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OSCILLATION CRITERIA FOR THIRD ORDER

NEUTRAL NONLINEAR DYNAMIC EQUATIONS

WITH DISTRIBUTED DEVIATING ARGUMENTS

ON TIME SCALES

Taher S. Hassan — Said R. Grace

ABSTRACT. Some new oscillation criteria for third order neutral nonlinear dy-
namic equations with distributed deviating arguments on time scales are estab-
lished. The obtained results extend, improve and correlate many known oscillation

results for third order dynamic equations.

1. Introduction

This paper is concerned with the oscillatory behavior of third order neutral
nonlinear dynamic equations with distributed deviating arguments on time scales⎛
⎜⎝a(t)

⎛
⎜⎝
⎛
⎝x(t) +

d∫
c

p(t, θ)x
(
h(t, θ)

)
Δθ

⎞
⎠
ΔΔ

⎞
⎟⎠
α⎞
⎟⎠
Δ

+

b∫
a

q(t, τ)xλ
(
g(t, τ)

)
Δτ = 0 (1.1)

and(
a(t)

((
xβ

(
h1(t)

)− r(t)xγ
(
h2(t)

))ΔΔ
)α)Δ

+

b∫
a

q(t, τ)xλ
(
g(t, τ)

)
Δτ = 0, (1.2)

on an arbitrary time scale T ⊆ R with supT = ∞, 0 < a < b and 0 < c < d.
We assume that:

(i) α, β, γ and λ are the ratios of positive odd integers;
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(ii) a, r : T → [0,∞), a(t) > 0 are real valued, rd-continuous functions and

∞∫
t0

a−1/α(s)Δs = ∞, t0 ∈ T; (1.3)

(iii) q : T × [a, b] → [0,∞) and p : T × [c, d] → [0,∞) are real valued, rd-con-
tinuous functions;

(iv) g : T × [a, b] → T and h : T × [c, d] → T are nonincreasing with respect
to second variable,

g(t, τ) ≤ t and lim
t→∞ g(t, τ) = ∞, τ ∈ [a, b],

and

h(t, θ) ≤ t and lim
t→∞

h(t, θ) = ∞, θ ∈ [c, d];

(v) hi : T → T for i = 1, 2, are real valued, rd-continuous nondecreasing
functions such that hi(t) ≤ t for t ≥ t0 ∈ T and limt→∞ hi(t) = ∞
for i = 1, 2.

We recall that a solution x of the equation (1.1) (respectively the equa-
tion (1.2)) is said to be nonoscillatory if there exists t0 ∈ T such that
x(t)x

(
σ(t)

)
> 0 for all t ∈ [t0,∞)T; otherwise, it is said to be oscillatory.

The equation (1.1) (respectively the equation (1.2)) is said to be oscillatory
if all its extendible solutions are oscillatory.

Neutral differential equations appear in modelling of the networks containing
lossless transmission lines, in the study of vibrating masses attached to an elastic
bar, as the Euler equation in some variational problems. In the theory of auto-
matic control and in neuro-mechamial systems in which inertia plays an impor-
tant role; see [11].

In recent years, there has been much research activity concerning the oscilla-
tion theory and applications of dynamic equations, see [1]–[10], [13]–[18] and the
references contained therein. Particularly, the study content of oscillatory criteria
of first and second dynamic equations on time scales is rich. In contrast, the study
of oscillation criteria of third order dynamic equations is relatively less. Some
interesting results have been obtained concerning the oscillatory and asymptotic
behavior of some special cases of the equations (1.1) and (1.2); see [9], [12].
To the best of our knowledge, the oscillatory behavior of (1.1) and (1.2) have
not been studied up to now.

The purpose of this paper is to establish some new criteria for the equations
(1.1) and (1.2) by using the approach to reduce the problem is such a way that
specific oscillation results for first and second order dynamic equations can be
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adapted for the third order case. In Section 2, we investigate the oscillatory be-
haviour of the equation (1.1) while Section 3 is devoted to study of oscillatory
properties of the equation (1.2). The obtained results extend, improve and cor-
relate many of the known oscillation results appeared in the literature that deal
with special cases of the equations (1.1) and (1.2).

2. Oscillation of the equation (1.1)

In this section we begin with the following lemmas that are essential in the
proofs of our results. For simplicity in what follows, whenever we write “ t ≥ t1”
we mean “ t ∈ [t1,∞) ∩ T ”. It will be convenient to set

y(t) := x(t) +

d∫
c

p(t, θ)x
(
h(t, θ)

)
Δθ. (2.1)

Equation (1.1) can be written as

(
a(t)

(
yΔΔ(t)

)α)Δ
+

b∫
a

q(t, τ)xλ
(
g(t, τ)

)
Δτ = 0. (2.2)

����� 2.1� Let the condition (1.3) hold and assume that x is an eventually
positive solution of the equation (1.1). Then there are only two possible cases for
the behaviour of y for large t ≥ t0:

(I) y(t) > 0, yΔ(t) > 0, yΔΔ(t) > 0 and
(
a(t)

(
yΔΔ(t)

)α)Δ ≤ 0;

(II) y(t) > 0, yΔ(t) < 0, yΔΔ(t) > 0 and
(
a(t)

(
yΔΔ(t)

)α)Δ ≤ 0.

����� 2.2� Let condition (1.3) hold and assume that x is an eventually positive
solution of equation (1.1) and the corresponding y satisfies Case (I) of Lemma 2.1.
If

0 ≤ P (t) :=

d∫
c

p(t, θ)Δθ ≤ p∗ < 1, (2.3)

then

x(t) ≥ (1− p∗)y(t), eventually. (2.4)

P r o o f. Since x is an eventually positive solution of the equation (1.1) and
the corresponding y is satisfying Case (I) of Lemma 2.1. Then there exists
a t1 ≥ t0 ∈ T such that

x(t) > 0, x
(
h(t, θ)

)
> 0 and yΔ(t) > 0 for t ≥ t1 and θ ∈ [c, d].
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Now,

x(t) = y(t)−
d∫

c

p(t, θ)x
(
h(t, θ)

)
Δθ

≥ y(t)−
d∫

c

p(t, θ)y
(
h(t, θ)

)
Δθ

≥ y(t)−
⎛
⎝ d∫

c

p(t, θ)Δθ

⎞
⎠y (t)

=

⎛
⎝1−

d∫
c

p(t, θ)Δθ

⎞
⎠y (t) for t ≥ t1.

This completes the proof. �

����� 2.3� Let the condition (1.3) hold and assume that x is an eventually
positive solution of the equation (1.1) and the corresponding y satisfies Case (I)
of Lemma 2.1. Then for t ≥ t1 ∈ T

y(t) ≥
(
a(t)

(
yΔΔ(t)

)α)1/α t∫
t1

u∫
t1

a−1/α(s)ΔsΔu. (2.5)

P r o o f. Since x is an eventually positive solution of the equation (1.1) and the
corresponding y is satisfying Case (I) of Lemma 2.1. Then there exists t1 ≥ t0 ∈ T

such that

x(t) > 0 and x
(
h(t, θ)

)
> 0 for t ≥ t1 and θ ∈ [c, d].

By using the fact that a(t)
(
yΔΔ(t)

)α
is decreasing for t ≥ t1, we have

yΔ(t) ≥ yΔ(t)− yΔ(t1)

=

t∫
t1

(
a(s)

(
yΔΔ(s)

)α)1/α
a−1/α(s)Δs

≥
(
a(t)

(
yΔΔ(t)

)α)1/α t∫
t1

a−1/α(s)Δs.

Integrating this inequality from t1 to t, we obtain the desired result. �
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Let

Q(t) :=

b∫
a

q(t, τ)Δτ, g1(t) := g(t, a) and g2(t) := g(t, b). (2.6)

In the following result, we employ the following auxiliary equation

zΔ(t) + (1− p∗)λQ(t)

⎛
⎜⎝

g2(t)∫
t1

u∫
t1

a−1/α(s)ΔsΔu

⎞
⎟⎠
λ

zλ/α
(
g2(t)

)
= 0 (2.7)

for t ≥ t1, t1 ∈ [t0,∞)T.

����� 2.4� Let the conditions (1.3) and (2.3) hold and the equation (2.7)
be oscillatory, then the equation (1.1) has no eventually positive solution x such
that y defined by (2.1) satisfies Case (I) of Lemma 2.1.

P r o o f. Let t0 ∈ T be sufficiently large such that x(t) > 0, x
(
h(t, θ)

)
> 0 and

x
(
g(t, τ)

)
> 0 for t ≥ t0, θ ∈ [c, d] and τ ∈ [a, b] and assume that y satisfies

Case (I) of Lemma 2.1. Using (2.4) and (2.5) in the equation (2.2), we get

zΔ(t) + (1− p∗)λ Q(t)

⎛
⎜⎝

g2(t)∫
t1

u∫
t1

a−1/α(s)ΔsΔu

⎞
⎟⎠
λ

zλ/α
(
g2(t)

) ≤ 0, (2.8)

for t1 ∈ [t0,∞)T, where z(t) := a(t)
(
yΔΔ(t)

)α
> 0. Integrating (2.8) from t

to u ≥ t and letting u → ∞, we have

z(t) ≥ G
(
t, z(t)

)
,

where

G
(
t, z(t)

)
:= (1− p∗)λ

∞∫
t

Q(v)

⎛
⎜⎝

g2(v)∫
t1

u∫
t1

a−1/α(s)ΔsΔu

⎞
⎟⎠
λ

zλ/α
(
g2(v)

)
Δv.

Now, we define a sequence of successive approximations
{
wj(t)

}
as follows:

w0(t) := z(t),

wj+1(t) := G
(
t, wj(t)

)
, j = 0, 1, 2, . . .

It is easy to show that

0 < wj(t) ≤ z(t) and wj+1(t) ≤ wj(t), j = 0, 1, 2, . . .

Then, the sequence
{
wj(t)

}
is nonincreasing and bounded for each t ≥ t1.

This means that we may define w(t) := limj→∞ wj(t) ≥ 0. Since

0 ≤ w(t) ≤ wj(t) ≤ z(t) for all j ≥ 0.
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By the Lebesgue’s dominated convergence theorem on time scale, one can easily
find

w(t) = G
(
t, w(t)

)
.

Therefore,

wΔ(t) = − (1− p∗)λ Q(t)

⎛
⎜⎝

g2(t)∫
t1

u∫
t1

a−1/α(s)ΔsΔu

⎞
⎟⎠
λ

wλ/α
(
g2(t)

)
.

Hence the equation (2.7) has a positive solution w(t). This completes the proof.
�

In the case when λ = α in the inequality (2.8), we state the following lemma.

����� 2.5 ([1])� If λ = α,

lim sup
t→∞

sup
ξ∈E

{
ξe−ξη

(
t, g2(t)

)}
< 1,

where
E :=

{
ξ : ξ > 0, 1− ξη(t)μ(t) > 0

}
,

and

η(t) := (1− p∗)α Q(t)

⎛
⎜⎝

g2(t)∫
t1

u∫
t1

a−1/α(s)ΔsΔu

⎞
⎟⎠
α

,

then the inequality (2.8) has no eventually positive solution.

����� 2.6� Let the condition (1.3) hold and assume that x(t) is an eventually
positive solution the equation (1.1) and the corresponding y satisfies Case (I)
of Lemma 2.1. Then there exists t1 ∈ [t0,∞)T such that

y(t) ≥ yΔ(t)A(t, t1) for t ∈ (t1,∞)
T
, (2.9)

where

A(t, t1) :=

∫ t

t1

∫ u

t1
a−1/α(s)Δs Δu∫ t

t1
a−1/α(s)Δs

.

P r o o f. Let t0 ∈ T be sufficiently large such that x(t) > 0, x
(
h(t, θ)

)
> 0 and

x
(
g(t, τ)

)
> 0 for t ≥ t0, θ ∈ [c, d] and τ ∈ [a, b] and assume that y satisfies

Case (I) of Lemma 2.1 for t ≥ t0. From Lemma 2.3, we have

yΔ(t) ≥
(
a(t)

(
yΔΔ(t)

)α)1/α t∫
t1

a−1/α(s)Δs for t ≥ t1 ≥ t0.

Note that[
yΔ(t)∫ t

t1
a−1/α(s)Δs

]Δ
=

a−1/α(t)
[(
a(t)

(
yΔΔ(t)

)α)1/α ∫ t

t1
a−1/α(s)Δs− yΔ(t)

]
∫ t

t1
a−1/α(s)Δs

∫ σ(t)

t1
a−1/α(s)Δs

,
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we have [
yΔ(t)∫ t

t1
a−1/α(s)Δs

]Δ
< 0 for t ∈ (t1,∞)T.

Then

y(t) ≥ y(t)− y(t1)

=

t∫
t1

yΔ(u)∫ u

t1
a−1/α(s)Δs

⎛
⎝ u∫

t1

a−1/α(s)Δs

⎞
⎠Δu

≥ yΔ(t)
t∫

t1

a−1/α(s)Δs

t∫
t1

u∫
t1

a−1/α(s)ΔsΔu

= yΔ(t)A(t, t1).

This completes the proof. �

For g2(t) > t0, we set

Q̄(t) := (1− p∗)λAλ
(
g2(t), t0

)
Q(t).

The hypotheses of next two lemmas include knowledge of the behaviour of the so-
lution of the second order dynamic equation(

a(t)
(
zΔ(t)

)α)Δ
+ Q̄(t)zλ

(
g2(t)

)
= 0, (2.10)

����� 2.7� If the conditions (1.3) and (2.3) hold and the equation (2.10) is
oscillatory, then the equation (1.1) has no eventually positive solution x such
that y is defined by (2.1) which satisfies Case (I) of Lemma 2.1.

P r o o f. Let x(t) be an eventually positive solution of the equation (1.1), say
x(t)> 0 and x

(
h(t, θ)

)
> 0 and x

(
g(t, τ)

)
> 0 for t≥ t1 for some t1 ∈ [t0,∞)T,

θ ∈ [c, d] and τ ∈ [a, b] and assume that y satisfies Case (I) of Lemma 2.1.
From (2.9), there exist a constant k1, 0 < k1 < 1 and a t2 > t1 such that

y(t) ≥ A(t, t1)y
Δ(t) for t ≥ t2. (2.11)

From (2.4), we see that

x(t) ≥ (1− p∗) y(t) for t ≥ t3, (2.12)

for some t3 ≥ t2. Hence, there exists t4 ≥ t3 such that

y
(
g2(t)

) ≥ A
(
g2(t), t1

)
yΔ

(
g2(t)

)
for t ≥ t4. (2.13)

Using (2.12) and (2.13) in the equation (2.2) we have(
a(t)

(
zΔ(t)

)α)Δ
+ Q̄(t)zλ

(
g2(t)

) ≤ 0, (2.14)
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for t ≥ t4, where z(t) := yΔ(t) > 0. Integrating (2.14) from t to u ≥ t ≥ t4 and
letting u → ∞, we obtain

zΔ(t) ≥
⎛
⎝ 1

a(t)

∞∫
t

Q̄(s)zλ
(
g2(s)

)
Δs

⎞
⎠
1/α

. (2.15)

Integrating (2.15) from t4 to t ≥ t4, we obtain

z(t) ≥ z(t4) +

t∫
t4

⎛
⎝ 1

a(u)

∞∫
u

Q̄(s)zλ
(
g2(s)

)
Δs

⎞
⎠
1/α

Δu.

Next, we define a sequence {wm(t)}m∈N0
by

w0(t) = z(t),

wm+1(t) = z(t4) +

t∫
t4

⎛
⎝ 1

a(u)

∞∫
u

Q̄(s)zλ
(
g2(s)

)
Δs

⎞
⎠
1/α

Δu, m ∈ N0.

It is easy to check by induction that {wm(t)} is a well-defined decreasing sequence
satisfying

z(t4) ≤ wm(t) ≤ z(t) for t ≥ t4 and m ∈ N0.

Thus, there exists a function w on [t4,∞)T such that

lim
m→∞wm(t) = w(t) and z(t4) ≤ w(t) ≤ z(t).

By the Lebesgue’s dominated convergence theorem on time scale, it follows that

w(t) = z(t4) +

t∫
t4

⎛
⎝ 1

a(u)

∞∫
u

Q̄(s)wλ
(
g2(s)

)
Δs

⎞
⎠
1/α

Δu. (2.16)

Differentiating (2.16) twice, we conclude that w is a nonoscillatory solution of the
equation (2.10) with the desired property. This completes the proof of the lemma.

�

The following lemma makes use of the auxiliary equation(
1

Āα(t)

(
vΔ(t)

)α)Δ
+ (1− p∗)λ Q(t)vλ

(
g2(t)

)
= 0 for t ≥ t2, (2.17)

where Ā(t) :=
∫ t

t1
a−1/α(s)Δs for sufficiently large t2 ∈ (t1,∞)T for some

t1 ∈ [t0,∞)T.

����� 2.8� If the conditions (1.3) and (2.3) hold and the equation (2.17) is
oscillatory, then the conclusion of Lemma 2.7 holds.
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P r o o f. Let x(t) be an eventually positive solution of the equation (1.1), say
x(t)> 0 and x

(
h(t, θ)

)
> 0 and x

(
g(t, τ)

)
> 0 for t≥ t1 for some t1 ∈ [t0,∞)T,

θ∈ [c, d] and τ ∈ [a, b] and let y satisfy Case (I) of Lemma 2.1. Hence

yΔ(t) = yΔ(t1) +

t∫
t1

a1/α(s)yΔΔ(s)

a1/α(s)
Δs ≥ a1/α(t)yΔΔ(t)

t∫
t1

Δs

a1/α(s)

= a1/α(t)yΔΔ(t)Ā(t) for t ≥ t1.

An integration yields

y(t) ≥ y(t1) +

t∫
t1

Ā(u)a1/α(u)yΔΔ(u)Δu. (2.18)

Using (2.4) in the equation (2.2), integrating from u to v ≥ u ≥ t1 and letting
v → ∞, we have

yΔΔ(u) ≥ 1

a1/α(u)

⎛
⎝ ∞∫

u

(1− p∗)λ Q(s)yλ
(
g2(s)

)
Δs

⎞
⎠
1/α

. (2.19)

Substituting (2.19) into (2.18) gives

y(t) ≥ y(t2) +

t∫
t1

Ā(u)

⎛
⎝ ∞∫

u

(1− p∗)λ Q(s)yλ
(
g2(s)

)
Δs

⎞
⎠
1/α

Δu

Next we define the sequences {vm(t)}m∈N0
by

v0(t) = y(t),

vm+1(t) = y(t1) +

t∫
t1

Ā(u)

⎛
⎝ ∞∫

u

(1− p∗)λQ(s)yλ
(
g2(s)

)
Δs

⎞
⎠
1/α

Δu, m ∈ N0.

The remainder of the proof is similar to the proof of Lemma 2.7 and is omitted.
�

Next, we present the following result.

����� 2.9� Let the conditions (1.3) and (2.3) hold and assume that x is
an eventually positive solution of the equation (1.1) and the corresponding y
satisfies Case (II) of Lemma 2.1. Then either

x(t) ≥
(
1− p∗δ

δ

)
y(t), (2.20)

eventually, where δ > 1 is any constant with p∗δ < 1 and p∗ is as in (2.3), or
limt→∞ x(t) = 0.
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P r o o f. Pick t0 ∈ T such that

x(t) > 0 and x
(
h(t, θ)

)
> 0 for t ≥ t0 and θ ∈ [c, d].

Also, since y(t) satisfies Case (II) of Lemma 2.1, then there exists a constant k
such that

lim
t→∞

y(t) = k < ∞.

(i) Assume that k > 0, then we have

k < y(t) < kδ, for all δ > 1 and t ≥ t0. (2.21)

Now,

x(t) = y(t)−
d∫

c

p(t, θ)x
(
h(t, θ)

)
Δθ,

and so

x(t) ≥ k − kp∗δ =

(
1− p∗δ

δ

)
kδ ≥

(
1− p∗δ

δ

)
y(t) for t ≥ t0.

(ii) Assume that k = 0, then limt→∞ y(t) = 0. Since 0 < x(t) ≤ y(t) on [t0,∞)T,
then limt→∞ x(t) = 0. This completes the proof of the lemma. �

����� 2.10� Let the conditions (1.3) and (2.3) hold and assume that x(t) is
an eventually positive solution of the equation (1.1) and the corresponding y
satisfies Case (II) of Lemma 2.1. If

∞∫
t0

∞∫
v

⎡
⎣ 1

a(u)

∞∫
u

Q(s)Δs

⎤
⎦
1/α

ΔuΔv = ∞, (2.22)

then limt→∞ x(t) = 0.

P r o o f. Proceeding as in the proof of Lemma 2.9, we obtain either (2.20) holds
or limt→∞ x(t) = 0. We suppose that

x(t) ≥
(
1− p∗δ

δ

)
y(t), for t ≥ t1 ≥ t0. (2.23)

Using (2.23) in the equation (2.2), we have

(
a(t)

(
yΔΔ(t)

)α)Δ
= −

b∫
a

q(t, τ) xλ
(
g(t, τ)

)
Δτ

≤ −
(
1− p∗δ

δ

)λ b∫
a

q(t, τ) yλ
(
g(t, τ)

)
Δτ

≤ −
(
1− p∗δ

δ

)λ
Q(t)yλ

(
g1(t)

)
for t ≥ t1 ≥ t0. (2.24)
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Integrating this inequality from t to u ≥ t ≥ t1 and letting u → ∞, we have

yΔΔ(t) ≥
(
1− p∗δ

δ

)λ/α ⎛⎝ 1

a(t)

∞∫
t

Q(s)yλ
(
g1(s)

)
Δs

⎞
⎠
1/α

. (2.25)

Using (2.21) in (2.25), we get

yΔΔ(t) ≥ c

⎛
⎝ 1

a(t)

∞∫
t

Q(s)Δs

⎞
⎠
1/α

, (2.26)

where c :=
(
k
[
1−p∗δ

δ

])λ/α
. Integrating (2.26) twice, we obtain

∞ > y(t1) ≥ c

t∫
t1

∞∫
v

⎛
⎝ 1

a(u)

∞∫
u

Q(s)Δs

⎞
⎠
1/α

ΔuΔv → ∞ as t → ∞,

which is a contradiction. This completes the proof of the lemma. �

����� 2.11� Let g1 be a nondecreasing on [t0,∞)T, conditions (1.3) and (2.3)
hold and assume that x(t) is an eventually positive solution of the equation (1.1)
and the corresponding y satisfies Case (II) of Lemma 2.1. If

lim sup
t→∞

t∫
g1(t)

⎛
⎝ 1

a(u)

t∫
u

Q(s)
[
g1(t)− g1(s)

]λ
Δs

⎞
⎠
1/α

Δu >

{
c if λ = α,

0 if λ < α,
(2.27)

where Q and g1 are as in (2.6), c := δ
1−p∗δ , p

∗ and δ are as in Lemma 2.9, then

limt→∞ x(t) = 0.

P r o o f. Proceeding as in the proof of Lemma 2.10, we obtain (2.24). We also
have

−y
(
g1(s)

) ≤ y
(
g1(t)

)−y
(
g1(s)

)
=

g1(t)∫
g1(s)

yΔ(τ)Δτ

≤ yΔ
(
g1(t)

) g1(t)∫
g1(s)

Δτ = yΔ
(
g1(t)

)[
g1(t)− g1(s)

]
, (2.28)

for t ≥ s ≥ t0. Integrating (2.24) from u to t ≥ u ≥ t0, we obtain

yΔΔ(u) ≥
(
1− p∗δ

δ

)λ/α⎛⎝ 1

a(u)

t∫
u

Q(s)yλ
(
g1(s)

)
Δs

⎞
⎠
1/α

. (2.29)
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Substituting (2.28) into (2.29), we obtain

yΔΔ(u) ≥
(
1− p∗δ

δ

)λ/α⎛⎝ 1

a(u)

t∫
u

Q(s)
[
g1(t)− g1(s)

]λ
Δs

⎞
⎠
1/α(

−yΔ
(
g1(t)

))λ/α
.

Integrating from g1(t) ≥ t0 to t gives

− yΔ
(
g1(t)

) ≥ yΔ(t)− yΔ
(
g1(t)

) ≥
(
1− p∗δ

δ

)λ/α(
−yΔ

(
g1(t)

))λ/α t∫
g1(t)

⎛
⎝ 1

a(u)

t∫
u

Q(s)
[
g1(t)− g1(s)

]λ
Δs

⎞
⎠
1/α

Δu.

So(
−yΔ

(
g1(t)

))1−λ/α

≥(
1− p∗δ

δ

)λ/α t∫
g1(t)

⎛
⎝ 1

a(u)

t∫
u

Q(s)
[
g1(t)− g1(s)

]λ
Δs

⎞
⎠
1/α

Δu. (2.30)

Taking lim sup as t → ∞ of both sides of the above inequality. If λ = α, the
contradiction is obvious. If λ<α, then the left hand side of (2.30) is positive and
must decrease to zero (to prevent a contradiction to the positivity of y(t)).
This contradicts (2.27) and completes the proof of the lemma. �

����� 2.12� Let the hypotheses of Lemma 2.11 hold with the condition (2.27)
be replaced by

lim sup
t→∞

t∫
g1(t)

t∫
v

⎛
⎝ 1

a(u)

t∫
u

Q(s)Δs

⎞
⎠
1/α

ΔuΔv >

{
c if λ = α,

0 if λ < α.
(2.31)

Then the conclusion of Lemma 2.11 holds.

P r o o f. As in the proof of Lemma 2.11, we obtain (2.29) and integrating we have

−yΔ(v) ≥ yΔ(t)− yΔ(v)

≥
(
1− p∗δ

δ

)λ/α
yλ/α

(
g1(t)

) t∫
v

⎛
⎝ 1

a(u)

t∫
u

Q(s)Δs

⎞
⎠
1/α

Δu.

Integrating from g1(t) ≥ t0 to t yields

y1−λ/α
(
g1(t)

) ≥ (
1− p∗δ

δ

)λ/α t∫
g1(t)

t∫
v

⎛
⎝ 1

a(u)

t∫
u

Q(s)Δs

⎞
⎠
1/α

ΔuΔv.
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Taking lim sup as t → ∞ gives a contradiction to the condition (2.31).
This completes the proof of the lemma. �

We are now ready to present the main results in this section.

����	�� 2.1� Let (1.3), (2.3), (2.22) and either one of the equations (2.7),
(2.10) or (2.17) be oscillatory, then every solution x(t) of the equation (1.1)
oscillates or satisfies limt→∞ x(t) = 0.

P r o o f. Let x(t) be an eventually positive solution of the equation (1.1), say

x(t) > 0 and x
(
h(t, θ)

)
> 0 and x

(
g(t, τ)

)
> 0

for t ≥ t1 for some t1 ∈ [t0,∞)T, θ ∈ [c, d] and τ ∈ [a, b]. Then y(t) satisfies one
of the two cases of Lemma 2.1. By either Lemmas 2.4, 2.7 or 2.8, Case (I) cannot
hold. If Case (II) holds, Lemma 2.10 implies limt→∞ x(t) = 0. This proves the
theorem. �

Next, we establish another new oscillation criteria for the equation (1.1).

����	�� 2.2� Let λ ≤ α, g1 be a nondecreasing on [t0,∞)T, (1.3) and (2.3)
hold. If either one of the equations (2.7), (2.10) or (2.17) is oscillatory, and
condition (2.27) or (2.31) holds, then every solution x(t) of the equation (1.1)
oscillates or satisfies limt→∞ x(t) = 0.

P r o o f. Let x(t) be an eventually positive solution of the equation (1.1), say

x(t)>0 and x
(
h(t, θ)

)
>0 and x

(
g(t, τ)

)
>0

for t≥ t1 for some t1 ∈ [t0,∞)T, θ ∈ [c, d] and τ ∈ [a, b]. Then y(t) satisfies one
of the two cases of Lemma 2.1. By either Lemmas 2.4, 2.7 or 2.8, Case (I) cannot
hold. By Lemma 2.11 (or Lemma 2.12), Case (II) does not hold. This completes
the proof of the theorem. �

Remark 1� Our results of this section remain valid of g(t, τ) is nondecreasing
in the second variable. In this case, we replace

g1(t) by ḡ1(t) = g(t, b)

and

g2(t) by ḡ2(t) = g(t, a).

Remark 2� Wemay apply Lemma 2.5 to equation (2.7) with λ = α. This details
are left to the readers.
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3. Oscillation of the equation (1.2)

We begin with the following lemmas that are essential in the proof of our
theorems. It will be convenient to set

y(t) = xβ
(
h1(t)

)− r(t)xγ
(
h2(t)

)
. (3.1)

The equation (1.2) can then be written as

(
a(t)

(
yΔΔ(t)

)α)Δ
+

b∫
a

q (t, τ) xλ
(
g(t, τ)

)
Δτ = 0. (3.2)

����� 3.1� Let the condition (1.3) hold and assume that x is an eventually
positive solution of the equation (1.2). Then there are only three possible cases
for the behaviour of y for large t ≥ t0:

(I) y(t) > 0, yΔ(t) > 0, yΔΔ(t) > 0, and
(
a(t)

(
yΔΔ(t)

)α)Δ≤ 0;

(II) y(t) > 0, yΔ(t) < 0, yΔΔ(t) > 0, and
(
a(t)

(
yΔΔ(t)

)α)Δ≤ 0;

(III) y(t) < 0, yΔ(t) < 0, yΔΔ(t) > 0, and
(
a(t)

(
yΔΔ(t)

)α)Δ≤ 0.

If case (I) or (II) holds, then we find

x(t) ≥ y1/β
(
h−1
1 (t)

)
. (3.3)

Using (3.3) in the equation (3.2), we have

(
a(t)

(
yΔΔ(t)

)α)Δ
+

b∫
a

q (t, τ) yλ/β
(
h−1
1 ◦ g(t, τ))Δτ ≤ 0, (3.4)

and when Case (III) holds, we see that

0 < z(t) = −y(t) = r(t)xγ
(
h2(t)

)− xβ
(
h1(t)

) ≤ r(t)xγ
(
h2(t)

)
,

and so

x(t) ≥
(
z
(
h−1
2 (t)

)
r
(
h−1
2 (t)

)
)1/γ

, (3.5)

and the equation (3.2) becomes

(
a(t)

(
zΔΔ(t)

)α)Δ≥
b∫

a

q (t, τ) r−λ/γ
(
h−1
2 ◦ g(t, τ)) zλ/γ(h−1

2 ◦ g(t, τ))Δτ. (3.6)

Next, we assume that

(vi) ζ1(t, τ) = h−1
1 ◦ g(t, τ) ≤ t for τ ∈ [a, b], ζ1 is nonincreasing with respect

to the second variable and limt→∞ ζ1(t, τ) = ∞;
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(vii) ζ2(t, τ) = h−1
2 ◦ g(t, τ) ≤ t for τ ∈ [a, b], ζ2 is nonincreasing with respect

to the second variable and limt→∞ ζ2(t, τ) = ∞.

Also, we set

Q(t) :=

b∫
a

q(t, τ)Δτ, ζ̂1(t) := ζ1(t, a), ζ̄1(t) := ζ1(t, b), (3.7)

and ζ̂2(t) := ζ2(t, a), ζ̄2(t) := ζ2(t, b). (3.8)

Now, if y satisfies Case (I) of Lemma 3.1, then (3.4) becomes(
a(t)

(
yΔΔ(t)

)α)Δ
+ Q (t) yλ/β

(
ζ̄1(t)

) ≤ 0, (3.9)

where Q is as in (2.6). When y satisfies Case (II) of Lemma 3.1, then (3.4)
becomes (

a(t)
(
yΔΔ(t)

)α)Δ
+ Q (t) yλ/β

(
ζ̂1(t)

) ≤ 0. (3.10)

If y satisfies Case (III) of Lemma 3.1, then (3.6) takes the form(
a(t)

(
zΔΔ(t)

)α)Δ≥ Q̂ (t) zλ/γ
(
ζ̄2(t)

)
, (3.11)

where

Q̂ (t) :=

b∫
a

q (t, τ) r−λ/γ
(
ζ2(t, τ)

)
Δτ. (3.12)

As direct consequence of Lemmas 2.4, 2.6, 2.7, 2.8, 2.10, 2.11 and 2.12,
we get the following results.

����� 3.2� Let the condition (1.3) hold and equation

zΔ(t) +Q(t)

⎛
⎜⎝

ζ̄1(t)∫
t1

u∫
t1

a−1/α(s)ΔsΔu

⎞
⎟⎠
λ/β

zλ/(αβ)
(
g2(t)

)
= 0 for t ≥ t1, (3.13)

for t1 ∈ [t0,∞)T, is oscillatory, then the equation (1.2) has no eventually positive
solution x such that y defined by (3.1) satisfies Case (I) of Lemma 3.1.

����� 3.3� Let the condition (1.3) hold and assume that x(t) is an eventually
positive solution of the equation (1.2) and the corresponding y satisfies Case (I)
of Lemma 3.1. Then there exists t1 ∈ [t0,∞)T such that (2.9) holds.

����� 3.4� If the condition (1.3) holds and the equation(
a(t)

(
zΔ(t)

)α)Δ
+ Q̄(t)zλ

(
g2(t)

)
= 0, (3.14)

where for ζ̄1(t) > t0, we set

Q̄(t) := Aλ
(
ζ̄1(t), t0

)
Q(t),
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is oscillatory, then the equation (1.2) has no eventually positive solution x such
that y is defined by (3.1) satisfies Case (I) of Lemma 3.1.

����� 3.5� If the condition (1.3) hold and the equation(
1

Āα(t)

(
vΔ(t)

)α)Δ
+Q(t)vλ

(
g2(t)

)
= 0 for t ≥ t2, (3.15)

where Ā(t) :=
∫ t

t1
a−1/α(s)Δs for sufficiently large t2 ∈ (t1,∞)T for some

t1∈ [t0,∞)T, is oscillatory, then the conclusion of Lemma 3.4 holds.

����� 3.6� Let the condition (1.3) hold and assume that x(t) is an eventually
positive solution of the equation (1.2) and the corresponding y satisfies Case (II)
of Lemma 3.1. If (2.22) holds, then limt→∞ x(t) = 0.

����� 3.7� Let ζ̂1 be a nondecreasing on [t0,∞)T, the condition (1.3) hold and
assume that x(t) is an eventually positive solution of the equation (1.2) and the
corresponding y satisfies Case (II) of Lemma 3.1. If

lim sup
t→∞

t∫
ζ̂1(t)

⎛
⎝ 1

a(u)

t∫
u

Q(s)
[
ζ̂1(t)− ζ̂1(s)

]λ/β
Δs

⎞
⎠
1/α

Δu >

{
1 if λ = αβ,

0 if λ < αβ,
(3.16)

then limt→∞ x(t) = 0.

����� 3.8� Let the hypotheses of Lemma 3.7 hold with the condition (3.16) be
replaced by

lim sup
t→∞

t∫
ζ̂1(t)

t∫
v

⎛
⎝ 1

a(u)

t∫
u

Q(s)Δs

⎞
⎠
1/α

ΔuΔv >

{
1 if λ = αβ,

0 if λ < αβ.
(3.17)

Then the conclusion of Lemma 3.7 holds.

In the following two lemmas, we consider the second order delay dynamic
equation (

a(t)
(
wΔ(t)

)α)Δ
= d̄

(
ζ̄2(t)

)λ/γ
Q̂ (t)wλ/γ

(
ζ̄2(t)

)
, (3.18)

where ζ̄2 and Q̂ are as in (3.8) and (3.12) respectively, a, α, γ, λ are as in the equa-
tion (1.1) and d̄ > 0 is a constant.

����� 3.9� Let ζ̄2 be a nondecreasing on [t0,∞)T and the condition (1.3) hold.
If

lim sup
t→∞

t∫
ζ̄2(t)

(
ζ̄2(s)

)λ/γ
Q̂ (s)

⎛
⎜⎝

ζ̄2(t)∫
ζ̄2(s)

a−1/α(τ)Δτ

⎞
⎟⎠
λγ

Δs >

{
1
d̄

if λ = αγ,

0 if λ < αγ,
(3.19)

then all bounded solutions of the equation (3.18) are oscillatory.
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P r o o f. Let w(t) be a bounded nonoscillatory solution of the equation (3.18),
say w(t) > 0 for t ≥ t1 for some t1 ≥ t0 ∈ T. Then there exists t2 ∈ [t1,∞)T
such that

w(t) > 0, wΔ(t) < 0 and
(
a(t)

(
wΔ(t)

)α)Δ
> 0 for t ≥ t2. (3.20)

Now for v ≥ u ≥ t2, we have

w(u) ≥ w(u)− w(v) = −
v∫

u

wΔ(τ)Δτ = −
v∫

u

a−1/α(τ)
(
a(τ)

(
wΔ(τ)

)α)1/α
Δτ

≥ −
(
a(v)

(
wΔ(v)

)α)1/α v∫
u

a−1/α(τ)Δτ. (3.21)

For t ≥ s ≥ t2, setting u = ζ̄2(s) and v = ζ̄2(t) in the inequality (3.21) gives

w
(
ζ̄2(s)

) ≥ −
(
a(ζ̄2(t))

(
wΔ(ζ̄2(t))

)α)1/α ζ̄2(t)∫
ζ̄2(s)

a−1/α(τ)Δτ. (3.22)

Integrating the equation (3.18) from ζ̄2(t) ≥ t2 to t, we obtain

−a
(
ζ̄2(t)

)(
wΔ

(
ζ̄2(t)

))α ≥ a(t)
(
wΔ(t)

)α − a
(
ζ̄2(t)

)(
wΔ

(
ζ̄2(t)

))α

=

t∫
ζ̄2(t)

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)wλ/γ

(
ζ̄2(s)

)
Δs. (3.23)

Using (3.22) in (3.23), one can easily see that

−a
(
ζ̄2(t)

)(
wΔ

(
ζ̄2(t)

))α

≥
(
−a

(
ζ̄2(t)

)(
wΔ

(
ζ̄2(t)

))α)λ
αγ

t∫
ζ̄2(t)

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)

⎛
⎜⎝

ζ̄2(t)∫
ζ̄2(s)

a−1/α(τ)Δτ

⎞
⎟⎠
λ/γ

Δs,

or [
−a

(
ζ̄2(t)

)(
wΔ

(
ζ̄2(t)

))α]1− λ
αγ

≥
t∫

ζ̄2(t)

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)

⎛
⎜⎝

ζ̄2(t)∫
ζ̄2(s)

a−1/α(τ)Δτ

⎞
⎟⎠
λ/γ

Δs.

(3.24)
Now take the lim sup as t → ∞ of both sides of the above inequality. If λ = αγ
the contradiction is obvious. If λ < αγ the left hand side of (3.24) is positive
and must decrease to zero (to present a contradiction to the positivity of w(t)).
This contradicts (3.19) and completes the proof of the lemma. �
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����� 3.10� Let ζ̄2 be a nondecreasing on [t0,∞)T and the condition (3.19)
in Lemma 3.9 be replaced by

lim sup
t→∞

t∫
ζ̄2(t)

⎛
⎝ 1

a(s)

t∫
s

(
ζ̄2(τ)

)λ/γ
Q̂ (τ)Δτ

⎞
⎠Δs >

{
d̄−1/α if λ = αγ,

0 if λ < αγ.
(3.25)

Then the conclusion of Lemma 3.9 holds.

P r o o f. Let w(t) be a bounded nonoscillatory solution of the equation (3.18),
say w(t) > 0 for t ≥ t1 ≥ t0 ∈ T. As in the proof of Lemma 3.9, we obtain
(3.20) for t ≥ t2 for some t2 ∈ [t1,∞)T. Integrating (3.18) from u ≥ t2 to t ≥ u,
we have

a(t)
(
wΔ(t)

)α − a(u)
(
wΔ(u)

)α
=

t∫
u

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)wλ/γ

(
ζ̄2(s)

)
Δs,

or

−wΔ(u) ≥ w
λ
αγ

(
ζ̄2(t)

)⎛⎝ 1

a(u)

t∫
u

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)Δs

⎞
⎠
1/α

.

Integrating this inequality from ζ̄2(t) to t, we obtain

w
(
ζ̄2(t)

) ≥ w
λ
αγ

(
ζ̄2(t)

) t∫
ζ̄2(t)

⎛
⎝ 1

a(u)

t∫
u

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)Δs

⎞
⎠
1/α

Δu,

or

w(1−
λ
αγ )

(
ζ̄2(t)

) ≥
t∫

ζ̄2(t)

⎛
⎝ 1

a(u)

t∫
u

d̄
(
ζ̄2(s)

)λ/γ
Q̂(s)Δs

⎞
⎠
1/α

Δu.

Taking the lim sup as t → ∞ of both sides of the above inequality, we again
obtain a contradiction as in the previous lemma. �

We are now ready to establish the main results of this section.

����	�� 3.1� Let λ ≤ αγ, λ ≤ αβ, ζ̂1 and ζ̄2, i = 1, 2 be nondecreasing
on [t0,∞)T and the condition (1.3) hold. If either one of the dynamic equations
(3.13), (3.14) or (3.15) is oscillatory, the condition (3.16) or (the condition
(3.17)) holds and the condition (3.19) or (the condition (3.25)) is satisfied with
0 < d̄ < 1, then every solution x(t) of the equation (1.2) oscillates or satisfies
limt→∞ x(t) = 0.

P r o o f. Let x(t) be an eventually positive solution of the equation (1.2),
say x(t) > 0 and x

(
hi(t)

)
> 0, i = 1, 2 and x

(
g(t, τ)

)
> 0 for t ≥ t1
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for some t1 ∈ [t0,∞)T and τ ∈ [a, b]. Then y(t) defined by (3.1) satisfies one
of the three cases of Lemma 3.1 and satisfies the equation (3.2). If Case (I)
holds, then (3.3) holds. Now using (3.3) in the equation (3.2), we obtain the in-
equality (3.9). By either Lemma 3.2, Lemma 3.4 or Lemma 3.5, Case (I) cannot
hold. Similarly, when Case (II) one can easily obtain the inequality (3.10), and
by Lemma 3.7 or Lemma 3.8, Case (II) cannot hold. Finally, if Case (III) holds,
we let 0 < z(t) = −y(t) and proceed as above to obtain the inequality (3.11).
It is easy to check that z satisfies

z(t) > 0, zΔ(t) > 0, zΔΔ(t) < 0 and
(
a(t)

(
zΔΔ(t)

)α)Δ≥ 0,

for t ≥ t2 ≥ t1. Now, there exists a constant d̄ ∈ (0, 1) such that

z
(
ζ̄2(t)

) ≥ d̄ ζ̄2(t)z
Δ
(
ζ̄2(t)

)
for t ≥ t3 ≥ t2. (3.26)

Using (3.26) in (3.11), we get(
a(t)

(
zΔΔ(t)

)α)Δ≥ Q̂(t)
(
d̄ ζ̄2(t)z

Δ
(
ζ̄2(t)

))λ/γ
for t ≥ t3,

or (
a(t)

(
wΔ(t)

)α)Δ ≥ (
d̄
)λ/γ (

ζ̄2(t)
)λ/γ

Q̂(t)wλ/γ
(
ζ̄2(t)

)
for t ≥ t3,

where w(t) := zΔ(t). Proceeding as in the proofs of Lemma 3.9 and Lemma 3.10,
we arrive at the desired conclusion completing the proof of the theorem. �

Remark 3� We may note that Theorem 2.1 is also applicable to the equa-
tion (1.2). The details are omitted.

When p (t, θ) ≡ 0 in the equation (1.1) or β = 1, r(t) = 0 and h1(t) = t in the
equation (1.2), both equations are reduced to

(
a(t)

(
xΔΔ(t)

)α)Δ

+

b∫
a

q(t, τ)xλ
(
g(t, τ)

)
Δτ = 0. (3.27)

In this case we have the following new result.

����	�� 3.2� Let λ ≤ α and (1.3) hold. If either one of the equations (2.7)
with p∗ ≡ 0, (2.10) or (2.17) with p∗ ≡ 0 is oscillatory and the condition (2.27)
or (the condition (2.31)) holds, then every solution x(t) of the equation (3.27)
oscillates or satisfies limt→∞ x(t) = 0.

P r o o f. The conclusion follows from Theorem 2.2 or 3.1 and is omitted. �
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4. General remarks

(1) The results of this paper are presented in a form that is essentially new
and of a high degree of generality.

(2) We note that there are many criteria in the literature of first and second
order dynamic equations and so by applying these results to the equations
(2.7), (2.10) and (2.17), we can obtain many oscillation results, more that
those known in the literature. Here we omit the details.

(3) The results here are valid for various type of time scales, e.g., T = R,
T = Z, T = hZ with h > 0, T = qN0 with q > 1, T = N

2
0, etc. (see [2]).

(4) We note that our results on the asymptotic behavior of solutions are ap-
plicable to the equations (1.1) and (1.2) if g(t, τ) ≤ t, τ ∈ [a, b] while
our oscillation results are applicable to the equations (1.1) and (1.2) if
g(t, τ) < t, τ ∈ [a, b]. Thus as it has been known, there is the delay in the
equations (1.1) and (1.2) which can generate oscillations.

(5) Our results of Section 2 are new and our results of Section 3 include, extend
and improve the results in [9] and [12].

(6) Finally, it would be of interest to consider the equations (1.1) and (1.2) try
to obtain some oscillation criteria if other appropriate conditions
on the functions p(t, θ), θ ∈ [c, d], r(t), etc.
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