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MOMENTS OF MARKOV-SWITCHING MODELS

Anna Petričková

ABSTRACT. In this paper we have focused on the class of regime-switching
time series models with regimes determined by unobservable variables, concretely
Markov-switching models. We have derived 2nd central moment of the MSW
models for two cases—state-independent and state-dependent model.

1. Introduction

In the real life we often meet time series that exhibit strong non-linear fea-
tures, because linear models are not in general always suitable for use. Markov-
-switching models (or MSW models), proposed by H am i l t o n [2] and belong-
ing to this group of the models have been successfully used for fitting a lot
of economic and financial time series, for example, interest rates, exchange rates,
consumption costs and so on.

The goal of our work is to derive the second central moment, firstly for the
state-independent and then for the state-dependent autoregressive MSWmodels.
We have been inspired by T i mm e rm a n n’ s paper [4] for the special form
of the Markov-switching models.

The paper is organized as follows. After this introduction, the theoretical basis
of the non-linear Markov-switching models is given, followed by the derivation
of the second central moment (variance) of the state-independent and state-de-
pendent MSW models. For both cases it also follows comparison of the calcu-
lation of the variance computed with classical formula, defined in the program
Mathematica, version 8, and the formula derived for the illustrative data series
(concretely from hydrology). Finally we briefly summarize the results.
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2. Overview of Markov-switching (MSW) models

In this work we focus on the class of non-linear regime-switching models
assuming that the regime that occurs at time t cannot be observed. It is deter-
mined by an unobservable process, which we denote as St. It follows that separate
regimes cannot be identified exactly, but only with some probability. In case of 2
regimes process {St} can take only values 1 and 2. If we work with a model
AR(p), where p denotes the order of the MSW process, the regime-switching
model with regimes determined by unobservable variables is

Xt = φ0,St
+ φ1,St

Xt−1 + · · ·+ φp,St
Xt−p + εt, St = 1, 2. (1)

We assume that the random variable εt is identically, independently and nor-
mally distributed with zero mean, that is εt ∼ N

(
0, σ2

ε

)
.

The class of MSW models with N regimes is based on the assumption that
a regime is determined by the discrete ergodic first order Markov process, hence
it is important to consider only the actual and the previous state

P (qt = Sj |qt−1 = Si, qt−2 = Sk, . . .) = P (qt = Sj |qt−1 = Si) = pij

for 1 ≤ i, j ≤ N , where pij is a state transition probability (transition from
the state Si at the time t − 1 to the state Sj at time t in the Markov chain),

0 ≤ pij ≤ 1,
∑N

j=1 pij = 1, t = 1, 2, . . . , n are time instants associated with state
changes and qt is the actual state at time t. For details on MSW models see,
e.g., [1]–[3].

3. Moments of Markov-switching models

3.1. The relation between conditional and unconditional
central moments of MSW model

The state-dependent pth order autoregressive MSW model with normally dis-
tributed increments is described by

Xt = φ0,qt+ φ1,qtXt−1 + · · ·+ φp,qtXt−p+ εt ,

where {Xt}, t = 1, . . . , T is a stochastic process generating an examined time
series, qt = 1, 2, . . . ,m is a (unobservable) state variable, generated by an ergodic
m-state Markov chain, qt ∈ M = {1, 2, . . . ,m} and random variables εt are IID
and normally distributed with zero mean.

We assume that the number of statesN is finite and coefficients φj , j=1, . . . , p
are state dependent (coefficients of autoregressive model may be different
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in each regime), π = (π1, π2, . . . , πN )′ is the N -vector of steady-state (ergodic)
probabilities that solve the system of equations P′π = π, where

P =

⎛
⎜⎝

p11 · · · p1N
...

. . .
...

pN1 · · · pNN

⎞
⎟⎠

is the transition probability matrix of the type N ×N . The vector π represents
unconditional probabilities, applying to the N states.

In general for N -states the kth order unconditional central moment of {Xt}
is defined as

μk = E
[
(Xt − μ)k

]
=

N∑
i=1

E
[
(Xt − μ)k|qt = i

] · P [qt = i]

=

N∑
i=1

E
[
(Xt − μ)k|qt = i

] · πi

=

N∑
i=1

μk
i πi = π′

⎛
⎜⎝

μk
1
...

μk
N

⎞
⎟⎠ , (2)

where πi is the unconditional probability of state i and μk
i , i = 1, . . . , N is

the conditional kth order central moment for the ith regime of the stochastic
process {Xt}.

The problem is that we do not know conditional central moments for each
state (we only calculate conditional means). Therefore, we need derive formulas
for the computation of unconditional central moments.

LetB be the (N×N) matrix of transition probabilities for the “time-reversed”
Markov chain that moves back in time, and bi,j its element in the ith row and
the jth column, so that

P (qt = Sj |qt+1 = Si) = bij , 0 ≤ bij ≤ 1,

N∑
j=1

bij = 1. (3)

From

P (qt = Sj ∩ qt+1 = Si) =P (qt+1 = Si|qt = Sj) · P (qt = Sj)

=P (qt = Sj |qt+1 = Si) · P (qt+1 = Si)

the “backward” transition probability matrix B is related to the “forward” tran-
sition probabilities as follows

bij = pji

(
πj

πi

)
, i, j = 1, . . . , N. (4)
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3.2. State-independent MSW models

Before the derivation of the moment, firstly let us assume the simple auto-
regressive first order MSW model

Xt = φqt+ φ1Xt−1 + εt, (5)

thus φ1,qt = φ1 and φ0,qt = φqt . Consider 3-regime MSW model (qt ∈ {1, 2, 3}).
For the state-dependent mean value we have

μqt = φqt+ φ1μqt−1
.

When we substitute φqt into the basic model we get

Xt= μqt + φ1

(
Xt−1− μqt−1

)
+ εt, (6)

after substituting backwards and considering to the stationarity of the process
(|φ1| < 1), we obtain

Xt − μqt =

∞∑
i=0

φi
1εt−i. (7)

From the assumptions E [εt−i|qt] = 0, E [εt−i] = 0, it holds that the first mo-
ment E

[(
Xt−1 − μqt−1

) |qt−1

]
= 0. That is why the first moment does not

change and

E[Xt] = π′E [Xt|qt] = π′

⎛
⎝μ1

μ2

μ3

⎞
⎠ ,

where E [Xt|qt] is the 3-vector whose ith element consists of E [Xt|qt = i].

In the next Proposition 3.2.1 we indicate a relation for the second central
moment (variance) of the state-independent autoregressive first order Markov
process.

����������� 3.2.1	 Let {Xt} be the state-independent autoregressive first order
Markov process

Xt = φqt+ φ1Xt−1+ εt,

where φ1 is the autoregressive coefficient independent on the state (the same
for all states), |φ1| < 1, εt is IID process ≈ N

(
0, σ2

ε

)
. Let π = (π1, π2, π3)

′ be
the vector of the steady-state (unconditional) probabilities. Then for the second
central moment of {Xt} holds

E[(Xt − μ)2] = π′

⎡
⎢⎢⎢⎣
⎛
⎝ μ1 − μ

μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝ μ1 − μ

μ2 − μ
μ3 − μ

⎞
⎠+

⎛
⎜⎜⎜⎝

φ2
1σ

2
1

(1−φ2
1)

φ2
1σ

2
2

(1−φ2
1)

φ2
1σ

2
3

(1−φ2
1)

⎞
⎟⎟⎟⎠+

⎛
⎝ σ2

ε

σ2
ε

σ2
ε

⎞
⎠
⎤
⎥⎥⎥⎦ , (8)

where μ is unpredictable mean value of {Xt}, σ2
i , i = 1, 2, 3 are the state-de-

pendent variances, σε
2 is the (3× 1) vector of the variance of the IID process εt

and mark ⊗ is element by element multiplying operator of 2 vectors.
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P r o o f. For the second central moment we get from the relation (6)

E
[
(Xt − μ)2

]
= E

[
(μqt− μ)2+ φ2

1(Xt−1− μqt−1
)2+ ε2t

]
+ 2φ1Cov

[
μqt− μ,Xt−1− μqt−1

]
+ 2Cov [μqt− μ, εt]

+ 2φ1Cov [Xt−1− μqt , εt] .

The assumption that {εt} is IID process ≈ N
(
0, σ2

ε

)
and the independence

between εt−1 and qt for t = 0,±1,±2, . . . imply that all covariances above are
equal to 0 and therefore

E
[
(Xt− μ)2

]
= E

[
(μqt− μ)2 + φ2

1(Xt−1− μqt−1
)2 + ε2t

]
.

Applying the steady-state probabilities and using the equations (6) and (7)
we get

E
[
(Xt − μ)2

]
= π′E

[
(Xt − μ)2|qt

]

= π′E
[
(μqt − μ)2|qt

]
+ π′E

[
φ2
1(Xt−1 − μqt−1)

2|qt

]
+π′E

[
ε2t |qt

]

= π′

⎡
⎣
⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠
⎤
⎦+ π′φ2

1

⎡
⎣

∞∑
i=0

φ2i
1 Pi

⎛
⎝

σ2
1

σ2
2

σ2
3

⎞
⎠
⎤
⎦+ π′

⎛
⎝

σ2
ε

σ2
ε

σ2
ε

⎞
⎠

= π′

⎡
⎣
⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠
⎤
⎦+ φ2

1

⎡
⎣

∞∑
i=0

φ2i
1 π′Pi

⎛
⎝

σ2
1

σ2
2

σ2
3

⎞
⎠
⎤
⎦+ π′

⎛
⎝

σ2
ε

σ2
ε

σ2
ε

⎞
⎠

= π′

⎡
⎣
⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠
⎤
⎦+ φ2

1

⎡
⎣

∞∑
i=0

φ2i
1 π′

⎛
⎝

σ2
1

σ2
2

σ2
3

⎞
⎠
⎤
⎦+ π′

⎛
⎝

σ2
ε

σ2
ε

σ2
ε

⎞
⎠

= π′

⎡
⎣
⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠+ φ2

1

(
1− φ2

1

)−1

⎛
⎝

σ2
1

σ2
2

σ2
3

⎞
⎠+

⎛
⎝

σ2
ε

σ2
ε

σ2
ε

⎞
⎠
⎤
⎦

= π′

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝

μ1 − μ
μ2 − μ
μ3 − μ

⎞
⎠+

⎛
⎜⎜⎜⎜⎜⎝

φ2
1σ

2
1(

1−φ2
1

)
φ2
1σ

2
2(

1−φ2
1

)
φ2
1σ

2
3(

1−φ2
1

)

⎞
⎟⎟⎟⎟⎟⎠
+

⎛
⎝

σ2
ε

σ2
ε

σ2
ε

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎦
.

In the proof of the second central moment we used that
∑∞

i=0 φ
2i
1 = 1

1−φ2
1
and π′

is the vector of the steady-state probabilities, where π′Pi = π′. �

As an illustration and for the comparison, using the system Wolfram
Mathematica (version 8), we computed all central moments of the first order

135



ANNA PETRIČKOVÁ

3-regime MSW model. For this purpose we used the hydrological time series,
which are represented by the flow rates of 5 selected Slovak rivers:

• Hron (Banská Bystrica): Jan 1931–Dec 2008,

• Litava (Plastovce): Jan 1931–Dec 2008,

• Morava (Moravský Ján): Jan 1922–Dec 2008,

• Poprad (Chmelnica): Jan 1931–Dec 2004,

• Topl’a (Hanušovce): Jan 1931–Dec 2008.

The first 2 columns of Table 3.2 contain the second central moment sam-
ple estimates for the selected original and simulated MSW model data series.
The third column displays variance computed with the formula derived in the
Proposition 3.2.1.

Table 1. The 2nd central moment for original and simulated time series

and calculated from derived formula (slanted). The state-independent case.

Data\2nd central moment Observed data Simulated data From formula

Hron 3.4363 2.9625 2.7241

Litava 2.5570 2.1126 2.2124

Morava 0.7824 0.6741 0.6758

Poprad 1.1739 1.0258 1.0413

Topl’a 0.5373 0.4708 0.5219

3.3. State-dependent MSW models

Let us have the stationary autoregressive first order Markov process with the
state-dependent autoregressive coefficients

Xt = φqt+ φ1,qt−1
Xt−1+ εt, (9)

where we simplified notation φ0,qt = φqt , qt ∈ {1, 2, 3}.
For the state-dependent mean value holds

μqt = φqt+ φ1,qt−1
μqt−1

.

When we substitute φqt in the basic model we get

Xt = μqt+ φ1,qt−1
(Xt−1− μqt−1

) + εt, (10)

where φ1,qt−1
is the first-order autoregressive coefficient for the state qt−1.

After substituting back and considering stationarity of the process

(|φ1,qt−1
| < 1)

we obtain

Xt − μqt =

∞∑
i=1

⎛
⎝ i∏

j=1

φ1,qt−1

⎞
⎠ εt−i + εt. (11)
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In the following we present the Proposition 3.3.1—the second central mo-
ment of the stationary autoregressive first order Markov process with the state-
-dependent autoregressive coefficients.

����������� 3.3.1	 Let {Xt} be a stationary autoregressive first order Markov
process with the state-dependent autoregressive coefficients

Xt = φ0,qt+ φ1,qt−1
Xt−1+ εt,

where φ1, qt−1
are the autoregressive coefficients that depend on the state,

|φ1,qt−1
| < 1, εt ≈ IID N

(
0, σ2

ε

)
. Let us have the vector of the stationary

probabilities
π = (π1, π2, π3)

′.

Then for the second central moment of {Xt} holds

E
[
(Xt − μ)2

]
= π′

⎡
⎣
⎛
⎝ μ1 − μ

μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝ μ1 − μ

μ2 − μ
μ3 − μ

⎞
⎠
⎤
⎦+

π′

⎡
⎣
⎛
⎝Φ2

(
I3 −BΦ2

)−1

⎛
⎝ σ2

ε

σ2
ε

σ2
ε

⎞
⎠
⎞
⎠+

⎛
⎝ σ2

ε

σ2
ε

σ2
ε

⎞
⎠
⎤
⎦ ,

where μ is the unpredictable mean value of {Xt}, σε
2 is the (3 × 1) vector

of the variance of the IID process εt, I3 is the (3 × 3) identity matrix, B is the
(3 × 3) matrix of transition probabilities for the “time-reversed” Markov chain
that moves back in time, Φ is the (3 × 3) diagonal matrix with the first order
autoregressive coefficients of the regimes on the main diagonal and mark ⊗ is
an element by element multiplying operator of 2 vectors.

P r o o f. In the proof of the Proposition 3.3.1 we use the proof of the Proposi-
tion 3.2.1. For the second central moment, considering the relation (10), it holds

E
[
(Xt − μ)2

]
= E

[
(μqt − μ)2+ φ2

1,qt−1
(Xt−1− μqt−1

)2+ ε2t

]
+ 2Cov

[
μqt − μ, φ1,qt−1

(Xt−1 − μqt−1
)
]
+ 2Cov [μqt − μ, εt]

+ 2Cov
[
φ1,qt−1

(Xt−1− μqt), εt
]
.

The assumption that {εt} is IID process ≈ N
(
0, σ2

ε

)
and the independence

between εt−1 and qt for t = 0,±1,±2, . . . imply that all covariances above are
equal 0 and therefore

E
[
(Xt − μ)2

]
= E

[
(μqt − μ)2 + φ2

1,qt−1
(Xt−1 − μqt−1

)2 + ε2t

]
.
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Then for the state-dependent second power we have

E
[
(Xt − μ)2

]
= π′E

[
(Xt − μ)2|qt

]
= π′E

[
(μqt − μ)2|qt

]
+ π′E

[
φ2
1,qt−1

(Xt−1 − μqt−1
)2|qt

]
+ π′E

[
ε2t |qt

]
.

For the expression E
[
φ2
1,qt−1

(
Xt−1 − μqt−1

)2 |qt = i
]
holds

E
[
φ2
1,qt−1

(
Xt−1− μqt−1

)2 |qt = i
]

=

3∑
j=1

E
[
φ2
1,qt−1

(
Xt−1 − μqt−1

)2 |qt−1 = j ∩ qt = i
]
· P (qt−1= j|qt = i)

=

3∑
j=1

E
[
φ2
1,qt−1

(
Xt−1 − μqt−1

)2 |qt−1 = j ∩ qt = i
]
· bij .

Label

σ2
ε =

⎛
⎝ σ2

ε

σ2
ε

σ2
ε

⎞
⎠ ,

Φ the (3× 3) diagonal matrix of the autoregressive coefficients (φ1,r)r=1,2,3 and
B the (3 × 3) matrix of the transition probabilities bij , i, j = 1, 2, 3 for the
“time–reversed” Markov chain that moves back in time. Thus

E
[
φ2
1,qt−1

(
Xt−1− μqt−1

)2 |qt

]
= B·Φ2E

[
(Xt−1− μqt−1

)2|qt−1

]
. (12)

From the relations (11) and (12) we get

E
[
(Xt − μqt)

2|qt

]
= E

[(
φ1,qt−1

(Xt−1− μqt−1
) + εt

)2 |qt

]

= E
[
φ2
1,qt−1

(
Xt−1− μqt−1

)2 |qt

]

+

=0︷ ︸︸ ︷
2Cov

[
φ1,qt−1

(
Xt−1− μqt−1

)
, εt|qt

]
+E

[
ε2t |qt

]
= E

[
φ2
1,qt−1

(
Xt−1− μqt−1

)2 |qt

]
+E

[
ε2t |qt

]
,

⇒ E
[
(Xt − μqt)

2|qt

]
= BΦ2E

[
(Xt−1− μqt−1

)2|qt−1

]
+ σ2

ε . (13)
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Because we assume the stationary process {Xt}, we can write:

E
[
(Xt−1− μqt−1

)2|qt−1

]
= BΦ2E

[
(Xt−1 − μqt−1

)2|qt−1

]
+ σ2

ε ,

E
[
(Xt−1− μqt−1

)2|qt−1

]−BΦ2E
[
(Xt−1 − μqt−1

)2|qt−1

]
= σ2

ε ,(
I3 −BΦ2

)
E
[
(Xt−1− μqt−1

)2|qt−1

]
= σ2

ε ,

E
[
(Xt−1− μqt−1

)2|qt−1

]
=

(
I3 −BΦ2

)−1
σ2
ε ,

⇒ (from (12))

E
[
φ2
1,qt−1

(
Xt−1− μqt−1

)2 |qt

]
= BΦ2

(
I3 −BΦ2

)−1
σ2
ε , (14)

and finally,

E
[
(Xt − μ)2

]
= π′E

[
(Xt − μ)2|qt

]

= π′

⎡
⎣
⎛
⎝ μ1 − μ

μ2 − μ
μ3 − μ

⎞
⎠⊗

⎛
⎝ μ1 − μ

μ2 − μ
μ3 − μ

⎞
⎠
⎤
⎦

+ π′

⎡
⎣BΦ2

(
I3 −BΦ2

)−1

⎛
⎝ σ2

ε

σ2
ε

σ2
ε

⎞
⎠
⎤
⎦+ π′

⎛
⎝ σ2

ε

σ2
ε

σ2
ε

⎞
⎠ .

�

Here we computed the second central moment of the first order 3-regimes
state-dependent MSW model.

The first 2 columns of Table 3.3 contain the second central moment sam-
ple estimates for the selected original and simulated MSW model data series.
The third column displays the variance computed with the formula derived
in the Proposition 3.3.1.

For this purpose we also used the hydrologic time series like in the previous
subsection.

Table 2. The 2nd central moment for selected original and simulated time

series, and from formula. The state-dependent case.

Data\2nd central moment Observed data Simulated data From formula

Hron 3.4363 2.4943 2.8742

Litava 2.5570 1.9803 1.7497

Morava 0.7824 0.6741 0.6549

Poprad 1.1739 1.0149 1.0373

Topl’a 0.5373 0.4561 0.5079
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4. Conclusion

In this paper we derived the relations for the second central moment of the
state-independent and state-dependent MSW models—see Proposition 3.2.1 and
3.3.1.

In both cases we also computed the moments, using the system Wolfram
Mathematica 8, and compared them with the variance calculated with the clas-
sical formula, defined in the system Mathematica.

From the Tables 3.2 and 3.3 we see that in calculating unconditional cen-
tral moments of Markov switching models it is necessary to consider them as
a function of the transition probabilities and parameters of the underlying state
densities entering the switching process.
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