly multiply the ciphertext x by the permutation matrix P. Af-

terwards, we apply the Patterson algorithm for decoding Goppa codes to decode
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the vector 2’ = x x P. After decoding by the Patterson algorithm, we multiply
the result by S and obtain the plaintext w.

The first step in the Patterson algorithm is to compute the syndrome of z’
by multiplying &’ by the transpose of Hgoppa- Such multiplication is often im-
plemented as follows.

(1) We initialise the syndrome s as the vector of zeros.

(2) We go through the entries in «”. If the ith entry is 1 we add the ith row of
H(T;Oppa to s. If the entry is zero, we do nothing.

In [], it is observed that if the multiplication is implemented in the above
manner, then the power trace of the cryptographic device may reveal positions
of ones in x. By letting the cryptographic device decrypt all ciphertexts with
the hamming weight 1 and by recording and analysing the corresponding power
traces, authors of [4] were able to recover the secret permutation matrix P.

4.2. Observing leakage in the QC-LDPC McEliece

Inspired by the attack on the classical McEliece [4], we studied the possi-
bility of performing a simple power analysis attack on the QC-LDPC McEliece
cryptosystem.

Let ¢; be the ciphertext with 1 in the ith position and with the remaining
positions filled with zeros. For various values of i, we let the cryptosystem de-
crypt the ciphertext ¢; and we recorded the power trace. The first step in the
decryption is to multiply ¢; with Q. The result 2’ (' = ¢; X Q) is equal to the ith
row of Q. The result 2’ is then decoded using the bit-flipping algorithm. The first
step in the bit-flipping algorithm is to compute the syndrome s = 2’ x HT.
The multiplication of 2’ by H” was implemented as follows:

(1) We initialise the syndrome s as the vector of zeros.

(2) We go through the entries in a’. If the ith entry is 1 we add the ith row
of HT to s. If the entry is zero, we do nothing.

Since each row of @} contained exactly m = 11 ones, the multiplication of z’
by HT involved 11 additions of rows of H' to s. We observed that each of these
additions is recognizable in the power trace as the pattern shown in Figure [1l
Thus the positions of the pattern indicate positions of ones in z’ and thus they
indicate positions of ones in the ith row of Q).

4.3. Recovering the matrix () in the QC-LDPC McEliece—first method
The leakage observed in Section[£.2] can be used to recover the secret matrix @
by a similar method to the one used in the attack described in Section [£.11
An attacker can make the cryptosystem decrypt all possible ciphertexts of the

hamming weight one and for each decryption record the power trace. After-
wards, the attacker can determine positions of the pattern from Figure[lin each
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FIGURE 1. The pattern corresponding to the addition of a row of HT to s.
The pattern is bordered by the two vertical white lines in the figure.

power trace. As noted in [4], these positions can be determined automatically
by crosscorrelating the power traces with a reference pattern corresponding to
the addition of a row of H” to s.

When trying to recover the matrix @ from the positions of the pattern in the
power traces, the attacker will be aided by the knowledge that @ is composed of
circulant blocks. Since @) is composed of circulant blocks, it has to have m ones
in every column. Thus the attacker knows that the m power traces where the
pattern appears earliest correspond to the m rows of () containing 1 at the first
position. Thus the attacker can determine the first column of (). The first column
of @ determines all columns of @ up to the (p + 1)th column. Analogously, the
attacker can recover the remaining columns of Q).

4.4. Recovering the matrix @) in the QC-LDPC McEliece—second
method

In Section @3] we explained that an attacker can recover the matrix @ af-
ter recording power traces of decryptions of every ciphertext with the hamming
weight 1. This would require the attacker to run n decryptions. However, an at-
tacker can utilize the quasi-cyclic nature of @ to recover Q with significantly
fewer decryptions.

Suppose an attacker records a power trace of the decryption of the cipher-
text ¢; (i.e., the ciphertext with one in the first position and zeroes everywhere
else). Based on the positions of the pattern from Figure [Il in the power trace,
the attacker will try to guess positions of ones in the first row of Q. To improve
his guess, the attacker can also record the power trace from the decryption
of co. Since ) is composed of circulant blocks, by comparing the positions of
the pattern in the power trace for ¢; to the positions in the power trace for c,,
the attacker can obtain an estimate of the duration of processing one 0 in '’
during the multiplication of ' by H”.

Suppose that the attacker’s guess for the position of the first one was j.
To verify the guess, the attacker can utilize the quasi-cyclic nature of Q). He can
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record power traces for the decryption of ciphertexts c,_j41 and cp_j 9. If the
guess was correct, then in the power trace for ¢,_;41 the pattern should appear
in approximately one third of the part of the power trace corresponding to the
multiplication of 2/ by H” and in the power trace for c,_ j+2 it should appear at
the very beginning of the part corresponding to the multiplication of 2’ by H7.
If the guess turns out incorrect, the guess can be altered until it is verified.
Similarly, the attacker can obtain the correct positions of the remaining ones
in the first row of (). The first row of @@ determines all rows of @ up to the
(p+ 1)th row. To learn the next p rows of @, the attacker can repeat the process
with c¢p41 instead of ¢;. Analogously, the attacker can learn all rows in Q.
Again, the process can be automated using crosscorrelation.

5. Conclusion

We demonstrated that the naive implementation of the multiplication 2’ x H”
leaks information about positions of ones in the secret matrix ) in the QC-LDPC
McEliece cryptosystem. We argued that this leakage allows an attacker to com-
pletely recover the matrix ). This is a very similar situation to the situation
observed in [4], where the leakage of the classical McEliece cryptosystem was
analyzed. In both cases the leakage was caused by a multiplication of a vector v
and a matrix A being implemented as follows:

(1) The result u is initialized as the vector of zeros.

(2) We go through the entries in v. If the ith entry is 1 we add the ith row
of A to w. If the entry is zero, we do nothing.

In [], a countermeasure was proposed to prevent the leakage in the classical
McEliece cryptosystem. It was suggested to implement the multiplication of v
and A so that the order of processing the bits of v changes randomly for every ci-
phertext. This countermeasure can be equally applied to the QC-LDPC McEliece
cryptosystem.
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