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ESTIMATING THE SHORT RATE

FROM THE TERM STRUCTURES

IN THE VASICEK MODEL

Jana Halgašová — Beáta Stehĺıková — Zuzana Bučková

ABSTRACT. In short rate models, bond prices and term structures of inter-
est rates are determined by the parameters of the model and the current level
of the instantaneous interest rate (so called short rate). The instantaneous inter-
est rate can be approximated by the market overnight, which, however, can be

influenced by speculations on the market. The aim of this paper is to propose
a calibration method, where we consider the short rate to be a variable unobserv-
able on the market and estimate it together with the model parameters for the
case of the Vasicek model.

1. Introduction

A discount bond is a security which pays its holder a unit amount of money at
specified time T (called maturity). Let P (t, T ) be the price of a discount bond
with maturity T at time t. It defines the corresponding interest rate R(t, T )
by the formula

P (t, T ) = e−R(t,T )(T−t), i.e., R(t, T ) = − lnP (t, T )

T − t
.

Zero-coupon yield curve, also called term structure of interest rates, is then
formed by interest rates with different maturities. Short rate (or instantaneous
interest rate) is the interest rate for infinitesimally short time. It can be seen
as the beginning of the yield curve: r(t) = limT→t+ R(t, T ). For a more detailed
introduction to short rate modelling see, e.g., [1], [4].

In short rate models, the short rate is modelled by a stochastic differential
equation. In particular, in Vasicek model [7], it is modelled by a mean-reverting
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Ornstein-Uhlenbeck process

dr = κ(θ − r)dt + σdw,

where κ, θ, σ are positive parameters and w is a Wiener process. It can be shown
that after the specification of the so called market price of risk, the bond price
P (τ, r) with maturity τ , when the current level of the short rate is r, is a so-
lution to the parabolic partial differential equation. In the Vasicek model, it is
customary to consider the constant market price of risk λ. Then, the bond price
P satisfies

− ∂P

∂τ
+
(
κ(θ − r)− λσ

)∂P
∂r

+
σ2

2

∂2P

∂r2
− rP = 0 (1)

for all r and τ > 0 and the initial condition P (0, r) = 1 for all r. This equation
has an explicit solution, which can be written as

lnP (τ, r) =
1− e−κτ

κ
(R∞ − r)−R∞τ − σ2

4κ3
(1− e−κτ )2, (2)

where R∞ = κθ−λσ
κ − σ2

2κ2 (see [7]). In Figure 1 we show a simulated behaviour
of the short rate (depicting also its equilibrium value θ) and term structures
for several values of the short rate for the parameters equal to κ = 5.00,
θ = 0.02, σ = 0.02, λ = −0.5.

Note that, although the model has four parameters, short rate parameters
κ, θ, σ and market price of risk λ, parameters θ and λ enter the partial differen-
tial equation (1) and hence also its solution (2) only through the term κθ− λσ.
Subsequently, it is possible to find formula for the bond price with three parame-
ters. It is customary to do so by defining α = κθ−λσ, β = −κ. Parameters α, β
are called risk neutral parameters, because they are related to an alternative
formulation of the model in the so called risk neutral measure. For more details
about risk neutral methodology see, e.g., [4].

Our aim is to use observable market term structures to calibrate the model,
i.e., infer the values of the parameters using a certain criterion. One approach
to calibration of the short rate models is based on minimizing the errors of the
theoretical yields compared to the yields observed on the market. This approach
was used for example in [6], [5]. Let us denote by Rij the yield observed on the ith
day for jth maturity and by R(τj , ri) the yields computed using the Vasicek
formula with the jth maturity τj and the short rate ri realized on the ith day.
Using the weighted mean square error (the weight given to the ith day and the
jth maturity is wij), we minimize the function

F =
1

mn

n∑
i=1

m∑
j=1

wij

(
R(τj , ri)−Rij

)2
, (3)

where n is number of days and m is number of maturities which are observed
on each of the days.
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Figure 1. Simulated behaviour of the short rate (above) and examples
of term structures (below) for the parameters κ = 5.00, θ = 0.02, σ = 0.02,
λ = −0.5.

Recall that to compute the Vasicek yields, the value of the short rate is
necessary. However, the short rate, defined as the beginning of the term structure
of interest rates, is only a theoretical variable, not observed on the market.
In practice, it can be approximated by a yield with short maturity, such as
overnight in [5], [6], [8] or 1-month yields in [2], [3], etc. Using 1-month (or some
other) yields is, however, not consistent with the interpretation of the short rate
as limit of the yields, as maturity approaches zero. Note that in the papers
[2], [3] this problem did not arise, since they considered only one time serie as
an approximation of the short rate, not the whole term structure. In [5], [6], [8],
when dealing with term structures, overnight was taken to approximate the
short rate. However, even using the overnight, which is closest to the short
rate regarding the time, is questionable. The overnight rate, observed on the
market, can be influenced by speculations. Hence we consider the short rate as
an unobservable variable and estimate it from the term structures together with
the parameters of the model.

89
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The paper is organized as follows: In the following section we present the
procedure for calibrating model parameters and the evolution of the short rate.
In Section 3 we simulate data and test the proposed procedure. Finally, in Sec-
tion 4, we apply the procedure data to the real market data. We end the paper
with some concluding remarks.

2. Calibration procedure

According to the considerations above, the objective function (3) will be min-
imized with respect to the model parameters α, β, σ2, as well as the time serie
of the short rate r = (r1, . . . , rn)

′.
The key observation is noting that the logarithm of the bond price in the

Vasicek model (2) is a linear function of the parameters α and σ2 and the short
rate r:

lnP (τ, r) = c0(τ)r + c1(τ)α+ c2(τ)σ
2,

where

c0 =
1− eβτ

β
, c1 =

1

β

[
1− eβτ

β
+ τ

]
, c2 =

1

2β2

[
1− eβτ

β
+ τ +

(1− eβτ)2

2β

]
.

Hence the objective function (3)

F (α, β, σ2, r) =
1

mn

n∑
i=1

m∑
j=1

wij

(
R(τj , ri)−Rij

)2

=
1

mn

n∑
i=1

m∑
j=1

wij

τ2j

(
lnP (τj , ri) + τjRij

)2
(4)

is quadratic in α, σ2 and the components of r. The optimal values for the given
value of β are then easily obtained from the first order conditions, which form
a system of n+ 2 linear equations:[

A B
C D

]
×
[

x
y

]
=

[
u
v

]
,

where

A =

[ ∑
i,j

wi,j

τ2
j
c21

∑
i,j

wi,j

τ2
j
c1c2∑

i,j
wi,j

τ2
j
c1c2

∑
i,j

wi,j

τ2
j
c22

]
,
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B = C’=

⎡
⎣

∑
j
w1,j

τ2
j
c1c0

∑
j

w2,j

τ2
j
c1c0 . . .

∑
j

wn,j

τ2
j
c1c0∑

j
w1,j

τ2
j
c2c0

∑
j

w2,j

τ2
j
c2c0 . . .

∑
j

wn,j

τ2
j
c2c0

⎤
⎦,

D =

⎡
⎢⎢⎢⎢⎢⎣

∑
j
w1,j

τ2
j
c20 0 · · · 0

0
∑

j
w2,j

τ2
j
c20 · · · 0

...
. . .

...

0 0 · · · ∑
j

wn,j

τ2
j
c20

⎤
⎥⎥⎥⎥⎥⎦ ,

x’ =
[
α, σ2

]
, y’ = [r1, r2, · · · , rn],

u’ =

⎡
⎣−∑

i,j

wi,j

τj
Ri,jc1, −

∑
i,j

wi,j

τj
Ri,jc2

⎤
⎦,

v’ =

⎡
⎣−∑

j

w1,j

τj
R1,jc0 , −

∑
j

w2,j

τj
R2,jc0 , · · · , −

∑
j

wn,j

τj
Rn,jc0

⎤
⎦.

Because of the special structure of the linear system, it is possible to reduce its
dimensionality. The block D is diagonal and hence it is easy to find its inverse.
Consequently, we are able to express the vector y in the following way:

Cx +Dy = v ⇒ y = D-1 (v −Cx ).

From the equation Ax +By = u we obtain

(A−BD-1C )x = u −BD-1v ,

which is a system of two linear equations.

In this way we are able to find the optimal values of the parameters α and σ,
and the short rate vector r for the given value of β. Then, finding the optimal β
is a one-dimensional optimization problem.

3. Application to simulated data

In the previous section we have proposed calibration procedure, which esti-
mates model parameters α, σ2, r using closed formulae from Section 2 based on
the first order conditions for minimizing the quadratic function for given pa-
rameter β. Given the optimal parameters α, σ2, r for each β, it is easy to find
the optimal value of the parameter β, since it is a one dimensional optimization
problem.
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The accuracy of the estimation, when tested on simulated data, is very good
and there seem to be no numerical problems. We show one illustrative example
here.

Using the real measure parameters from the introduction (i.e., κ = 5.00,
θ = 0.02, σ = 0.02, λ = −0.5) we simulate the time serie of the daily short
rate values for 252 days (i.e., one year) and for each day we compute the
yield curves with 12 maturities: 1 month, 2 months, . . . , 12 months. We use
these yields as the input for the proposed calibration procedure. Following [5]
and [6], we use the weights equal to the square of the corresponding maturity,
i.e., wij = τ2j .

Our values of real measure parameters and the market price of risk imply
the following risk neutral parameters: α = 0.11, β = −5.00, σ = 0.02. Recall
that the calibration reduces to one-dimensional optimization, where the optimal
value of β is found. Figure 2 shows the dependence of the objective function
on β using a simulated set of data described above. Finding the optimal β
and corresponding values of α and σ, we obtain the following estimates of the
parameters:

α = 0.1099999999979, β = −5.000000000000018, σ = 0.01999999943821.

As we can see, the parameters are almost exactly estimated. Also real and
estimated short rates almost coincide. Figure 3 shows their difference, which
is of the order 10−16. Figure 4 shows some of the fitted term structures.

Figure 2. Dependence of the objective function F on parameter β using
simulated data.
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Figure 3. Difference between the real and the estimated short rate using
simulated data.

Figure 4. Examples of the fitted term structures using simulated data.

4. Application to real data

In this section we address the following two questions:

• How is the estimated short rate related to the market overnight? Can the
short rate be approximated by market overnight or is it necessary to treat
it as an unobservable factor which needs to be estimated?

• Is the estimated short rate robust to changing the maturities of the interest
rates used for calibration?
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4.1. Comparison between estimated short rate and overnight

One of the motivations for estimating the short rate from the market
(observable) data are the results from the paper [8], where we considered the con-
vergence model for the Slovak interest rates before adoption of Euro currency
in 2009. The first step, when building the convergence model, is specifying
the one-factor model for the European rates. We have used Euribor1 term
structures and Eonia2 as the approximation of the European short rate when
calibrating the model. However, this leads to poor fit of the term structure.
The difference between the short rate as estimated from the term structures and
the market overnight would explain the observed bad quality of the fit. Therefore,
we use the proposed methodology for the Euribor rates in 2008. With a similar
motivation in mind (Estonia adopted Euro in 2011), we do the same for the
Euribor rates in 2010. For a comparison, we use also Estonian interest rates
(Talibor3) from the same time periods. These data sets are described in Table 1.

Table 1. Data sets for comparing the estimated short rate with market
overnight. Every data set is considered separately for the years 2008 and

2010.

Data set Frequency Maturities

Euribor daily 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months

Talibor daily 1, 2, 3, 4, 5, 6 months

The results are presented in Figure 5 (Euribor) and Figure 6 (Talibor). We see
that although the estimate of the short rate for Euribor in 2008 has a similar
behaviour as the market overnight, it is higher and has a smaller volatility.
The latter feature is especially pronounced in 2010, when the levels are approxi-
mately the same, but they are very different regarding the volatility. In the case
of Talibor in 2008, there seems to be a difference between the estimated short
rate and the market overnight, which does not vary much in time, while their
volatility is similar.

1Euribor – European Interbank Offered Rate – is the rate at which euro interbank term deposits
are offered by one prime bank to another prime bank; source: http://www.euribor-ebf.eu/
2Eonia – Euro OverNight Index Average – is the effective overnight reference rate for the
euro and is computed from overnight unsecured lending transactions undertaken in the
interbank market, source: http://www.euribor-ebf.eu/
3Talibor –Tallinn Interbank Offered Rate – was based on the interest rates at which banks
offered to lend unsecured funds to other banks in the Estonian wholesale money market or

interbank market in Estonian kroons, source: http://www.eestipank.ee/
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Figure 5. Comparison of the estimated short rate and the overnight for

Euribor: 2008 (left), 2010 (right).

Figure 6. Comparison of the estimated short rate and the overnight for
Talibor: 2008 (left), 2010 (right).

We present also the fitted term structures from 2010: Figure 7 and Table 2
show Euribor term structures; Figure 8 and Table 3 show Talibor term struc-
tures. In Figures 7 and 8 we can observe a good fit of term structures compared
to Figure 4 in [8], where the short rate was identified with the market values
of the overnight rates. This observation is confirmed also by Tables 7 and 8
(differences between exact and estimated yields are 10−4–10−5) in contrast to
Table 4 in [8] (differences are about 10−1). To sum it up, we have achieved much
higher estimation accuracy using the estimated short rate values in our models.

4.2. Estimated short rates using different sets of maturities

The Canadian interest rates4 are available for a wide range of maturities
up to 30 years, which allows us to test the robustness of the short rate estimates
to the choice of maturities used in calibration. We used three sets of parameters:

4yield curves for zero-coupon bonds, generated using pricing data for Government of Canada

bonds and treasury bills, source: http://www.bankofcanada.ca
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Figure 7. Accuracy of the estimated yield curves. Euribor 2010.

Table 2. Accuracy of the estimated yield curves - absolute values of dif-

ferences between the real and the estimated rates. Euribor 2010.

Maturity [years] 50th day 100th day 150th day 200th day

0.083 5.30E-04 7.49E-04 3.29E-04 1.96E-04
0.167 6.22E-04 8.16E-04 5.79E-04 2.83E-04
0.25 2.00E-04 1.17E-04 1.56E-04 3.41E-04
0.33 4.73E-05 1.19E-04 8.04E-05 1.55E-05

0.42 3.98E-05 7.38E-05 1.23E-05 1.81E-05
0.5 4.17E-04 3.57E-04 2.45E-04 2.28E-04
0.58 1.19E-04 1.04E-04 5.73E-05 2.96E-05
0.67 7.25E-06 4.67E-05 8.01E-05 1.19E-04
0.75 1.68E-05 1.10E-05 3.10E-05 8.14E-05
0.83 9.34E-05 9.23E-05 1.20E-04 9.14E-05
0.917 8.05E-05 1.04E-04 5.92E-05 4.28E-05
1 2.82E-05 8.94E-05 1.27E-04 1.21E-04

the first one includes equally spaced maturities up to 30 years, the second one
consists of shorter maturities up to 2 years and the third one goes up to 10 years.
Details are given in Table 4.

We estimate the model separately for each of the years and in Figure 9
we record the different estimates of short rate depending on the input data.

Having in mind the high precision of the method on the simulated data
(although we have presented a simulation example only with maturities
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Figure 8. Accuracy of the estimated yield curves. Talibor 2010.

Table 3. Accuracy of the estimated yield curves - absolute values of dif-
ferences between the real and the estimated rates. Talibor 2010.

Maturity [years] 50th day 100th day 150th day 200th day

0.083 6.14E-04 3.12E-05 4.27E-04 4.43E-04

0.167 3.66E-04 4.73E-05 7.90E-04 5.08E-04

0.25 4.20E-04 6.57E-05 4.00E-04 4.80E-04

0.5 7.85E-04 4.09E-04 6.32E-04 2.40E-04

0.75 3.72E-04 2.39E-04 1.47E-04 3.30E-05

1 4.12E-04 1.61E-05 3.51E-04 1.21E-05

Table 4. Data sets for comparing the estimated short rate using different
maturities. Every data set is considered separately for the years 2007, 2008,

2009, 2010 and 2011.

Data set Frequency Maturities

Canada 1 daily 0.25, 2.5, 5, 7.5, 12.5, 10, 15, 17.5, 20, 22.5, 25, 27.5, 30 years

Canada 2 daily 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 years

Canada 3 daily 1 , 2 , 3 , 4 , 5, 6, 7, 8, 9, 10 years

from 1 month to 12 months, the procedure is very precise also for other choices
of maturities), we would expect to obtain almost identical estimates of the short
rate behaviour. Hence the differences, such as those observed in Figure 9 would
suggest the inadequacy of the Vasicek model.
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On the other hand, we are also interested in the impact on accuracy of esti-
mation of yield curves. We present the results from the year 2011 and for each
data set we compare real and estimated yield curves for selected days in Figures
10, 11, 12 and Tables 5, 6, 7. In general, the fit can be considered to be good.
Note that on the 150th day for data set 2 we observe a term structure shape
(firstly decreasing and then increasing) that is not possible to obtain in the Va-
sicek model, which allows only monotone and humped (firstly increasing and
then decreasing) term structures (cf. [7]). These shapes are estimated well; re-
call that in the construction of the objective function we have put more weight
to estimating the longer maturities.

Table 5. Accuracy of the estimated yield curves - absolute values of the
differences between real and estimated rates. Canada 2011, set 1.

Maturity [years] 50th day 100th day 150th day 200th day

0.25 7.90E-03 4.53E-03 8.12E-05 1.39E-03

2.5 4.38E-03 1.51E-03 3.87E-03 8.14E-04

5 2.13E-03 3.83E-04 3.76E-03 1.12E-03

7.5 1.12E-03 3.95E-04 1.66E-03 6.38E-04

12.5 4.09E-04 7.01E-04 3.89E-04 3.10E-04

10 9.43E-05 3.63E-04 1.97E-04 2.20E-04

15 2.58E-04 1.89E-04 2.41E-04 1.61E-04

17.5 1.19E-04 5.07E-04 1.36E-04 2.04E-05

20 9.45E-05 4.63E-04 3.47E-05 1.49E-04

22.5 1.51E-04 1.92E-04 1.15E-04 2.16E-04

25 9.22E-06 8.63E-05 9.36E-05 1.18E-04

27.5 2.10E-04 2.18E-04 9.77E-05 4.65E-05

30 8.09E-05 1.74E-04 2.98E-04 4.42E-06

Table 6. Accuracy of estimated yield curves - absolute values of differences

between the real and estimated rates. Canada 2011, set 2.

Maturity [years] 50th day 100th day 150th day 200th day

0.25 1.23E-03 1.10E-03 8.67E-04 3.50E-04

0.5 7.26E-04 7.42E-04 5.57E-04 2.58E-04

0.75 4.24E-04 3.96E-04 1.68E-04 1.71E-04

1 2.10E-04 1.35E-04 8.67E-05 7.44E-05

1.25 6.92E-05 2.19E-05 2.14E-04 1.74E-05

1.5 8.48E-06 7.66E-05 2.26E-04 8.19E-05

1.75 4.30E-05 5.49E-05 1.05E-04 7.80E-05

2 7.77E-05 2.98E-06 2.03E-04 5.84E-05
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Figure 9. Estimated short rate for Canada, estimated separately for each
of the years from 2007 to 2011.
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Figure 10. Accuracy of the estimated yield curves. Canada 2011, set 1.

Table 7. Accuracy of estimated yield curves - absolute values of differences
between the real and estimated rates. Canada 2011, set 3.

Maturity [years] 50th day 100th day 150th day 200th day

1 2.68E-03 1.19E-03 1.09E-03 2.50E-03
2 1.55E-03 1.90E-04 5.30E-04 1.37E-03
3 6.81E-04 2.02E-04 1.47E-03 6.15E-04

4 1.67E-04 2.55E-04 1.84E-03 1.92E-04
5 5.87E-05 2.04E-04 1.65E-03 6.98E-06
6 1.05E-04 1.52E-04 1.10E-03 7.77E-05
7 7.23E-05 1.10E-04 4.43E-04 8.79E-05
8 2.83E-05 5.23E-05 1.43E-04 7.46E-05
9 1.44E-05 4.59E-05 5.74E-04 4.82E-05

10 5.13E-05 1.88E-04 8.53E-04 6.40E-07
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Figure 11. Accuracy of estimated yield curves. Canada 2011, set 2.

5. Conclusions

We have proposed and tested a procedure for estimating the short rates to-
gether with the parameters of the Vasicek model. Simulations show that the pro-
cedure has high precision. When applying it to the real data, we obtain a good
fit of the term structures. However, when taking different sets of maturities as in-
puts to the calibration, we often obtain quite different estimated evolutions of
the short rate. Nevertheless, the fit of the term structures is good. We would
like to study this phenomenon more deeply, find its financial interpretation and
possible explanation. Another problem for future research is to extend the idea
of estimating the short rate also to other one-factor and multi-factor interest
rate models.
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Figure 12. Accuracy of estimated yield curves. Canada 2011, set 3.
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