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THE CONVERGENCE PART

OF A KNINTCHINE-TYPE THEOREM

IN THE RING OF ADELES

Ella Kovalevskaya

ABSTRACT. We prove the convergence part of a Khintchine-type theorem for
simultaneous Diophantine approximation of zero by values of integral polynomials
at the points

(x, z, ω1, ω2) ∈ R× C× Qp1 × Qp2 ,

where p1 �= p2 are primes. It is a generalization of Sprindz̆uk’s problem (1980)

in the ring of adeles. We continue our investigation (2013), where the problem
was proved at the points in R2 × C × Qp1 . We use the most precise form of
the essential and inessential domains method in metric theory of Diophantine
approximation.

1. Introduction

We investigate the convergence part of a Khintchine-type theorem for simul-
taneous Diophantine approximation of zero by values of integral polynomials
P, degP = n, at the points

(x, z, ω1, ω2) ∈ R× C×Qp1
×Qp2

,

where p1 �= p2 are primes, and n ≥ 4. According to contemporary therminology
it is Diophantine approximation in the ring of adeles. The problem can be viewed
as a generalization of S p r i n d z̆ u k’ s problem (1980). It arises from studies
of real numbers that are badly- or well-approximable by rational numbers.

Let P = P (t) = ant
n + · · · + a1t + a0 ∈ Z[t], an �= 0, H = H(P ) =

max(|an|, . . . , |a0|). Let pi ≥ 2, Qpi
be the field of pi-adic numbers, | · |pi

be the pi-adic valuation (i = 1, 2). Suppose that O = R × C × Qp1
× Qp2

.
We define a measure μ in O as a product of the Lebesque measure μ1 in R,
the Lebesque measure μ2 in C and the Haar measures μpi

in Qpi
(i = 1, 2),
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i.e., μ = μ1μ2μp1
μp2

. Let Ψ : N → R+, Ψ ∈ C(R) be a monotonic decreasing
function, Λ = (λ1, λ2, λ3, λ4), V = (v1, v2, v3, v4) are vectors in R4, and λi ≥ 0,
vi ≥ 0. Consider the system of inequalities

|P (x)| < H−v1Ψ(H)λ1 , |P (z)| < H−v2Ψ(H)λ2 ,

|P (ω1)|p1
< H−v3Ψ(H)λ3 , |P (ω2)|p2

< H−v4Ψ(H)λ4 , (1)

where (x, z, ω1, ω2) ∈ O and v1 +2v2 + v3 + v4 = n− 4, λ1 +2λ2 + λ3 + λ4 = 1.
Let Mn(V,Ψ,Λ) be a set of the points (x, z, ω1, ω2) ∈ O for which the system (1)
has infinitely many solutions in polynomials P ∈ Z[t], degP = n. We prove

�������� If n ≥ 4 and
∑∞

H=1Ψ(H) < ∞, then μ
(
Mn(V,Ψ,Λ)

)
= 0.

Another words, the theorem asserts that the system (1) has only a finite
set of solutions in P ∈ Z[t], degP = n, for almost all points in O under the
formulated condition on the parameters and the function Ψ.

The proof of the theorem is obtained by applying the most precise form of the
essential and inessential domains method introduced by S p r i n d z̆ u k (1964).
This method is being developed to this day, with most contributions coming
from the number theory schools at the National Academy of Sciences of Belarus
(Minsk, Belarus) and the University of York (York, UK) [1]– [6], [8], [9].

Here we continue our investigation [6], where the problem was proved in
R2 × C×Qp1

. We remark that in [10] the convergence part of an S-arithmetic
Zs-Khintchine-type theorem for product of non-degenerate analytic manifolds
in

∏s
j=1Qpj

was proved by applying the dynamic version K l e i n b o c k-M a r -

g u l i s lemma (1988).

The divergence part of a Khintchine-type theorem in R×C×Qp was proved
by N. B u d a r i n a and E. Z o r i n (2009). The divergence part of our theorem
will be proved in the next paper.

2. Sketch of proof

Our investigation is based on the method [7], the argumentations from [1]–[6],
[8], [9] and their development. Here we mark the main moments of proving and
indicate the distinctions from [6].

Let T = I ×K ×Dp1
×Dp2

⊂ O, where I is an interval in R, K is a circle
in C and Dpi

is a disc in Qpi
(i = 1, 2), be an elementary set in O. We call it as

a parallelepiped. According to a metric character of the theorem we will prove it
for the points of T, μ(T) = 1. Fix δ > 0 and exclude from T a set of the points
(x, z, ω1, ω2) which satisfy the inequalities: |x| < δ, |Im z| < δ and |ω|pi

< δ
(i = 1, 2). Thus, from now on we will assume that the points (x, z, ω1, ω2) ∈ T
satisfy the condition: |x| ≥ δ, |Im z| ≥ δ and |ω|pi

≥ δ (i = 1, 2). Without loss
of generality we assume that δ is arbitrary small.
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Introduce a class of polynomials

Pn(Q) =
{
P ∈ Z[t] : H(P ) ≤ Q

}
, where Q > Q0 > 0.

The important moment of the proof is a reduction to irreducible and leading
polynomials P ∈ Pn(Q). Denote a set of such polynomials P as Pn.

A polynomial P with the leading coefficient an will be called leading if
|an| ≤ H(P ) < c(n)|an|, where the constant c(n) ≥ 1 depends only of n, and
|an|pi

> p−n
i ) (as [7, Ch. 1, § 5, § 6 and Ch. 2, § 2] or [1]).

Let Pn(H) denote a set of polynomials P ∈ Pn satisfying (1) for which
H(P ) = H, where H is a fix number, 0 < Q0 < H ≤ Q and Q0 is sufficiently
large. Then the set Pn(H) is divided into ε-classes Pn(H,q, r, s1, s2, ) according
to the distances between their roots (§ 3, formulas (2), (3) and the text above and
below these formulas). Next, we prove the theorem for each ε-class. For this,
we introduce the notion of (i1, i2, i3, i4)-linear polynomial, where ij ∈ {0, 1}
(j = 1, 2, 3, 4). For example, (0, 0, 0, 0)-linear polynomial, (1, 1, 1, 1)-linear one,
(0, 1, 1, 0)-linear one and so on). We have 16 cases of linearity. This notion

is necessary to obtain the lower bounds for the derivatives |P ′
(x)|, |P ′

(z)| and
|P ′

(ωi)|pi
(i = 1, 2) of P ∈ Pn(H). On the other hand, Lemma 2 § 3 gives the

upper bounds for them. Fix an admissible vector (i1, i2, i3, i4). Let P
(i1,i2,i3,i4)
n

be a class of (i1, i2, i3, i4)-linear polynomials P in Pn(H,q, r, s1, s2).

Now, we fix P ∈ P
(i1,i2,i3,i4)
n and construct a countable covering ofMn(V,Ψ,Λ)

by the system of the small parallelepipeds Πj(P ) ⊂ T (j = 1, 2, . . .), i.e.,
Mn(V,Ψ,Λ) ⊆ ∑

j Πj(P ). These parallelepipeds Πj(P ) are divided into two

classes: the essential and the inessential (analogously to [7, § 10, § 11]).
��	
�
�
�� 1� The parallelepiped Πj(P ) is called essential if for all polynomials

Pj �= P, Pj ∈ P(i1,i2,i3,i4)
n ,

we have
μ
(
Πj(P )

⋂
Πj(Pj)

)
<

1

2
μΠj(P ).

If there exists

Pj ∈ P(i1,i2,i3,i4)
n , Pj �= P,

such that

μ
(
Πj(P )

⋂
Πj(Pj)

)
≥ 1

2
μΠj(P ),

then the parallelepiped Πj(P ) is called inessential.

Next, as well as in [1]– [9] using Lemmas 1–4 § 3 and the classic metric Borel-
-Cantelli theorem [7, Ch. 1, § 3, Lemma 12] we show that the measure of the
set of points lying in infinitely many essential parallelepipeds Πj(P ) equals zero,
and the same is true for measure of the set of points lying in infinitely many
inessential parallelepipeds Πj(P ).
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3. Lemmas on polynomials

Fix P ∈ Pn(H). Let P has roots α1, α1, . . . , αn in C and roots γi1, γi2, . . . , γin
in Q∗

pi
, i = 1, 2, where Q∗

pi
is the smallest field containing Qpi

and all algebraic
numbers. As usual, X 
 Y is equivalent to X = O(Y ). According to Lemma 1
[7, Ch. 1, § 2] and Lemma 4 [7, Ch. 2, § 2] we have

|αj | 
 1, |γi1|p1

 1 and |γi2|p2


 1, j = 1, . . . , n.

Let α1, . . . , αk be real roots of P and β1, . . . , β(n−k)/2 be its complex roots.
Since P is irreducible, then all of its roots are different. Let (αi1, αi2, . . . , αin)
be a permutation of (α1, α1, . . . , αn). Choose real root αi1 = α1 ∈ I, a complex
root β1 = αi2 ∈ K, and two pi-adic roots γi1 ∈ Dp1

, γi2 ∈ Dp2
. Remember

that the definition of the parallelepiped T = I ×K ×Dp1
×Dp2

was introduced
at the beginning of § 2. Define the sets

Si(αji) =

{
u ∈ U : |u− αji| = min

1≤k≤n
|u− αk|

}
, i = 1, 2,

where u represents x or z, and αji is real or complex root of P, and U is I ⊂ R

or K ⊂ C as required, and

Spi
(γji) =

{
ωi ∈ Dpi

⊂ Qpi
: |ωi − γij|p = min

1≤k≤n
|ωi − γik|pi

}
, i = 1, 2.

Consider these sets for a fixed vector (αj1, αj2, γj1, γj2) and for simplicity assume
that αj1 = α1, αj2 = β1, γj1 = γ1 and γj2 = γ2. Reorder the other roots of P
in the following way:

(1) |α1−α2|≤|α1−α3| ≤ · · · ≤ |α1−αk|,
(2) |β1−β2| ≤ · · · ≤ |β1−β(n−k)/2|,
(3) |γ1−γ12|p1

≤ · · · ≤ |γ1−γ1n|p1
,

(4) |γ2−γ22|p2
≤ · · · ≤ |γ2 − γ2n|p2

.

Also, for the given polynomial P ∈ Pn(H) we define numbers ρij ∈ R

by |αi1 − αij| = H−ρij, 2 ≤ j ≤ n, ρin ≤ ρi2 ≤ · · · ≤ ρi2 (i = 1, 2, 3, 4), where
α11 = α1, α21 = β1, α31 = γ1 and α41 = γ2. Since all of the roots are
bounded (see the beginning § 3), then there exists ε1 > 1 such that ρij ≥ −ε1/2
for i = 1, 2, 3, 4 and j = 2, 3, . . . , n. Choose ε > 0 such that ε1 = ε/T1

for some sufficiently large T1 > T0 > 0. Let T = [n/ε1] + 1. Define the
integers (k1, lj ,m1j,m2j) = (t1j , t2j , t3j , t4j) (j = 2, 3, . . . , n) by the relations

(tij − 1)/T ≤ ρij < tij/T, ti2 ≥ ti3 ≥ · · · ≥ tin ≥ 0, i = 1, 2, 3, 4. (2)
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Finally, define the numbers qi, ri and s1i, s2i (i = 1, 2, . . . , n−1) by the formulas

qi = T−1
n∑

t=i+1

kt, ri = T−1
n∑

t=i+1

lt, s1i = T−1
n∑

t=i+1

m1t, s2i = T−1
n∑

t=i+1

m2t. (3)

Each polynomial P ∈ Pn(H) is now associated with four vectors:

q = (q1, q2, . . . , qn−1),

r = (r1, r2, . . . , rn−1),

s1 = (s11, s12, . . . , s1,n−1),

s2 = (s21, s22, . . . , s2,n−1).

The number of these vectors is finite and depends only on n, ρ and T
(see [7, Ch. 1, Lemma 24 and Ch. 2, Lemma 12]). LetPn(H,q, r, s1, s2) denote
the set of polynomials P ∈ Pn(H) having the same four vectors (q, r, s1, s2).
Thus, we divide the set Pn(H) into ε-classes Pn(H,q, r, s1, s2).

Now without loss of generality we assumed that x∈S1(α1)⊂I, z∈S2(β1)⊂K,
ω1 ∈ Sp1

(γ11)⊂Dp1
and ω2 ∈ Sp2

(γ21)⊂Dp2
. At many moments of our proof

the values of the polynomials P ∈ Pn(H,q, r, s1, s2) will be estimated by means
of a Taylor series. To obtain an upper bounds of the terms in the Taylor series
and for the other purposes the following two lemmas will be used.

���� 1� If P ∈ Pn(H), then according to the notations of §3 we have

|ũ− α̃| ≤ 2n|Pn(ũ)||P ′
n(α̃)|−1, |ωi − γi1|pi

≤ |Pn(ωi)|pi
|P ′

n(γi1)|−1
pi

, i = 1, 2,

⎧⎨
⎩
|ũ− α̃| ≤ min2≤j≤n

(
2n−j (|Pn(ũ)||P ′

n(α̃)|−1
∏j

k=2 |α̃− αk|)1/j
)
,

|ωi−γi1|pi
≤min2≤j≤n

(|Pn(ωi)|pi
|P ′

n(γi1)|−1
p

∏j
k=2 |γi1−γik|pi

)1/j
, i = 1, 2,

where ũ represents x or z and α̃ is α1 or β1 as required.

Lemma 1 is proved in [1], [2], [9, pp. 36, 131]. �

���� 2� Let P ∈ Pn(H, q, r, s1, s2). Then

|P (l)(α1)| < c(n)H1−ql+(n−l)ε1 ,

|P (l)( β1)| < c(n)H1−rl+(n−l)ε1 ,

|P (l)(γi1)|pi
< c(n)H −sil+(n−l)ε1 , i = 1, 2, 1 ≤ l ≤ n− 1,

where the constant c(n) > 0 depends only on n.

The first and the second inequalities of lemma are proved in [1], [9, pp. 36–37].
The third and the fourth inequalities of it is proved in [4, Lemma 5].

�
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There are various cases for P ∈ Pn(H,q, r, s1, s2) to consider. Sometimes
the existence of one case is disproved by finding a contradiction to the final
inequality in the following lemma.

���� 3� Let P1, P2 ∈ Z[t] be polynomials of degree at most n with no common
roots and max

(
H(P1), H(P2)

)≤H (H>Q0). Let δ>0 and ηj >0, j=1, 2, 3, 4.

Let I ⊂ R be an interval, μ1I = H−η1, K ⊂ C be circle, diam K = H−η2 and
Dpi

⊂ Qpi
be a disk, μpi

(Dpi
) = H−ηi+2, i = 1, 2. If there exist τi > −1 and

τi+2 > 0, i = 1, 2 such that for all (x, z, ω1, ω2) ∈ I ×K ×Dp1
,×Dp2

we have

max
(|P1(x)|, |P2(x)|

)
< H−τ1 ,

max
(|P1(z)|, |P2(z)|

)
< H−τ2 ,

max
(|P1(ωi)|pi

, |P2(ωi)|pi

)
< H−τi+2 , i = 1, 2,

then
τ1 + 2τ2 + τ3 + τ4 + 3 + 2max(τ1 + 1− η1, 0)

+ 4max(τ2 + 1− η2, 0)

+ 2max(τ3 + 1− η3, 0)

+ 2max(τ4 + 1− η4, 0) < 2n+ δ.

P r o o f of the lemma is analogous to [3]. Distinctions consist only in the
sets of X = (X1, X2, X3, X4) and in the metrics of the corresponding spaces.
Namely, in [3] we have X = (x, z, ω) ∈ R × C × Qp, in our case we have

X = (x, z, ω1, ω2) ∈ R× C×Qp1
×Qp2

.

Briefly, the lemma shows that if the values of two polynomials are small
at a given I × K × Dp1

× Dp2
, then the parameters τ1, . . . , τ4 and η1, . . . , η4

are connected by the final inequality of lemma. �

���� 4� Let P ∈ Z[t], degP = n ≥ 4 and v > 0. Let G(v) be the set of points
(x, z, ω1, ω2) ∈ R× C×Qp1

×Qp2
for which the inequality

|P (x)| · |P (z)| · |P (ω1)|p1
· |P (ω2)|p2

< H−v, H = H(P ),

has infinitely many solutions P . Then μG(v) = 0 for v > n− 3.

Lemma 4 is proved in [8]. �

���� 5� Let H be a positive integer. Let us define a set of polynomials with
integer coefficients R4(b4) =

{
R(t) ∈ Z[t], R(t) = b4t

4 + b3t
3 + b2t

2 + b1t + b0,

where b4 �= 0, |bi| ≤ |b4| ≤ H, i = 0, 1, 2, 3
}
. Let ζj > 0, εj > 0, j = 1, 2.

Take a nonempty open interval I ⊂ R and a nonempty complex ball D ⊂ C

such that I
⋂
D = ∅. Then the system of inequalities

|R(x)| < ζ1|b4|−ε1 , x ∈ I; |R(z)| < ζ2|b4|−ε2 , z ∈ D, (4)

holds for at most cH polynomials in R4(b4), where the constant c > 0 depends
on ζ1, ζ2, the length of I and the area of D.
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P r o o f. The conditions of the lemma imply that there exist x̃ ∈ I and z̃ ∈ D
such that (4) is satisfied and Imz̃ > ε for some ε > 0, allowing us to write

|x̃− z̃| > ε.

Let B(t0, r) denote a ball in the complex plane with a center at t0 of radius r.
Let the coefficient b3 be fixed. Then

b2x̃
2 + b1x̃+ b0 ∈ B(x0, ζ1), (5)

b2z̃
2 + b1z̃ + b0 ∈ B(z0, ζ2), (6)

where
x0 = −b4x̃

4 − b3x̃
3, z0 = −b4z̃

4 − b3z̃
3.

Subtracting the left-hand sides of the expressions (5) and (6), we have

b2(x̃− z̃)(x̃+ z̃) + b1(x̃− z̃) ∈ B
(
(x0 − z0), ζ1 + ζ2

)
.

Dividing by (x̃− z̃) leads to

b2(x̃+ z̃) + b1 ∈ B
(
(x0 − z0)/(x̃− z̃), (ζ1 + ζ2)/|x̃− z̃|)), (7)

where (ζ1 + ζ2)/|x̃− z̃| ≤ (ζ1 + ζ2)/ε. For all possible values b2, b1 ∈ Z, the left-
hand side of (7) defines a lattice in C with a basis {x̃+ z̃, 1} and a determinant∣∣∣∣ Re(x̃+ z̃) 1

Im(x̃+ z̃) 0

∣∣∣∣ = Im(x̃+ z̃), where |Im(x̃+ z̃)| > ε.

From well-known estimates for the number of lattice points in a Euclidean circle,
we obtain that the number of pairs (b2, b1) satisfying (7) is bounded from above
by a constant of the order (ζ1+ζ2)

2/ε3. Let us denote this constant as c. The in-
teger coefficient b0 can be uniquely determined from (4) since the right sides of it
are less than 1/2. Thus, for a fixed coefficient b4 the number of triples (b2, b1, b0)
does not exceed c, and therefore R4(b4) ≤ cH. �

4. Proof of Theorem

Remember that we consider the points

(x, z, ω1, ω2) ∈ T and P ∈ Pn(H,q, r, s1, s2).

We prove the theorem for n ≥ 5. The case n = 4 follows from Lemma 1 and the
Borel-Cantelli lemma.

��	
�
�
�� 2� Let ij∈{0, 1}, j=1, 2, 3, 4. A polynomial P ∈ Pn(H,q, r, s1, s2)
is called (i1, i2, i3, i4)-linear if:

(1) for (i1, i2, i3, i4) = (0, 0, 0, 0) the system of inequalities

ri1 + si2/T < vi + 1, i = 1, 2, 3, 4, (8)

holds, where (r11, r21, r31, r41)=(q1, r1, s11, s21) which are defined in (2), (3);
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(2) for (i1, i2, i3, i4) = (1, 1, 1, 1) the inequality signs in (8) are reversed;

(3) for (0, 1, 1, 1) the first inequality in (8) has the sign < and the other inequal-
ities have sings ≥; and so on. There exist 16 kinds of linear polynomials.

Denote by P
(i1,i2,i3,i4)
n the class of (i1, i2, i3, i4)-linear polynomials

P ∈ Pn(H,q, r, s1, s2).

If (x, z, ω1, ω2) ∈ Mn(V,Ψ,Λ) (see § 1), then there exist infinitely many polyno-

mials satisfying at least one of these 16 kinds of linearity. LetM
(i1,i2,i3,i4)
n (V,Ψ,Λ)

denote the set of (x, z, ω1, ω2) ∈ T for which the system of inequalities (1) holds

for infinitely many polynomials P ∈ P
(i1,i2,i3,i4)
n . Clearly that

Mn(V,Ψ,Λ) =
⋃

ij∈{0,1},(j=1,2,3,4)

M (i1,i2,i3,i4)
n (V,Ψ,Λ).

Two constants

d1 = q1 + 2r1 + s11 + s21 and d2 = (k2 + 2l2 +m12 +m22)/T, (9)

connected with (2), (3), will be used further in our proof.

The proof consists of a series of propositions with different linearity conditions
and different ranges of d1+d2. They are considered separately. Further, we have

|P ′
(αi1)| = H|αi1 − αi2| · · · |αi1 − αin| = H1−rij, i = 1, 2,

where

(r1j , r2j) = (q1, r1) and |P ′
(γj1)|pi

= H−sj1, j = 1, 2.

These relations follow directly from (3).

������
�
�� 1� Let P ∈ P
(0,0,0,0,)
n . Then μM

(0,0,0,0)
n (V,Ψ,Λ) = 0.

P r o o f. According to (8) and (9) we have d1 + d2 < n+ 1. The proof includes
four cases:

(1) n+ ε ≤ d1 + d2 < n+ 1;

(2) 5− ε ≤ d1 + d2 < n+ ε;

(3) ε ≤ d1 + d2 < 5− ε;

(4) d1 + d2 < ε.

We use scheme of the proofs of Proposition 1, 4, 3, 2 of [2], respectively, but there
exist some distinctions. The distinctions appear in the setsX = (X1, X2, X3, X4)
of the corresponding spaces. Namely, in [2] ones haveX = (x, z, ω) ∈ R×C×Qp,

in our case we have X = (x, z, ω1, ω2) ∈ R× C×Qp1
,×Qp2

.
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Note that in:

(1) we use Lemmas 1–3 and 5 of § 3;
(2) we use Lemmas 1–5 of § 3 and make a reduction to polynomials of the third

degree (in [2] the reduced polynomials have the second degree);

(3) we use Lemmas 1–5 of § 3 and make a reduction to polynomials R(t)
of the fourth degree (in [2] they have the third degree);

(4) we use Lemmas 1–3 and 5 of § 3 and make a reduction to the polynomials
of the third degree (in [2] they have the second degree).

Write some details for (3).

The case of the essential parallelepipeds σ4(P1), σ4(P2) is considered as in
[2, p. 205].

For the inessential parallelepipeds σ4(P1), σ4(P2) we have

R(t) = P2(t)− P1(t) = b4t
4 + b3t

3 + b2t
2 + b1t+ b0, bi ∈ Z, degP = 4, (10)

R(t) is a leading polynomial, i.e., |bi| ≤ |b4|, i = 0, 1, 2, 3 (as in [2, p. 205]), and

R(t) satisfies the system of inequalities

|R(x)| 
 2−tV1 , |R(z)| 
 2−tV2 , |R(ωi)|pi

 2−tVi+2 , i = 1, 2, (11)

|R′
(x)| 
 2t(1−q1+(n−1)ε1), |R′

(z)| 
 2t(1−r1+(n−1)ε1)

at the points (x, z, ω1, ω2) ∈ σ4(R) = σ4(P1)
⋂
σ4(P2), where X 
 Y is equiva-

lent to the notation X = O(Y ). Here we have q1 ≥ ε/3 and

V1 + 2V2 + V3 + V4 = 1, Vi > 0, i = 1, 2, 3, 4. (12)

(see [2, p. 205]). Note that (11) is connected with the system (1) of Theorem
(see § 1). Also R(t) can be written as

R(t) = b4(t− θ1)(t− θ2)(t− θ3)(t− θ3) = b4t
4 + b3t

3 + b2t
2 + b2t+ b0, (13)

where θ1, θ2 are real roots of R(t), θ3, θ3 are complex roots of it, and

ζ3 H(R) ≤ |b4| ≤ ζ4 H(R), |b4|pj
> p−n

j , j = 1, 2,
and

2t ≤H(R) <2t+1, (14)

where ζj > 0 is some absolute constant, j = 3, 4. The foundation of this is the
same as in [7, Ch. 1, § 6 and Ch. 2, § 2] or [2, p. 205].

Note that the number of polynomials R which satisfy (10)–(14) at the points
of σ4(R) is estimated by Lemma 5 as

< cH(R). (15)

There are two cases for the polynomial (13): (a): θ1 �= θ2, (b): θ1 = θ2.
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Case (a)� For the fixed polynomials P1, P2 and R = P2 − P1 we estimate
from above the measure μ(R) of the set σ4(R) = σ4(P1)

⋂
σ4(P2), where

(11) and (12) hold. We have

|R′′
(θj)| ≥ 2|b4(θj − θ3)(θj − θ3)| ≥ 4ζ3δ

2H(R), j = 1, 2, (16)

where δ > 0 is defined in the beginning of § 2. Since R(t) has different roots, we
can apply Lemma 1 to it. The third inequality of Lemma 1, when j = 2, has the
form |x−θ1| ≤ 2 (|R(x)|/|R′′

(θ1|)1/2. Hence the first inequality of (11), (14) and
(16) imply |x− θ1| 
 (2−tV1/H(R))1/2. Similarly we have

|x− θ2| 
 (2−tV1/H(R))1/2.

Thus,

max
i=1,2

(|x− θi|) 

(
2−tV1/H(R)

)1/2
. (17)

Further the first inequality of Lemma 1, the second inequality of (11) and (14)
imply

|z − θ3| 
 2−tV2/H(R). (18)

Let ρj1, ρj2, ρj3, ρj4 be the pj-adic roots of R(t), j = 1, 2. Then the fourth
inequality of Lemma 1, when j = 2, and the second condition in (13) imply

|ωj − ρj1|pj

 (

2−tVj+2
)1/2

, j = 1, 2. (19)

Now (17)–(19) and the definition of the measure μ in O = R × C × Qp1
× Qp2

imply μ(R) 
 2−tA
(
H(R)

)−5/2
, where

A = V1/2 + 2V2 + V3/2 + V4/2 = (V1 + 2V2 + V3 + V4)/2 + V2. (20)

We estimate
∑

R μ(R), where R(t) is defined in (10)–(14). According to (15),
(20) we have∑

R

μ(R) =
∞∑
t=1

∑
2t≤b4<2t+1

∑
b3,b2,b1,b0

μ(R)



∞∑
t=1

∑
b4=H(R)

H(R) · 2−tV2 · 2−t(V1+2V2+V3+V4)/2 · (H(R)
)−5/2



∑
t

2−tV2 · 2−t(V1+2V2+V3+V4)/2
∑

2t≤H(R)<2t+1

(
H(R)

)−3/2
.

According to (12) we get∑
R

μ(R) 

∑
t

2t(−V2−1/2) · 2−t/2 

∑
t

2−t(1+V2) < ∞.

The Borel-Cantelli Lemma completes the proof of (a).

48



THE CONVERGENCE PART OF A KNINTCHINE-TYPE THEOREM

Case (b)� We have

R(t) = b4(t− θ1)
2(t− θ3)(t− θ3)

= b4t
4 + b3t

3 + b2t
2 + b2t+ b0, bi ∈ Z. (21)

For the fixed polynomials P1, P2 and R = P2 − P1 with the condition (14) we
estimate a measure μ(R) of the set σ4(R) where (11), (12) hold. Now (21), (14)
imply

|x− θj| 
 (2−tVj/δ2|b4|)1/2 
 (
2−tVj/H(R)

)1/2
, j = 1, 2

(δ > 0 is defined in § 2). Similarly, according to (21), (14) we find

|z − θ3| 
 2−tV2/H(R).

Also we have in pj-adic valuation

|R(t)|pj
= |b4|pj

|t− ρj1|2pj
|t− ρj3|pj

|t− ρj4|pj
.

Hence (21), (14) imply
|ωj − ρj1|pi


 (2−tVj+2)1/2, j = 1, 2.

Then
μ(R) 
 2−tA

(
H(R)

)−5/2
,

where A is defined in (20). Further we argue as in (a).

�
������
�
�� 2� Let P ∈ P

(1,1,1,1)
n . Then μM

(1,1,1,1)
n (V,Ψ,Λ) = 0.

P r o o f. According to (8) and (9) we have d1 + d2 ≥ n + 1. The proof is
similar to [2, Proposition 5]. There exists the following distiction: the num-
ber of inequalities in all considered systems equals four. The fourth inequality
corresponds to the p2-adic valuation. �

P r o o f of the theorem is based on Propositions 1, 2. The other cases of lin-
earity are the combinations of the two preceding cases with the corresponding
coordinates. Namely, the cases (1, 0, 0, 0)-, (0, 1, 0, 0)-, (0, 0, 1, 0)-, (0, 0, 0, 1)-
-linearity are considered in the same manner since they are the permutations of
the coordinates. Thus, it is sufficient to investigate only the (1, 0, 0, 0)-linearity
case (as well as [2, Proposition 6], where for the second coordinate i2 (i2 = 0)
we add the inequality q21 + k22/T < 1 + v2 + λ2).

The cases (1, 1, 0, 0)-, (1, 0, 1, 0)-, (1, 0, 0, 1)-, (0, 1, 1, 0)-, (0, 0, 1, 1)-, (0, 1, 0, 1)-
-linearity are considered in the same manner since they are the permutations of
the coordinates. Thus, it is sufficient to investigate only the (1, 0, 0, 1)-linearity
case (as well as [2, Proposition 7], where for the second coordinate i2 (i2 = 0)
we add the inequality q21 + k22/T < 1 + v2 + λ2).

The cases (1, 1, 1, 0)-, (1, 1, 0, 1)-, (1, 0, 1, 1)-, (0, 1, 1, 1)-linearity are consid-
ered in the same manner since they are also the permutations of the coordinates.
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Thus, it is sufficient to investigate only the (1, 1, 1, 0)–linearity case. It is a com-
bination of [2, Proposition 6, 7], where for the second coordinate i2 (i2 = 1)
we add the inequality q21 + k22/T ≥ 1+ v2 + λ2, and for the third coordinate i3
(i3 = 1) we take r1 + l2/T ≥ 1 + v3 + λ3.

Theorem is proved. Note that the similar method was used earlier in [5].
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