
�

�
�����������	
��	�����
��

DOI: 10.2478/tmmp-2014-0030
Tatra Mt. Math. Publ. 61 (2014), 105–116

USING POLY-DRAGON CRYPTOSYSTEM

IN A PSEUDORANDOM NUMBER

GENERATOR MSTg

Viliam Hromada — Milan Vojvoda

ABSTRACT. This paper deals with a new pseudorandom number generator
MSTg proposed in 2010. Its construction is based on random covers for finite
groups. We have used a public-key cryptosystem Poly-Dragon to generate these
random covers and have studied the statistical properties of the resulting pseudo-
random number generator by testing its output using the NIST Statistical Test
Suite.

1. Introduction

Random number generators (RNGs) are one of the fundamental cryptographic
primitives. The need for the generation of random data (numbers, keywords, etc.)
has been constantly increasing—we need to generate more random data in less
time. Basically, there are two approaches to generating random data (random
bits or bytes)—there are non-deterministic random number generators and de-
terministic random number generators. The non-deterministic random number
generators are truly “random”—in a sense that their output can not be repro-
duced. They usually exploit various natural sources of randomness–radioactive
decay, thermal noise, the content of computer’s hardware buffers, etc.
Their advantage is that their output is truly random. However, they are not
suitable for generating large amount of data for stream ciphers and other cryp-
tographic primitives. The deterministic random number generators, often re-
ferred to as pseudorandom number generators (PRNGs), are not truly random.
They use deterministic algorithms to generate a large output sequence of bits
(pseudorandom bit sequence) from a certain input value (seed). Unfortunately,
it is impossible to mathematically prove that a certain PRNG indeed produces

c© 2014 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 94A60, 68P25.
Keywords: pseudorandom number generator, public-key cryptosystem Poly-Dragon, ran-
dom data, random number.

This work was supported by grants VEGA 1/0173/13, APVV-0586-11 and by A-MATH-NET.

105

VILIAM HROMADA — MILAN VOJVODA

a truly random output. That is why statistical tests have been introduced which
can detect the weaknesses of such generators and hint whether such generator
“behaves” similar to a non-deterministic random number generator.

In 2011, a new interesting PRNG was introduced in [3]. It is based on random
covers for finite groups, which is also a relatively new concept introduced in [2].
In the article [3], authors argue that the generator is suitable for modern cryp-
tographic applications—they carried out extensive statistical tests of the gene-
rator—we refer the reader to the article to read more details about the generator
and its testing.

The generator offers great flexibility, because the generation of the random
covers can be done in many ways. The authors suggest that a good PRNG should
be used to generate the random covers—they used the Blum-Blum-Shub PRNG.
We have chosen a different approach and have used a public-key cryptosystem
Poly-Dragon to generate these random covers.

Poly-Dragon is a cryptosystem which was proposed in 2010 in [5]. It is a multi-
variate cryptosystem and its security is based on the problem of solving a system
of multivariate quadratic equations over a finite field. This problem is also known
as MQ-problem and it should be noted that it is an NP-complete problem.

As we have already mentioned, we have combined these concepts and have
created a version of MSTg generator which uses Poly-Dragon to generate the
random covers. We have used the NIST testing suite [4] to test the statistical
properties of the resulting output sequences to see, whether this type of generator
can be considered “good” in a sense that its output resembles an output of a non-
-deterministic random number generator.

In Section 2 we give a short description of the generator MSTg, in Section 3
we describe the cryptosystem Poly-Dragon. Section 4 deals with our construction
and the results of the statistical testing, Section 5 deals with the security of this
random number generator and we make concluding remarks in Section 6.

2. Pseudorandom number generator MSTg

Firstly, we start with some basic definitions which we have borrowed directly
from [3] along with the notations.

���������� 1� Let G be a finite abstract group. The width of G is defined as
the positive integer w = �log|G|�.
���������� 2� Let G be a finite abstract group and S be a subset of G. Suppose
that α = [A1,A2, . . . ,As] is an ordered collection of subsets Ai ∈ G, such that∑s

i=1 |Ai| is bounded by a polynomial in the width of G. We call α a cover

106

POLY-DRAGON CRYPTOSYSTEM IN A PSEUDORANDOM NUMBER GENERATOR MSTg

for S if each element h ∈ S can be expressed in at least one way as a product
of the form

h = g1 · g2 · . . . · gs (1)

for gi ∈ Ai, where · is the group operation defined on G.
If the elements of the cover α (i.e., the elements of subsets Ai) are gen-

erated randomly (i.e., chosen at random) we say that α is a random cover.
If G = S , α is called the cover for G.

The subsets Ai are called blocks and the vector (r1, r2, . . . , rs) where ri = |Ai|
is called the type of α. The cover α is called factorizable if the factorization in (1)
can be done in polynomial time in the width w of G for almost all elements of G.
Otherwise, it is called non-factorizable.

The assumption made in [3] that the problem of finding a factorization as
in (1),with respect to a randomly generated cover, is computationally intractable.
For example, let G be a cyclic group and g ∈ G be a generator of this group.
Then one can represent the elements of subsets Ai as powers of the generator g.
Then the factorization with respect to the cover leads to solving the Discrete
Logarithm Problem in G [3]. If indeed this factorization is computationally in-
tractable, then these random covers can induce functions that behave as one-
way functions. This is described in [3] as follows. Let α = [A1,A2, . . . ,As] be
a random cover of the type (r1, r2, . . . , rs) for G withAi = [ai,1, ai,2, . . . , ai,ri] and

let m =
∏s

i=1 ri. Let m1 = 1 and mi =
∏i−1

j=1 rj for j = 2, . . . , s.

Let τ denote the canonical bijection from Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs on Zm :

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm ,

τ(j1, j2, . . . , js) :=

s∑

i=1

jimi .

Using τ we can define surjective mapping ᾰ induced by α .

ᾰ : Zm → G,
ᾰ(x) := a1,j1 · a2,j2 · . . . · as,js ,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable,
the mapping ᾰ(x) is efficiently computable.

However, given a cover α and an element y ∈ G, determining an element
x = ᾰ−1(y) is not efficiently computable if α is not factorizable, i.e., we are not
able to determine indices j1, j2, . . . , js in polynomial time such that
y = a1,j1 · a2,j2 · . . . · as,js . Once a vector (j1, j2, . . . , js) has been determined,
ᾰ−1(y) = τ(j1, j2, . . . , js) can be computed efficiently. Therefore, if α is a ran-
dom cover for a large subset S of a group G, then finding a factorization (1) is
indeed an intractable problem and the mapping

ᾰ : Zm → S
induced by α with m =

∏s
i=1 |Ai| is a one-way function.

107

VILIAM HROMADA — MILAN VOJVODA

Now, we will describe the generator MSTg as it is proposed in [3].

At first, we note that the structure of the group G is arbitrary in this generic
case. Let G1 and G2 be two chosen finite groups with |G1| = n and |G2| = m and
n ≥ m.

Let � be an integer such that � ≥ n. Let k ≥ 0 be a fixed integer.

Let α be a random cover of type (u1, u2, . . . , ut) for G1 with
∏t

i=1ui=�.
Let α1, α2, . . . , αk be a set of random covers of type (r1, r2, . . . , rs) for G1 with∏s

i=1 ri= |G1|. Let γ=[H1, H2, . . . , Hs] be a random cover of type (r1, r2, . . . , rs)
for G2. Assume that there are bijective mappings f1 : G1 → Zn and f2 : G2 → Zm,
which map the elements of G1 to numbers in Zn and the elements of G2 to num-
bers in Zm. Then, we can define a function

F : Z� → Zm

as a composition of mappings in the following way (version A).

Z�
ᾰ−→ G1

f1−→ Zn
ᾰ1−→ G1

f1−→ Zn −→ · · · ᾰk−→ G1
f1−→ Zn

γ̆−→ G2
f2−→ Zm ,

This mapping can be alternatively defined as follows (version B).

Z�
ᾰ−→ G1

f1−→ Zn
γ̆−→ G2

f2−→ Zm
δ̆1−→ G2

f2−→ Zm −→ · · · δ̆k−→ G2
f2−→ Zm ,

where δ1, δ2, . . . , δk is a set of random covers of type (v1, v2, . . . , vw) for G2

with
∏w

i=1 vi = |G2|.
Now we have everything in hand to describe the pseudorandom generator

MSTg.

Algorithm 1: MSTg: Pseudorandom Number Generator Based on Random
Covers for Finite Groups

Input : Integers �,m, function F : Z� → Zm as defined above,
a random and secret seed s0 ∈ Z�, a constant C ∈ Zm

Output: t pseudorandom numbers z1, z2, . . . , zt ∈ Zm
1. For i from 1 to t do the following:

1.1 si = si−1 + C (mod �)
1.2 zi = F (si)

2. Return (z1, z2, . . . , zt)

The algorithm presented above uses a simple counter mode to generate its
output—notice the constant C which is being added to si in each iteration.
The authors of the generator suggest that any suitable mode can be used instead
of the counter mode. They also argue that since F is the core function of the
generator, great care must be taken when generating the covers for G1 and G2

upon which the function F is based. In other words, a good pseudorandom
number generator is needed to create the random covers involved in F.

108

POLY-DRAGON CRYPTOSYSTEM IN A PSEUDORANDOM NUMBER GENERATOR MSTg

The authors in the original paper [3] used Blum-Blum-Shub generator to ge-
nerate the covers. We have chosen the public-key cryptosystem Poly-Dragon
instead.

3. Public-key cryptosystem Poly-Dragon

In this section we will briefly describe the Poly-Dragon cryptosystem. Poly-
-Dragon is a multivariate public-key cryptosystem whose security is based on the
problem of solving a system of multivariate quadratic equations over a finite
field (MQ-problem) and whose construction is based on permutation polyno-
mials. One of the reasons of taking this cryptosystem into consideration is the
fact, that the MQ-problem is an NP-complete problem. It seems that quantum
computers do not have an advantage on solving NP-complete problems—that
is an important property, since NP problems such as integer factorization and
discrete logarithm—i.e., the problems which are used widely today—are weak
against quantum computers due to the Shor’s algorithms which run in polyno-
mial time.

Firstly, we start this section by introducing basic terminology and definitions,
which have been borrowed from [5].

Let p be a prime, n be a positive integer and Fq be a finite field of q = pn

elements. A polynomial f(x) in Fq[x] is said to be permutation polynomial if
it is a bijection of Fq onto Fq. In other words, it is a permutation polynomial if
following properties hold:

• The function f is onto.

• The function f is one-to-one.

• f(x) = a has a unique solution in Fq for each a ∈ Fq.

Let B = {ϑ0, ϑ1, . . . , ϑn−1} be a basis of F2n over F2. Each element x ∈ F2n

can be uniquely expressed as x =
∑n−1

i=0 xiϑi, where xi ∈ F2. This way, we can
identify F2n by F

n
2 and the element x ∈ F2n by the n-tuple (x0, x1, . . . , xn−1)

where xi ∈ F2. The weight of x = (x0, x1, . . . , xn−1) denoted by ω(x) is defined
to be the number of ones in x.

���������� 3� Let F2n be a finite field. Let B = (ϑ0, ϑ1, . . . , ϑn−1) be a basis of
this field over F2. Let α ∈ F2n with the corresponding n-tuple (α0, α1, . . . , αn−1).
We then define a linearized polynomial (or p-polynomial) Lα(x) on F2n corre-
sponding to an element α = (α0, α1, . . . , αn−1) as

Lα(x) =

n−1∑

i=0

αix
2i

. (2)

Also, Tr(x) denotes the trace function from the field F2n to F2, i.e.,

Tr(x) = x+ x2 + · · ·+ x2n−1

.

109

VILIAM HROMADA — MILAN VOJVODA

As we have already mentioned, the construction of Poly-Dragon relies on per-
mutation polynomials. We state two theorems, which were proved in [5], now.

	
����� 1� Let n be an odd positive integer, and β = (β0, β1, . . . , βn−1)
be an element of F2n such that ω(β) is even and that 0 and 1 are the only
roots of Lβ(x) in F2n . Suppose k1 and k2 are nonnegative integers such that
GCD(2k1 + 2k2, 2n−1) = 1. Let � be any positive integer with

(
2k1 + 2k2

) · � ≡
1(mod 2n − 1) and γ be an element of F2n with Tr(γ) = 1. Then

f(x) =
(
Lβ(x) + γ

)�
+ Tr(x)

is a permutation polynomial of F2n .

	
����� 2� Let n be an odd positive integer, and α be an element of F2n .

The polynomial g(x) =
(
x2k2r

+ x2r

+ α
)l
+ x is a permutation polynomial of F2n

if Tr(α) = 1 and (2k2
r

+ 2r) · l ≡ 1 (mod 2n − 1).

Since Poly-Dragon is a public-key cryptosystem, we will now describe the
public key generation. Both permutation polynomials f(x) and g(x) from both
theorems are used in the process.

Care must be taken when choosing values for parameters listed in both the-
orems. We will follow the authors’ suggestion in [5] for the choice of parame-
ters, which is as follows. We set r = 0, n = 2m − 1, k = m, k2 = m, k1 = 0,
l = 2m − 1 and � = 2m−1. So in this case we will take permutation polynomials

f(x) =
(
Lβ(x) + γ

)2m−1
+ Tr(x) and g(x) = (x2m

+ x+ α)2
m−1 + x

for the public key generation. Parameters α, β, γ are secret parameters. Suppose
now that s and t are two invertible affine transformations. The relation between
plaintext and ciphertext is g

(
s(x)

)
= f

(
t(y)

)
, where variable x denotes the plain-

text and variable y denotes the ciphertext. Suppose that s(x) = u and t(y) = v.
Thus we have the following relationship between plaintext and ciphertext

(
u2m

+ u+ α
)2m−1

+ u =
(
Lβ(v) + γ

)2m−1
+ Tr(v) .

Since u2m

+ u+α and Lβ(v)+ γ are nonzero in the field F2n , this relation gives

(
u2m

+ u+ α
)2m(

Lβ(v) + γ
)
+ u

(
u2m

+ u+ α
)(
Lβ(v) + γ

)
+

(
u2m

+ u+ α
)(
Lβ(v) + γ

)2m

+ Tr(v)
(
u2m

+ u+ α
)(
Lβ(v) + γ

)
= 0 . (3)

Suppose Tr(v) = ζy ∈ {0, 1}. We can identify the field F2n with the field F
n
2

(i.e., the set of all n-tuples over F2 by using a fixed basis B = {ϑ1, ϑ2, . . . , ϑn}
of F2n over F2. Substituting u = s(x) and v = t(y), where x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn), we get n non-linear polynomial equations which form
the public key of the cryptosystem.

110

POLY-DRAGON CRYPTOSYSTEM IN A PSEUDORANDOM NUMBER GENERATOR MSTg

These equations are in general:

∑
aijkxixjyk +

∑
bijxixj +

∑
(cij + ζy)xiyj +

∑
(dk + ζy)yk +

∑
(ek + ζy)xk + fl = 0 , (4)

where aijk, bij , ck, dk, ek ∈ F2. They are of degree three and therefore each
of them contains O(n3) terms. Since we have n equations, total size of pub-
lic key is O(n4). It is further possible to reduce the complexity to O(n3) without
changing the security of the cryptosystem in polynomial time. What is important
to realize is the fact that while the public key is linear in ciphertext variables (yi),
it is non-linear in plaintext variables (xi).

As we have mentioned, the system of equations (4) forms the public key.
The private key of the cryptosystem consists of parameters α, β, γ and of two
affine transformations (s, t).

Now we will describe the encryption and decryption algorithm as it was pro-
posed in [5].

Algorithm 2: Poly-Dragon: Encryption Algorithm

If Bob wants to send a message x = (x1, x2, . . . , xn) to Alice, he does the following:
1. Bob substitutes the plaintext variables (x1, x2, . . . , xn) and sets ζy=0 in pub-

lic key and gets n linear equations in ciphertext variables (y1, y2, . . . , yn) over
a finite field Z2. Bob solves these equations (e.g., by Gaussian elimination)
and obtains a vector y′ = (y′1, y

′
2, . . . , y

′
n).

2. Bob substitutes the plaintext variables (x1, x2, . . . , xn) and sets ζy=1 in pub-

lic key and gets n linear equations in ciphertext variables (y1, y2, . . . , yn) over
a finite field Z2. Bob solves these equations (e.g., by Gaussian elimination)
and obtains a vector y′′ = (y′′1 , y

′′
2 , . . . , y

′′
n).

3. The ordered pair (y′, y′′) is the resulting ciphertext.

Algorithm 3: Poly-Dragon: Decryption Algorithm

Input : Ciphertext (y′, y′′) and secret parameters α, β, γ, s, t
Output: Message (x1, x2, . . . , xn)

1. v1 ← t(y′) and v2 ← t(y′′).
2. z1 ← Lβ(v1) + γ and z2 ← Lβ(v2) + γ.

3. z′3 ← z2
m−1

1 and z′4 ← z2
m−1

2 .

4. z3 ← z′3 + Tr(v1) and z4 ← z′4 + Tr(v2).

5. z5 ← z2
m

3 + z3 + α+ 1 and z6 ← z2
m

4 + z4 + α+ 1.

6. z7 ← z2
m−1

5 and z8 ← z2
m−1

6 .

7. X1 ← s−1(z3 + 1), X2 ← s−1(z4 + 1), X3 ← s−1(z3 + z7 + 1),
X4 ← s−1(z4 + z8 + 1).

8. Return (X1, X2,X3, X4).

111

VILIAM HROMADA — MILAN VOJVODA

The decryption algorithm returns following four messages (X1, X2, X3, X4).
One of them is the correct message and it is not difficult to find out, which one.

4. Our construction and results

Finally, we present our construction of the generator MSTg which uses
Poly-Dragon to generate the random covers. We wanted to study this construc-
tion and to see whether the number of random covers or their structure play
an important role in the statistical properties of the generator. In the test-
ing, we have decided to choose similar approach as the authors of MSTg. That
is why the size of our generator is practically the same as theirs. Due to the
fact that Poly-Dragon requires the number of elements in a certain field to be
an odd power of number two, we have chosen the sizes of two groups to be
|G1| = 2257 and |G2| = 2129.

At first, we generated the random covers. We used the Poly-Dragon crypto-
system in a counter mode: in the beginning we generated a random seed (an el-
ement from the finite field) and a random constant which we iteratively added
to the seed to create a new plaintext. We encrypted the new plaintext and the
resulting ciphertext was the new element of the random cover of the correspond-
ing finite group. Since there is not an available implementation of Poly-Dragon,
we have programmed our own. During the process, we have discovered several
interesting facts about the cryptosystem itself and have modified the encryption
algorithm slightly. For further information see [1].

Our parameters of Poly-Dragon were as follows:

• Irreducible polynomial – randomly chosen of a corresponding degree.

• α, γ – randomly chosen (Tr(α) = Tr(γ) = 1).

• β – set as 1 + ϑ (in compliance with [5]).

• s, t – both affine transformations were set as identities (for easier imple-
mentation).

Using this construction of Poly-Dragon we have generated enough elements for
each random cover. It should be noted that the process of generating a random
cover is not just a generation of subsets of a group. The collection of subsets A
has to be a cover of the group, which means, that all elements of the group must
have a factorization into the elements of the cover. However, this process can be
done efficiently and is described in the article [6].

Once we generated random covers for the MSTg generator we simply gen-
erated a sufficient number of bits and tested its statistical properties using
the NIST Statistical Test Suite [4].

112

POLY-DRAGON CRYPTOSYSTEM IN A PSEUDORANDOM NUMBER GENERATOR MSTg

We have tested four constructions of the generator which differ in the number
of random covers and in the number of elements in one subset:

• MSTg/Poly-Dragon with 3 random covers, |Ai| = 3 , C = 1, ver. A ,

• MSTg/Poly-Dragon with 4 random covers, |Ai| = 3 , C = 1, ver. A ,

• MSTg/Poly-Dragon with 5 random covers, |Ai| = 3 , C = 1, ver. A ,

• MSTg/Poly-Dragon with 5 random covers, |Ai| = 28, C = 1, ver. A .

For each construction we generated 100 different instances of a generator–
–with different random covers of a given type and we used each instance
to generate 100 bit sequences of length 107 bits. For the statistical evaluation
of the sequences we used an implementation of the NIST test suite which has
been programmed at our institute at the university. The testing of one sequence
consisted of 200 smaller tests which yielded 200 p-values. It is important to say
that we tested the generator at the significance level equal to 0.01. We denote
one set of 200 p-values as a “p-value set”. We have therefore for each instance
of a generator 109 output bits and one p-value set. We studied the number
of “defect” p-values in the set, i.e., the number of p-values that were smaller
than our significance level.

Finally, we present the results of the testing.

Table 1. NIST test results—MSTg with Poly-Dragon.

Version [bits] Output [bits] #c |Ai| f0 f1 f2 f3 f4 f5+ fmax

257/129 129 3 3 38 38 16 6 1 1 8

257/129 129 4 3 42 37 14 2 2 3 7
257/129 129 5 3 41 33 18 5 1 2 6
257/129 129 5 256 47 34 12 4 1 2 6

Each row of the Table 1 represents a certain type of a construction of a ge-
nerator. Symbol “#c” denotes the number of random covers, |Ai| denotes the
size of one subset of the group, fi denotes the number of p-value sets that have
exactly i “defect” p-values (5+ means five and more). The column fmax shows
what the maximum number of “defect” p-values was. For example, we can see
that in the first construction with 3 random covers, where one subset in the cover
had 3 elements, 38 instances of the generator were NOT rejected as a good ran-
dom number generator and that the maximum number of unacceptable p-values
was eight.

It stems from the table that in our case it was more or less not important
whether a generator had three, four or five covers. They were evaluated as “good”
random number generators with the probability of approximately 40%.

113

VILIAM HROMADA — MILAN VOJVODA

However, we can see that when we changed the number of elements of one
subset in the cover (the 3rd and 4th row of the table), the number of instances
which were NOT rejected has risen to 47.

We have carried out one more test—we tested the output of Poly-Dragon
to see whether the resulting random cover is truly “random”. We generated
100 different instances of Poly-Dragon and generated output sequences of the
length 107 bits. The results are presented in the Table 2.

Table 2. NIST test results—Poly-Dragon.

Version [bits] f0 f1 f2 f3 f4 f5+ fmax

257 20 27 30 13 14 6 8

This is an interesting result, because only one fifth of the instances were
NOT rejected by the testing suite. This is a relatively small number when com-
pared to commonly-used PRNGs. However, it is interesting that even though
Poly-Dragon itself has a success rate of only 20%, the MSTg generator which
uses Poly-Dragon to generate its random covers has a success rate of 47%.
For comparision, the success rate of the MSTg generator presented by its
authors had a success rate from 48% to 51%.

5. A few notes on security

In this section we state a few notes about the security of this generator. Since
we have not changed the generating algorithm in general, we expect it to have
the same level of security as the original generator proposed in [3]. Our change is
in the generation of random covers—we have used the output of the Poly-Dragon
cryptosystem instead of the output of some random number generator.

The security of the original generator is discussed in [3]. The authors argue
that the brute-force attack on the generator would have a complexity
of O(2e1−e2−δ−1), where e1 is the bit-length of elements from the first group
Z2e1 , e2 is the bit-length of elements from the second group Z2e2 and 0 ≤ δ ≤ 2,
thus if e1 and e2 are sufficiently large, for example e1 − e2 ≥ 100, then it
is computationally infeasible to determine the initial seed of the generator.
Another interesting property of MSTg generator is that for two inputs x and
x′ of the mapping ᾰ the outputs ᾰ(x) and ᾰ(x′) differ in approximately half of
the output bits. However, an accurate estimate of the complexity of computing
the seed s for a given output sequence (z1, z2, . . . , zt) has still not been made
(to the knowledge of the authors) so this might be worth further investigation.
The security of the generator itself is based on a discrete logarithm problem.

114

POLY-DRAGON CRYPTOSYSTEM IN A PSEUDORANDOM NUMBER GENERATOR MSTg

The elements of the random covers are the outputs of the Poly-Dragon cryp-
tosystem used in CTR mode. We have generated a random seed, encrypted
it with Poly-Dragon and the resulting ciphertext was the element of the cover.
Then we increased the value of the seed by a fixed constant, encrypted the incre-
mented seed and the result was the second element of the cover, etc. Therefore
if an attacker is able to decrypt the element of the cover (or two consecutive
elements) then he is able to predict future cover elements. However, the security
here relies on the security of Poly-Dragon. It is based on the MQ-problem. This
problem belongs to the category of NP-complete problems, therefore we assume
that with a correct choice of parameters this cryptosystem is secure against
the brute-force attack. Additionally, authors argue in [5] that this cipher is also
secure against linearization equation attacks, differential cryptanalysis, Gröbner
basis attacks and XL and FXL algorithms.

We argue that the security of the generator is comparable to the security of the
original MSTg generator since the changes we have made to the algorithm itself
are only minor. The security of the generation of the cover elements relies on the
inability of the attacker to break an instance of the Poly-Dragon cryptosystem
in real time (thus he is not able to predict/calculate other cover elements).
Therefore we believe that if an attack is found that will be able to predict the
other cover elements, than it can be used to break the Poly-Dragon cryptosystem.
And if an attack is found that will be able to determine the seed s of the generator
from the output (z1, z2, . . . , zt), then, with high probability, this attack can be
applied to the original generator MSTg.

6. Conclusion

We have presented our version of the MSTg generator which uses Poly-Dragon
cryptosystem to generate its random covers. We have carried out statistical tests
and have found out that the structure of a cover plays a greater role in the
statistical properties of the output than the number of random covers. This is
not surprising, since the authors of MSTg have made a similar statement in their
paper. What is surprising is that the MSTg achieved relatively good results even
though Poly-Dragon itself achieved worse results. There is still a lot of work
to be done. For example one could wonder how would Poly-Dragon behave if
the affine transformations were not set to identities, but were also randomly
generated. Another interesting research topic might be the further study of the
structure of random covers and whether a different choice of parameters of the
generator (different counter value, different construction of core function) would
yield better or worse results.

115

VILIAM HROMADA — MILAN VOJVODA

Acknowledgement. The authors are grateful to anonymous reviewers for their
helpful comments and remarks that helped to improve the quality of this paper.

REFERENCES

[1] HROMADA, V.—VOJVODA, M.: A note on Poly-Dragon cryptosystem, in: 14th Con-
ference of Doctoral Students—ELITECH ’12, Bratislava, 2012.

[2] MAGLIVERAS, S. S.—STINSON, D. R.—VAN TRUNG, T.: New approaches to de-
signing public key cryptosystems using one-way functions and trapdoors in finite groups,
J. Cryptology 15 (2002), 285–297.

[3] MARQUARDT, P.—SVABA, P.—VAN TRUNG, T.: Pseudorandom number generators
based on random covers for finite groups, Des. Codes Cryptogr. 64 (2012), 209–220.

[4] RUKHIN, A.—SOTO, J.—NECHVATAL, J.—SMID, M.—BARKER, E.—LEIGH, S.–
–LEVENSON, M.—VANGEL, M.—-BANKS, D.—HECKERT, A.—DRAY, J.—VO, S.:
Statistical Test Suite for Random and Pseudorandom Number Generators for Crypto-
graphic Applications in: NIST Special Publication 800-22, National Institute of Standards
and Technology, Gaithersburg, MD, USA, 2010, http://csrc.nist.gov/rng.

[5] SINGH, R. P.—SAIKIA, A.—SARMA, B. K.: Poly-Dragon: an efficient multivariate
public key cryptosystem, J. Math. Cryptol. 4 (2010), 365–373.

[6] SVABA, P.—VAN TRUNG, T.: On generation of random covers for finite groups.
Tatra Mt. Math. Publ. 37 (2007), 105–112.

Received August 15, 2012 Institute of Computer Science and
Mathematics
Slovak University of Technology

Ilkovičova 3
SK–812-19 Bratislava
SLOVAKIA

E-mail : viliam.hromada@stuba.sk

milan.vojvoda@stuba.sk

116

http://csrc.nist.gov/rng.

	1. Introduction
	2. Pseudorandom number generator MSTg
	3. Public-key cryptosystem Poly-Dragon
	4. Our construction and results
	5. A few notes on security
	6. Conclusion
	REFERENCES

