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THE ORDER OF APPEARANCE OF THE PRODUCT

OF FIVE CONSECUTIVE LUCAS NUMBERS

Diego Marques — Pavel Trojovský

ABSTRACT. Let Fn be the nth Fibonacci number and let Ln be the nth Lucas

number. The order of appearance z(n) of a natural number n is defined as the
smallest natural number k such that n divides Fk. For instance, z(Fn) = n =
z(Ln)/2 for all n > 2. In this paper, among other things, we prove that

z(LnLn+1Ln+2Ln+3Ln+4) =
n(n+ 1)(n+ 2)(n+ 3)(n+ 4)

12

for all positive integers n ≡ 0, 8 (mod 12).

1. Introduction

Let (Fn)n be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0,
where F0 = 0 and F1 = 1. Let (Ln)n be the Lucas sequence which follows
the same recursive pattern as the Fibonacci numbers, but with initial values
L0 = 2 and L1 = 1. These numbers are well-known for possessing amazing
properties (for example consult [4]). The period k(m) of the Fibonacci sequence
modulo a positive integer m is the smallest positive integer n such that

Fn ≡ 0 (mod m) and Fn+1 ≡ 1 (mod m).

The study of the divisibility properties of Fibonacci numbers has always been
a popular area of research. Let n be a positive integer, the order (or rank)
of appearance of n in the Fibonacci sequence, denoted by z(n), is defined as
the smallest positive integer k, such that n | Fk (some authors also call it order
of apparition, or Fibonacci entry point). There are several results about z(n)
in the literature. For example, z(m) ≤ 2m, for all m ≥ 1 (see [15] and [10]
for improvements) and in the case of a prime number p, one has the better
upper bound z(p) ≤ p + 1, which is a consequence of the known congruence
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Fp−( p
5 )

≡ 0 (mod p) for p �= 2, 5, where
(
a
q

)
denotes the Legendre symbol

of a with respect to a prime q > 2. We will use Pochhammer polynomial
n(k) = n(n + 1)(n + 2) . . . (n + k − 1) for the simplification of notation in the
following text.

In recent papers, the first author [5]–[9] found explicit formulas for the or-
der of appearance of integers related to Fibonacci and Lucas numbers, such as
Cm ± 1, CnCn+1Cn+2Cn+3 and Ck

n, where Cn represents Fn or Ln.

In this paper, we continue this program by studying the order of appear-
ance of the product of five consecutive Lucas numbers. Our main result is the
following.

������� 1.1� Let n be any nonnegative integer. Then

z(LnLn+1Ln+2Ln+3Ln+4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(5), n ≡ 1 (mod 6);
1
2n

(5), n ≡ 2, 10, 14, 18, 22, 30, 34 (mod 36);
1
3n

(5), n ≡ 3, 5 (mod 6);
1
4n

(5), n ≡ 4 (mod 12);
1
6n

(5), n ≡ 6, 26 (mod 36);
1
12n

(5), n ≡ 0, 8 (mod 12).

(1.1)

Remark 1� The completeness of cases in Theorem 1.1 follows from the fact
that the first case and the third case together include all positive odd integers n
and the other cases include all nonnegative even integers n.

2. Auxiliary results

Before proceeding further, we recall some facts on Fibonacci numbers for the
convenience of the reader.

The p-adic valuation (or order) of r, νp(r), is the exponent of the highest
power of a prime p which divides r. The p-adic order of the Fibonacci and Lucas
numbers was completely characterized, see [14], [16] and [12]. For instance, from
the main results of L e n g y e l [12], we extract the following result.

����	 2.1� Let p be any prime. For n ≥ 1, we have

ν2(Fn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if n ≡ 1, 2 (mod 3);

1 if n ≡ 3 (mod 6);

3 if n ≡ 6 (mod 12);

ν2(n) + 2 if n ≡ 0 (mod 12),

ν5(Fn) = ν5(n),
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and for any prime p �= 5 and p > 2

νp(Fn) =

{
νp(n) + νp

(
Fz(p)

)
if n ≡ 0 (mod z(p));

0 if n �≡ 0 (mod z(p)).

����	 2.2� Let p be any prime, let k(p) be the period modulo p of the Fibonacci
sequence. For n ≥ 1, we have

ν2(Ln) =

⎧⎪⎨
⎪⎩
0, n ≡ 1, 2 (mod 3);

2, n ≡ 3 (mod 6);

1, n ≡ 0 (mod 6),

and for any prime p > 2,

νp(Ln) =

{
νp(n) + νp

(
Fz(p)

)
, k(p) �= 4z(p) and n ≡ z(p)

2 (mod z(p));

0, otherwise.

Remark 2� Since k(5) = 20 and z(5) = 5, we have k(5) = 4z(5) and so the
previous lemma yields ν5(Ln) = 0. In fact, the same happens for the primes

13, 17, 37, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 193, 197, . . .

which is the OEIS sequence A053028. We point out an interesting result of L a -
g a r i a s [11] concerning the density of this set of primes.

����	 2.3 (Cf. Lemma 2.1 [9])� We have

(a) Fn | Fm if and only if n | m.

(b) Ln | Fm if and only if n | m and m/n is even.

(c) Ln | Lm if and only if n | m and m/n is odd.

(d) F2n = FnLn.

(e) gcd(Ln, Ln+1) = gcd(Ln, Ln+2) = 1.

����	 2.4 (Cf. Lemma 2.2 of [9])� We have

(a) If Fn | m, then n | z(m).

(b) If Ln | m, then 2n | z(m).

(c) If n | Fm, then z(n) | m.

����	 2.5� Let k, n,m be any positive integers. We have

(a) If n ≡ 0, 3 (mod 6), then 2Fn | F2n.
If n ≡ 2 (mod 4), then 3Fn | F2n.

(b) If n ≡ 1, 2 (mod 3), then 2Fn | F3n.

(c) If n ≡ 6 (mod 12), then 6Fn | F2n.

(d) If n ≡ 2 (mod 4), then 6Fn | F6n.
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(e) If m � Fkn, then m � Fn.

(f) If n ≡ 2, 10, 14, 18, 22, 30 (mod 36), then LnLn+4 � F 1
3n

(5) .

(g) If n ≡ 2 (mod 4), then Ln+2 � F 1
4n

(5) .

(h) If 1 ≤ k ≤ 5, then ν2
(∏k

i=0 Ln+i

) ≤ 3.

P r o o f.

(a) Using the identity F2n = FnLn and Lemma 2.2, we clearly obtain the
assertion.

(b) Using the identity F3n = Fn

(
L2n+(−1)n

)
, see [4, p. 92], the fact that L2n

is odd for n ≡ 1, 2 (mod 3) by Lemma 2.2 we clearly obtain the assertion.

(c) Using the identity F2n = FnLn and Lemma 2.2 we obtain the assertion.

(d) Using the identity F6n = F3nL3n = L3nFn

(
L2n + (−1)n

)
, see [4, p. 92],

and the fact that 6 | L3n for n ≡ 2 (mod 4), with respect to Lemma 2.2,
we have the assertion.

(e) Let us consider that m | Fn. Using the well-known property Fn | Fkn we
obtain m | Fkn.

(f) To prove the assertion it is suffice to show that ν3(LnLn+4) > ν3(F 1
3n

(5))

for n ≡ 2, 10, 14, 18, 22, 30 (mod 36) (thus n ≡ 2 (mod 4) and n �≡ 6, 26, 34
(mod 36)). Using Lemmas 2.1, 2.2 and the clear fact that 4 | 1

3n
(5) for any

nonnegative integer n we obtain

ν3(Ln) =

{
ν3(n) + 1, n ≡ 2 (mod 4);

0, n �≡ 2 (mod 4),
(2.1)

ν3(Fn) =

{
ν3(n) + 1, n ≡ 0 (mod 4);

0, n �≡ 0 (mod 4),

hence

ν3(LnLn+4) = ν3(Ln) + ν3(Ln+4)

=
(
ν3(n) + 1

)
+
(
ν3(n+ 4) + 1

)
= ν3(n) + ν3(n+ 4) + 2

and

ν3(F 1
3n

(5)) = ν3

(
1

3
n(5)

)
+ 1 = ν3

(
n(5)

)
= ν3(n) + ν3(n+ 4) + 1,

as clearly ν3
(
(n + 1)(n+ 2)(n+ 3)

)
= 1 holds for n �≡ 6, 7, 8 (mod 9) and

all cases from the assertion are in this form.
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(g) For n ≡ 2 (mod 4) we have 1
4n

(5)/(n+2) ≡ 1 (mod 2), hence the assertion
follows from Lemma 2.3 (b).

(h) Since there are unique ε and δ belonging to {0, . . . , 5} such that

n+ ε ≡ 3 (mod 6) and n+ δ ≡ 0 (mod 6),

we have

ν2

(
k∏

i=0

Ln+i

)
≤

5∑
i=0

ν2(Ln+i) = ν2(Ln+ε) + ν2(Ln+δ) = 2 + 1 = 3.

Thus the lemma follows. �

Remark 3� The reader may be wondering why this paper deals with Lucas
numbers, but it does not study the Fibonacci case. The reason is exactly that the

previous item (h) does not hold for Fibonacci numbers. Actually, ν2
(∏k

i=0 Fn+i

)
can be sufficiently large which causes the substantial increasing in the number
of cases to be studied.

3. The proof of Theorem 1.1

Since there are at least two even numbers among n, n+1, n+2, n+3, n+4,
we conclude (using Lemma 2.3 (b)) that

Ln+i | Fn(5) for i = 0, 1, 2, 3, 4. (3.1)

We will consider these cases:

• Let n ≡ 1 (mod 6). Then gcd(Ln, Ln+3) = gcd(Ln, Ln+4) = 1. This to-
gether with Lemma 2.3 (e) implies that the numbers Ln, Ln+1, Ln+2, Ln+3

and Ln+4 are pairwise coprime. Thus (3.1), together with Lemma 2.4 (c),
leads to

z(LnLn+1Ln+2Ln+3Ln+4) | n(5). (3.2)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n+ i) | z(LnLn+1Ln+2Ln+3Ln+4) with respect to Lemma 2.4 (b).
Since n, n+1

2 , 2(n+ 2), n+3
2 , n+ 4 are pairwise coprime, then

2n
n+ 1

2
2(n+ 2)

n+ 3

2
(n+ 4) | z(LnLn+1Ln+2Ln+3Ln+4). (3.3)

Combining (3.2) and (3.3)

z(LnLn+1Ln+2Ln+3Ln+4) = n(5).
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• Let n ≡ 4 (mod 12). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
4n

(5) (3.4)

for i = 0, 1, 2, 3, 4. Further gcd(Ln, Ln+3) = gcd(Ln, Ln+4) = 1. This to-
gether with Lemma 2.3 (e) yields that the numbers Ln, Ln+1, Ln+2, Ln+3,
and Ln+4 are pairwise coprime. Thus Lemma 2.4 (c) implies that

z(LnLn+1Ln+2Ln+3Ln+4) | 1
4
n(5). (3.5)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n+ i) | z(LnLn+1Ln+2Ln+3Ln+4). Since n/2, n+1, (n+2)/2, n+3,
(n+ 4)/2 are pairwise coprime, then

2
n

4
(n+ 1)

n+ 2

2
(n+ 3)

n+ 4

2
| z(LnLn+1Ln+2Ln+3Ln+4). (3.6)

Thus, combining (3.5) and (3.6) we have

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
1

8
n(5),

1

4
n(5)

}
.

Now, we show that

LnLn+1Ln+2Ln+3Ln+4 � F 1
8n

(5) .

In fact, by using Lemma 2.3 (b) we have

Ln � F 1
8n

(5) for n ≡ 16 (mod 24),

Ln+4 � F 1
8n

(5) for n ≡ 4 (mod 24).

• Let n ≡ 8 (mod 12). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
12

n(5) (3.7)

for i = 0, 1, 2, 3, 4. Further gcd(Ln, Ln+3) = gcd(Ln, Ln+4) = 1 and to-
gether with Lemma2.3 (e), we observe that the numbers Ln, Ln+1, Ln+2,
Ln+3 and Ln+4 are pairwise coprime. Thus Lemma 2.4 (c) implies that

z(LnLn+1Ln+2Ln+3Ln+4) | 1

12
n(5). (3.8)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n + i) | z(LnLn+1Ln+2Ln+3Ln+4). Observe that there exist
a, b, c, d ∈ {0, 1}, with a+b = c+d = 1, such that n/4a, (n+1)/3c, (n+2)/2,
n+ 3, (n+ 4)/(4b · 3d) are pairwise coprime, then

1

24
n(5) | z(LnLn+1Ln+2Ln+3Ln+4)/2. (3.9)

Thus, using (3.8) and (3.9) we have

z(LnLn+1Ln+2Ln+3Ln+4) =
1

12
n(5).

70



ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

• Let n ≡ 0 (mod 12). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
12n

(5) (3.10)

for i = 0, 1, 2, 3, 4. Further gcd
(
Ln

2 , Ln+3

)
= 1 and gcd(Ln, Ln+4) = 1.

Hence using Lemma 2.5 (a) we obtain

LnLn+1Ln+2Ln+3Ln+4 | 2F 1
12n

(5) | F 1
6n

(5)

and
z(LnLn+1Ln+2Ln+3Ln+4) | 1

6
n(5). (3.11)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n + i) | z(LnLn+1Ln+2Ln+3Ln+4). Observe that there exist
a, b, c, d ∈ {0, 1}, with a+b = c+d = 1, such that n/(4a· 3c), n+1, (n+2)/2,
(n+ 3)/3d, (n+ 4)/4b are pairwise coprime, then

1

24
n(5) | z(LnLn+1Ln+2Ln+3Ln+4)/2 (3.12)

and therefore

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{

1

12
n(5),

1

6
n(5)

}
.

We show that
LnLn+1Ln+2Ln+3Ln+4 | F 1

12n
(5) .

The proof will be based on comparing p-adic orders of

LnLn+1Ln+2Ln+3Ln+4 and F 1
12n

(5) for all primes p.

Thus we shall prove that

νp(F 1
12n

(5)) ≥ νp(LnLn+1Ln+2Ln+3Ln+4) (3.13)

holds for all primes p.
Using Lemma 2.5 (h), Lemma 2.1 and the clear fact that

1

12
n(5) ≡ 0 (mod 48),

we have

ν2(F 1
12n

(5)) = ν2

(
1

12
n(5)

)
+ 2

= ν2(n
(5))− 2 + 2 ≥ 6

> ν2(LnLn+1Ln+2Ln+3Ln+4).

Now, we will consider p �= 2. Suppose that νp(LnLn+1Ln+2Ln+3Ln+4) �= 0

(otherwise the desired inequality is directly proved). Since Ln

2 , Ln+1, Ln+2,
Ln+3 and Ln+4 are pairwise coprime, p divides only one of Ln, Ln+1, Ln+2,
Ln+3, Ln+4, say p | Ln+δ for some δ∈{0, 1, 2, 3, 4}. Thus p | Ln+δ | F 1

12n
(5)
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implying z(p) | 1
12n

(5), by Lemma 2.4 (c). Therefore using Lemma 2.1 and
Lemma 2.2 we obtain

νp(LnLn+1Ln+2Ln+3Ln+4) = νp(Ln+δ)

≤ νp(n+ δ) + νp
(
Fz(p)

)
≤ νp

(
1

12
n(5)

)
+ νp

(
Fz(p)

)
= νp

(
F 1

12n
(5)

)
.

• Let n ≡ 3 (mod 6). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
3n

(5) for i = 0, 1, 2, 3, 4. (3.14)

Further gcd(Ln

2 , Ln+3) = gcd(Ln, Ln+4) = gcd(Ln+1, Ln+4) = 1 and to-

gether with Lemma 2.3 (e) the numbers Ln

2 , Ln+1, Ln+2, Ln+3 and Ln+4

are pairwise coprime. Hence using Lemma 2.5 (a) we obtain

LnLn+1Ln+2Ln+3Ln+4 | 2F 1
3n

(5) | F2 1
3n

(5) .

In particular,

z(LnLn+1Ln+2Ln+3Ln+4) | 2
3
n(5). (3.15)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n + i) | z(LnLn+1Ln+2Ln+3Ln+4). Observe that there exist
a, b, c, d ∈ {0, 1}, with a + b = c + d=1, such that n/3a, (n+ 1)/2c, n+ 2,
(n+ 3)/(3b · 2d), n+ 4 are pairwise coprime, then

1

6
n(5) | z(LnLn+1Ln+2Ln+3Ln+4)/2. (3.16)

Thus, using (3.15) and (3.16) we have

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
1

3
n(5),

2

3
n(5)

}
.

We show that
LnLn+1Ln+2Ln+3Ln+4 | F 1

3n
(5) .

The proof will be again based on comparing p-adic orders of

LnLn+1Ln+2Ln+3Ln+4 and F 1
3n

(5)

for all primes p. Thus we prove that

νp

(
F 1

3n
(5)

)
≥ νp(LnLn+1Ln+2Ln+3Ln+4) (3.17)

holds for all primes p. This relation clearly holds for p = 5 with respect
to Lemma 2.1 and Lemma 2.2. Using Lemma 2.5 (h), Lemma 2.1 and
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the clear fact that 1
3n

(5) ≡ 0 (mod 24) we obtain

ν2(F 1
3n

(5)) = ν2

(
1

3
n(5)

)
+ 2 = ν2

(
n(5)

)
+ 2

≥ 5 > ν2(LnLn+1Ln+2Ln+3Ln+4).

When p �= 2 and p �= 5, the proof of (3.17) can be done by the same way
as in the case n ≡ 0 (mod 12).

• Let n ≡ 5 (mod 6). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
3n

(5) for i = 0, 1, 2, 3, 4.

Further gcd(Ln, Ln+3) = gcd(Ln, Ln+4) = gcd(Ln+1

2 , Ln+4) = 1, and to-

gether with Lemma 2.3 (e) the numbers Ln,
Ln+1

2 , Ln+2, Ln+3 and Ln+4

are pairwise coprime. Hence using Lemma 2.5 (b) we obtain

LnLn+1Ln+2Ln+3Ln+4 | 2F 1
3n

(5) | F3 1
3n

(5)

and then
z(LnLn+1Ln+2Ln+3Ln+4) | n(5). (3.18)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n + i) | z(LnLn+1Ln+2Ln+3Ln+4). Observe that there exist
a, b, c, d ∈ {0, 1} with a+ b = c+ d=1, such that n, (n+1)/(2a · 3b), n+2,
(n+ 3)/2b, (n+ 4)/3b are pairwise coprime, then

1

6
n(5) | z(LnLn+1Ln+2Ln+3Ln+4)/2. (3.19)

Thus, using (3.18) and (3.19) we have

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
1

3
n(5),

2

3
n(5), n(5)

}
.

The fact that LnLn+1Ln+2Ln+3Ln+4 | F 1
3n

(5) holds can be proved in the

same way as in the case n ≡ 3 (mod 6).

• Let n ≡ 6 (mod 36). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
6n

(5) for i = 0, 1, 2, 3, 4.

Further gcd
(
Ln

2 , Ln+3

)
= gcd

(
Ln

2 , Ln+4

3

)
= gcd

(
Ln+1,

Ln+4

3

)
= 1 and to-

gether with Lemma 2.3 (e) the numbers Ln

2 , Ln+1, Ln+2, Ln+3 and Ln+4

3
are pairwise coprime. Hence using Lemma 2.5 (c) we obtain

LnLn+1Ln+2Ln+3Ln+4 | 6F 1
6n

(5) | F 1
3n

(5)

and
z(LnLn+1Ln+2Ln+3Ln+4) | 1

3
n(5). (3.20)
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On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n+ i) | z(LnLn+1Ln+2Ln+3Ln+4). Since n/6, n+ 1, n+ 2, n+ 3,
(n+ 4)/2 are pairwise coprime, we have that

1

12
n(5) | z(LnLn+1Ln+2Ln+3Ln+4)/2. (3.21)

Thus, using (3.20) and (3.21) yields

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
1

6
n(5),

1

3
n(5)

}
.

So, it remains to prove that

LnLn+1Ln+2Ln+3Ln+4 | F 1
6n

(5) .

Using Lemma 2.5 (h) and the clear fact 1
6n

(5)≡0(mod 12) by Lemma 2.1,
we get

ν2

(
F 1

6n
(5)

)
= ν2

(
1

6
n(5)

)
+ 2 = ν2(n

(5)) + 1

≥ 5 > ν2(LnLn+1Ln+2Ln+3Ln+4).

For p > 2 we can prove that νp(LnLn+1Ln+2Ln+3Ln+4) ≤ νp
(
F 1

6n
(5)

)
in the same way as in the case n ≡ 0 (mod 12).

• Let n ≡ 26 (mod 36). Using Lemma 2.3 (b) we clearly have that

Ln+i | F 1
6n

(5) for i = 0, 1, 2, 3, 4.

Further gcd(Ln

3 , Ln+3) = gcd(Ln

3 , Ln+4

2 ) = gcd(Ln+1,
Ln+4

2 ) = 1 and this

together with Lemma 2.3 (e) implies that the numbers Ln

3 , Ln+1, Ln+2,

Ln+3 and
Ln+4

2 are pairwise coprime. Hence using Lemma 2.5 (d) we obtain

LnLn+1Ln+2Ln+3Ln+4 | 6F 1
6n

(5) | Fn(5)

and
z(LnLn+1Ln+2Ln+3Ln+4) | n(5). (3.22)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n+ i) | z(LnLn+1Ln+2Ln+3Ln+4). Since n/2, n+ 1, n+ 2, n+ 3,
(n+ 4)/6 are pairwise coprime, we have that

1

12
n(5) | z(LnLn+1Ln+2Ln+3Ln+4)/2. (3.23)

Thus, (3.22) and (3.23) yield

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
1

6
n(5),

1

3
n(5),

1

2
n(5),

2

3
n(5),

5

6
n(5), n(5)

}
.

So, it remains to prove that LnLn+1Ln+2Ln+3Ln+4 | F 1
6n

(5) , but the proof

is the same as in the previous case.

74



ORDER OF APPEARANCE OF PRODUCT OF FIVE CONSECUTIVE LUCAS NUMBERS

• n ≡ 2, 10, 14, 18, 22, 30, 34 (mod 36). Using Lemma 2.3 (b) we clearly have
for i = 0, 1, 2, 3, 4:

∗ If n ≡ 2, 14, 18, 30 (mod 36), then Ln+i | F 1
6n

(5) .

∗ If n ≡ 10, 22, 34 (mod 36), then Ln+i | F 1
2n

(5) .

It can be seen that:
∗ If n ≡ 2, 14 (mod 36), then

gcd
(
Ln

3 , Ln+3

)
= gcd

(
Ln

3 , Ln+4

2

)
= gcd

(
Ln+1,

Ln+4

2

)
= 1.

∗ If n ≡ 10 (mod 36), then
gcd
(
Ln

3 , Ln+3

)
= gcd

(
Ln

3 , Ln+4

)
= gcd

(
Ln+1, Ln+4

)
= 1.

∗ If n ≡ 18, 30 (mod 36), then

gcd
(
Ln

2 , Ln+3

)
= gcd

(
Ln

2 , Ln+4

3

)
= gcd

(
Ln+1,

Ln+4

3

)
= 1.

∗ If n ≡ 22, 34 (mod 36), then

gcd(Ln, Ln+3) = gcd
(
Ln,

Ln+4

3

)
= gcd

(
Ln+1,

Ln+4

3

)
= 1.

By Lemma 2.5 (a), (d) we obtain:

∗ If n ≡ 2, 14, 18, 30 (mod 36), then
LnLn+1Ln+2Ln+3Ln+4 | 6F 1

6n
(5) | F6 1

6n
(5) .

∗ If n ≡ 10, 22, 34 (mod 36), then
LnLn+1Ln+2Ln+3Ln+4 | 3F 1

2n
(5) | F2 1

2n
(5) .

Thus in all cases we have

z(LnLn+1Ln+2Ln+3Ln+4) | n(5). (3.24)

On the other hand, for i=0, 1, 2, 3, 4 clearly Ln+i | LnLn+1Ln+2Ln+3Ln+4,
hence 2(n+ i) | z(LnLn+1Ln+2Ln+3Ln+4). Since:

∗ n ≡ 2, 14 (mod 36), then n/2, (n + 1)/3, n + 2, n + 3, (n + 4)/2 are
pairwise coprime.

∗ n ≡ 10, 22, 34 (mod 36), then n/2, n + 1, n + 2, n + 3, (n + 4)/2 are
pairwise coprime.

∗ n ≡ 18, 30 (mod 36), then n/2, n + 1, n + 2, (n + 3)/3, (n + 4)/2 are
pairwise coprime.

Thus:
∗ n ≡ 2, 14, 18, 30 (mod 36) implies 1

6n
(5) | z(LnLn+1Ln+2Ln+3Ln+4).

∗ n ≡ 10, 22, 34 (mod 36) implies 1
2n

(5) | z(LnLn+1Ln+2Ln+3Ln+4).
Summarizing, we have:

∗ n ≡ 2, 14, 18, 30 (mod 36) implies

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
k

6
n(5) : k ∈ {0, . . . , 5}

}
,

∗ n ≡ 10, 22, 34 (mod 36) implies

z(LnLn+1Ln+2Ln+3Ln+4) ∈
{
1

2
n(5), n(5)

}
.
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To prove the assertion for this case we must prove that:
∗ LnLn+1Ln+2Ln+3Ln+4 | F 1

2n
(5) if n ≡ 10, 22, 34 (mod 36), and

∗ LnLn+1Ln+2Ln+3Ln+4 � F 1
3n

(5) and LnLn+1Ln+2Ln+3Ln+4 | F 1
2n

(5)

if n ≡ 2, 14, 18, 30 (mod 36).

First, we shall prove that

LnLn+1Ln+2Ln+3Ln+4 � F 1
3n

(5) for n ≡ 2, 14, 18, 30 (mod 36). (3.25)

In fact, if n ≡ 2, 30 (mod 36), then

ν3(LnLn+4) = 3 > 2 = ν3
(
F 1

3n
(5)

)
.

If n ≡ 14 (mod 36), then

ν3(LnLn+4) = ν3(n+ 4) + 2 > ν3(n+ 4) + 1

= ν3(n) + ν3(n+ 4) = ν3
(
F 1

3n
(5)

)
.

If n ≡ 18 (mod 36), then

ν3(LnLn+4) = ν3(n) + 2 > ν3(n) + 1

= ν3(n) + ν3(n+ 4) = ν3
(
F 1

3n
(5)

)
.

In summary, LnLn+4 � F 1
3n

(5) for n ≡ 2, 14, 18, 30 (mod 36).

Now, we shall prove that

LnLn+1Ln+2Ln+3Ln+4 | F 1
2n

(5)

for all n ≡ 2, 10, 14, 18, 22, 30, 34 (mod 36). For that, we use the same
p-adic valuation argument as before. For p �= 2 and p �= 5, we proceed
exactly as in the case n ≡ 0 (mod 12). For the case p = 2, we have

ν2(F 1
2n

(5)) = ν2(n) + ν2(n+ 2) + ν2(n+ 4) + 1

≥ 5 > 3 ≥ ν2(LnLn+1Ln+2Ln+3Ln+4).

Therefore, the proof is complete. �
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[15] SALLÉ, H. J. A.: Maximum value for the rank of apparition of integers in recursive

sequences, Fibonacci Quart. 13 (1975), 159–161.
[16] VINSON, J.: The relation of the period modulo m to the rank of apparition of m

in the Fibonacci sequence, Fibonacci Quart. 1 (1963), 37–45.
[17] VOROBIEV, N. N.: Fibonacci Numbers. Birkhäuser, Basel, 2003.
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