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IMPROVEMENT ON THE DISCREPANCY

OF (t, e, s)-SEQUENCES

Shu Tezuka

ABSTRACT. Recently, a notion of (t,e, s)-sequences in base b was introduced,
where e = (e1, . . . , es) is a positive integer vector, and their discrepancy bounds
were obtained based on the signed splitting method. In this paper, we first
propose a general framework of (TE , E, s)-sequences, and present that it in-
cludes (T, s)-sequences and (t,e, s)-sequences as special cases. Next, we show that

a careful analysis leads to an asymptotic improvement on the discrepancy bound
of a (t, e, s)-sequence in an even base b. It follows that the constant in the leading
term of the star discrepancy bound is given by

c∗s =
bt

s!

s∏

i=1

bei − 1

2ei log b
.

1. Introduction

Low-discrepancy sequences form a mainstay of quasi-Monte Carlo methods
in scientific computing. All current constructions of s-dimensional low-discre-
pancy sequences yield a bound on the discrepancy, low-discrepancy sequences,
signed splitting method, (t, e, s)-sequences discrepancy D∗

N of the form

D∗
N ≤ c∗s

(logN)s

N
+ O

(
(logN)s−1

N

)
(1)

for all N > 1. Then it is the aim to obtain constructions and/or methods for
bounding discrepancy that achieve a constant c∗s as small as possible. At present,
we have two types of constructions: Halton sequences and (t, s)-sequences. (To be
precise, Kronecker sequences (see, e.g., [2]) are known to satisfy the definition (1)
only for the one-dimensional case s = 1.) Recently, the author [16] introduced
a generalization of the theory of (t, s)-sequences, namely the concept of (t, e, s)-
-sequences with e = (e1, . . . , es) being an s-tuple of positive integers, where
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the special case of e = (e1, . . . , es) = (1, . . . , 1) corresponds to that of classical
(t, s)-sequences. Then, the author applied this concept to prove that a gener-
alized Niederreiter sequence [14], [15] is a (t, e, s)-sequence with t = 0, where
ei is the degree of the ith base polynomial in the construction, and obtained
much better discrepancy bounds for generalized Niederreiter sequences by using
the signed splitting method described below. Subsequently, under the framework
of (t, e, s)-sequences, H o f e r and N i e d e r r e i t e r [10] and N i e d e r r e i t e r
and Y e o [12] proposed new constructions of low-discrepancy sequences with
better discrepancy bounds based on global function fields.

There are three methods of obtaining discrepancy bounds depending on the
particular constructions.

• (Chinese remainder theorem) In 1960, H a l t o n [9] became the first who
obtained a construction of low-discrepancy sequences which satisfy the def-
inition (1). Today, his construction is called the Halton sequence. He em-
ployed the Chinese remainder theorem to analyze the discrepancy of his
sequences. Although some improvements in this direction have been done
(see, e.g., F a u r e [4]), the constant c∗s in the discrepancy bound still grows
super-exponentially in the dimension.

• (Double recursion method) In 1967, S o b o l’ [13] invented the double re-
cursion method to analyze the discrepancy of what is today called (t, s)-
-sequences in base 2. However, the constant c∗s obtained for the Sobol’
sequence, which is a special case of (t, s)-sequences in base 2, still super-
exponentially increases in the dimension. In 1982, F a u r e [4] applied this
method to the so-called Faure sequence, which is a special case of (0, s)-
-sequences in a prime base b, and showed that the constant c∗s converges
to zero as the dimension goes to infinity, provided that the base b is chosen
to be the least prime with b ≥ s. In 1987, N i e d e r r e i t e r [11] introduced
a notion of (t, s)-sequences in base b for an arbitrary integer b ≥ 2, and
established a general framework of what is today called the net theory
of digital sequences [3].

• (Signed splitting method) In 2004, A t a n a s s o v [1] proposed the signed
splitting method for the discrepancy analysis of generalized Halton se-
quences, and showed that the constant c∗s for the Halton sequence converges
to zero as the dimension goes to infinity. Recently, the author [16] applied
this method to (t, e, s)-sequences, and showed that the constant c∗s for the
Niederreiter sequence in base 2, which is a special case of (t, s)-sequences
in base 2, converges to zero as the dimension goes to infinity.

In this paper, we present recent results on (t, e, s)-sequences. In Section 2,
we introduce a general concept of (TE , E , s)-sequences in base b, and show that
(T, s)-sequences and (t, e, s)-sequences are special cases of (TE , E , s)-sequences.
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In Section 3, we first overview the signed splitting method for (t, e, s)-sequences
in base b, as well as the previous results on the discrepancy of these sequences.
Then, we improve the discrepancy bound for (t, e, s)-sequences in even bases,
which yields the smaller constant c∗s than the previous one [16]. In the final
section, we discuss interesting open questions for future research.

2. (TE , E , s)-sequences and (t, e, s)-sequences

First, we introduce the definition of discrepancy. For a point set PN =
{X0, X1, . . . , XN−1} of N points in [0, 1]s and an interval J ⊆ [0, 1]s, we de-
fine AN (J) as the number of n, 0 ≤ n ≤ N − 1, with Xn ∈ J and μ(J) is the
volume of J . Then the star discrepancy of PN is defined by

D∗
N = sup

J

∣∣∣∣AN (J)

N
− μ(J)

∣∣∣∣ ,
where the supremum is taken over all intervals J of the form

∏s
i=1[0, αi)

for 0 < αi ≤ 1. The (unanchored) discrepancy DN is obtained when the supre-
mum is taken over all intervals J of the form

∏s
i=1[αi, βi) for 0 ≤ αi < βi ≤ 1.

Let b ≥ 2 be an integer. An elementary interval in base b, which is a key
concept of the net theory, is an interval of the form

E(l; a) =

s∏
i=1

[
ai
bli

,
ai + 1

bli

)
,

where ai and li are integers with 0 ≤ ai < bli and li ≥ 0 for i = 1, . . . , s.
Denote a subset of nonnegative integer vectors by E ⊆ N

s
0, where card(E) = ∞.

Define a set of elementary intervals as follows:

E(E) =
⋃
l∈E

E(l),

where
E(l) =

{
E(l; a)| 0 ≤ ai < bli, (1 ≤ i ≤ s)

}
.

Define |l| = l1 + · · · + ls for a nonnegative integer vector l = (l1, . . . , ls).
Denote a set of nonnegative integers by N(E) =

{|l| | l = (l1, . . . , ls) ∈ E}.
Remark that card

(
N(E)) = ∞ because card(E) = ∞. We first give the definition

of (t,m, E , s)-nets as follows:
���������� 1� Let t and m be integers with 0 ≤ t ≤ m such that m − t ∈
N(E). A (t,m, E , s)-net in base b is a point set of bm points in [0, 1]s such that
Abm(E) = bt for every elementary interval E ∈ E(E) with μ(E) = bt−m.

Let TE be a mapping from N0 to N0, where 0 ≤ TE(m) ≤ m, such that there
are infinitely many m satisfying m−TE(m) ∈ N(E). Then (TE , E , s)-sequences
are defined as follows:
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���������� 2� A (TE , E , s)-sequence in base b is an infinite sequence, X =
(Xn)n≥0, of points in [0, 1]s such that for all integers k ≥ 0 and all m ≥ TE(m)
satisfying m−TE(m) ∈ N(E), the point set

{
[Xkbm ]b,m, . . . , [X(k+1)bm−1]b,m

}
is

a (TE(m),m, E , s)-net, where [Xn]b,m means the coordinate-wise b-ary m-digit
truncation of a point Xn.

It is easy to obtain the following propositions.

	
��������� 1� When E = N
s
0, a (TE , E , s)-sequence in base b is identical

to a (T, s)-sequence in base b.

	
��������� 2� Let e = (e1, . . . , es) be a positive integer vector. When the
mapping TE is constant, i.e., TE ≡ t, and E =

{
l | ei divides li (1 ≤ i ≤ s)

}
,

then a (TE , E , s)-sequence in base b is identical to a (t, e, s)-sequence in base b.

The example below gives two (0, e, 1)-sequences in base 2 with e = (3).

Example 1. The first case is the following generator matrix of a strict (2, 1)-
-sequence in base 2.

G1 =

⎛
⎝ J O O

O J O

O O
. . .

⎞
⎠,

where J is a 3× 3 matrix defined as

J =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠.

In this case, we observe that

T(m) =

⎧⎨
⎩

0 if m = 0 (mod 3),
1 if m = 1 (mod 3),
2 if m = 2 (mod 3).

Thus, this is a (0, e, 1)-sequence in base 2 with e = (3), equivalently, a (TE , E , s)-
-sequence with E =

{
l | l = 0 (mod 3)

}
and TE ≡ 0.

The second generator matrix of a strict (2, 1)-sequence in base 2 is as follows:

G2 =

(
J O
O I

)
,

where I is an infinite identity matrix. In this case, we observe that

T(m) =

⎧⎨
⎩

0 if m = 0 or m ≥ 3,
1 if m = 1,
2 if m = 2.

Thus, this is also a (0, e, 1)-sequence in base 2 with e = (3).
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3. Signed splitting method for (t, e, s)-sequences

3.1. Overview of previous results

We first overview the notion of signed splitting introduced by A t a n a s -
s o v [1] and its relevant lemma.

���������� 3� Consider an interval J ⊆ [0, 1]s. We call a signed splitting of J
any collection of intervals J1, . . . , Jn and respective signs ε1, . . . , εn equal to ±1,
such that for any finitely additive function ν on the intervals in [0, 1]s, we have
ν(J) =

∑n
i=1 εiν(Ji).

���� 1� Let J =
∏s

i=1[0, z
(i)) be an interval in [0, 1]s and let ni ≥ 0 be a given

integer for i = 1, . . . , s. Set z
(i)
0 = 0, zni+1 = z(i) and, if ni ≥ 1, let z

(i)
ji

∈ [0, 1]
be arbitrary numbers for ji = 1, . . . , ni. Then the collection of intervals

I(j1, . . . , js) =

s∏
i=1

[
min

(
z
(i)
ji
, z

(i)
ji+1

)
,max

(
z
(i)
ji
, z

(i)
ji+1

))

with signs ε(j1, . . . , js) =
∏s

i=1 sgn
(
z
(i)
ji+1−z

(i)
ji

)
for ji = 0, 1, . . . , ni (1 ≤ i ≤ s),

is a signed splitting of the interval J.

Take any z =
(
z(1), . . . , z(s)

) ∈ [0, 1]s. Each z(i) is expanded as
∑∞

j=0 a
(i)
j b−eij,

with |a(i)0 | ≤ 1, |a(i)j | ≤ �bei/2	, and |a(i)j | + |a(i)j+1| ≤ bei − 1, for j ≥ 1.

(The existence of such an expansion is proved in A t a n a s s o v [1].) Let ni =

� logb N−t
ei

	 + 1 and define z
(i)
0 = 0 and z

(i)
ni+1 = z(i). Consider the numbers

z
(i)
k =

∑k−1
j=0 a

(i)
j b−eij for k = 1, . . . , ni. By using the additivity of the local dis-

crepancy, and applying the above lemma, we have

AN (J)−Nμ(J) =

n1∑
j1=0

· · ·
ns∑

js=0

ε(j)
(
AN

(
I(j)

)−Nμ
(
I(j)

))
=

∑
1+

∑
2 ,

where in
∑

1 we put all vectors j such that b(e, j)+t ≤ N , and in
∑

2 the rest.

In order to estimate the two sums,
∑

1 and
∑

2, the following two lemmas [16]
are needed.

���� 2� Let b ≥ 2 be an arbitrary integer, e = (e1, . . . , es) and j = (j1, . . . , js)
be integer vectors with ei ≥ 1 and ji ≥ 0 for i = 1, . . . , s. Let I be an interval
given by

I =

s∏
i=1

[ ai
beiji

,
ci

beiji

)
,

where ai and ci are integers with 0 ≤ ai < ci ≤ beiji for i = 1, . . . , s. Then,
for the first N points of the truncated version of a (t, e, s)-sequence in base b,

31



SHU TEZUKA

we have

|AN (I)−Nμ(I)| ≤ bt
s∏

i=1

(ci − ai)

for every positive integer N , and AN (I) ≤ bt
∏s

i=1(ci − ai) if N < b(e, j)+t,
where the truncation size is taken to be large enough depending on j.

By using the fact that the number of positive integer vectors j = (j1, . . . , js)

satisfying (e, j) ≤ α for α > 0 is bounded by 1
s!

∏s
i=1

α
ei , we obtain the following

���� 3� Let e1, . . . , es be positive integers and α > 0. Let some numbers

g
(i)
j ≥ 0 be given for j ≥ 0 and i = 1, . . . , s satisfying g

(i)
0 ≤ 1 and g

(i)
j ≤ fi(ei)

for j ≥ 1, where f1(e1), . . . , fs(es) are some numbers. Then

∑
(j1,...,js)
(e, j)≤α

s∏
i=1

g
(i)
ji

≤ 1

s!

s∏
i=1

(
fi(ei)

α

ei
+ s

)
.

Based on the above lemmas, the next theorem was obtained [16].

����
�� 1� Let b≥2 be an arbitrary integer. The star discrepancy for the first
N > bt points of a (t, e, s)-sequence in base b is bounded as follows:

ND∗
N ≤ bt

s!

s∏
i=1

(�bei/2	
ei

(logbN − t) + s

)

+

s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(�bei/2	
ei

(logbN − t) + k

)
. (2)

In the above theorem, the first term of the righthand side of (2) is
the upperbound of |∑1 | and the second term is that of |∑2 |. Since |∑2 | =
O
(
(logb N)s−1

)
, the leading constant is given as follows:

c∗s =
bt

s!

s∏
i=1

�bei/2	
ei log b

. (3)

3.2. Improvement of the leading constant

We now give the main result of this section. The key idea of the proof,

which exploits the property |a(i)j | + |a(i)j+1| ≤ bei − 1 to improve the leading

constant, is due to A t a n a s s o v [1]. F a u r e and L em i e u x [6] applied his
idea in a slightly modified form to (t, s)-sequences. However, their proof contains
a serious error (see the corrigendum [7] for the detail). The proof given below
can be viewed as a generalized and corrected version, because (t, s)-sequences
are a special case of (t, e, s)-sequences.
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����
�� 2� Let b≥2 be an arbitrary integer. The star discrepancy for the first
N > bt points of a (t, e, s)-sequence in base b is bounded as follows:

ND∗
N ≤ bt

s!

s∏
i=1

(
bei − 1

2ei
(logbN − t) + s

)

+
bt+es |e|

2

s−1∏
i=1

(�bei/2	
ei

(logb N − t) + �bei/2	
)

+
s−1∑
k=0

bt+ek+1

k!

k∏
i=1

(�bei/2	
ei

(logbN − t) + k

)
. (4)

P r o o f. First, we divide the first sum
∑

1 as follows:∑
1 =

∑
1A +

∑
1B ,

where we take
∑

1A over all j with b(e,j)+t ≤ Nb−|e|, and
∑

1B over all j with

Nb−|e| < b(e,j)+t ≤ N . First, the sum
∑

1A is considered. Define S =
{
j | (e, j) ≤

logbN−|e|−t
}
, S̄ =

{
(2�(j1+1)/2	−δ1, . . . , 2�(js+1)/2	−δs)| (j1, . . . , js)∈S and

(δ1, . . . , δs)∈{0, 1}s}, and S̄′=
{
(�(j1+1)/2	, . . . , �(js+1)/2	)| (j1, . . . , js) ∈ S̄

}
.

We define integers c
(i)
h = |a(i)2h−1|+|a(i)2h | for h≥1 and c

(i)
0 =1. Note that c

(i)
0 ≥|a(i)0 |

because a
(i)
0 = 0 or 1. Then, we observe

1∑
δ1=0

· · ·
1∑

δs=0

s∏
i=1

∣∣a(i)2hi−δi

∣∣ =
s∏

i=1

(∣∣a(i)2hi−1

∣∣+ ∣∣a(i)2hi

∣∣)=
s∏

i=1

c
(i)
hi
,

in other words, ∑
(j1,...,js)

j′
i
=hi(1≤i≤s)

s∏
i=1

∣∣a(i)ji

∣∣ =
s∏

i=1

c
(i)
j′i
,

for any positive vector j, where j′i = ji/2 if ji is even; otherwise (ji + 1)/2.
Remark that if there is some i with ji = 0, we have

∑
(j1,...,js)

j′
i
=hi(1≤i≤s)

s∏
i=1

∣∣a(i)ji

∣∣ ≤
s∏

i=1

c
(i)
j′i
.

Let b̃ = b2. For any j ∈ S̄, there exists one j′ ∈ S̄′. Thus, we have

b̃e1j
′
1+ ···+esj

′
s = b2(

∑
even ji

eiji/2 +
∑

odd ji
ei(ji+1)/2)

≤ b(e,j)b|e| ≤ Nb−t

b|e|
b|e| = Nb−t.
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Since c
(i)
j =

∣∣a(i)2j−1

∣∣+ ∣∣a(i)2j

∣∣ ≤ bei − 1 and logb b̃ = 2, Lemmas 2 and 3 give us

∣∣∣∣∣
∑
1A

∣∣∣∣∣ ≤ bt
∑
j∈S

s∏
i=1

∣∣a(i)ji

∣∣ ≤ bt
∑
j∈S̄

s∏
i=1

∣∣a(i)ji

∣∣ ≤ bt
∑
j′∈S̄′

s∏
i=1

c
(i)
j′i

≤ bt

s!

s∏
i=1

(
bei − 1

2ei
(logbN − t) + s

)
.

Next,we consider the sum
∑

1B.Taking the logarithm of the condition, we have

logb N − t− |e| < (e, j) ≤ logb N − t.

This means that we have linear relations (e, j) = m in (j1, . . . , js) for logbN −
t − |e| < m ≤ logbN − t. Thus, the number of nonnegative integer vectors

(j1, . . . , js) satisfying such relations is at most |e|∏s−1
i=1

(�(logbN − t)/ei	 + 1
)
.

Taking into consideration that each j contributes at most bt
∏s

i=1�bei/2	 to the
estimate of

∑
1B , we obtain∣∣∣∣∣
∑
1B

∣∣∣∣∣ ≤
bt+es |e|

2

s−1∏
i=1

(�bei/2	
ei

(logb N − t) + �bei/2	
)
.

Remark that the third term of the righthand side of (4) is the upper bound of
|∑2 |, which remains the same as that obtained in Theorem 1. Since both bounds

on the sums,
∑

1A and
∑

1B , are independent of each interval J =
∏s

i=1

[
0, z(i)

)
,

the discrepancy bound for the truncated version is obtained. As it is shown
in [16], the discrepancy bound for the untruncated version remains the same as
the truncated version. The proof is complete. �

Since we have |∑1B | = O
(
(logb N)s−1

)
in the above theorem, the leading

constant for (t, e, s)-sequences in base b is given as

c∗s(new) =
bt

s!

s∏
i=1

bei − 1

2ei log b
.

In comparison with the previous constant of (3), the new constant yields an im-
provement for the case of even bases. We should notice that for any odd base b
the bound in (4) has no improvement on the previous bound in (2).

The leading constant currently known as the best for (t, s)-sequences in base b,
which was recently obtained by F a u r e and K r i t z e r [5] based on an improve-
ment of the double recursion method, is given as

c∗s(t, s) =

⎧⎨
⎩

b2

2(b2−1)
bt

s!

(
b−1

2 log b

)s
if b is even,

1
2
bt

s!

(
b− 1
2 log b

)s
otherwise.
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Since (t, s)-sequences in base b are equivalent to (t, e, s)-sequences in base b with
e=(1, . . . , 1), we can compare the above constants to conclude that the new con-
stant is slightly bigger than c∗s(t, s) by a factor of at most 2. In the most practical
case of b=2, the factor is 1.5 for the new constant, while it is 1.5 × 2s for the
previous constant of (3). Therefore, our improvement is significant in particular
for large dimensions s.

Remark 1� The new paper of F a u r e-L e m i e u x [8] uses a different approach
from the one in this paper to obtain the same leading constant as c∗s(new). If we
look at their Theorem 2 and its preceding paragraph, we can easily find what is
the main difference between their new bound and the bound in (2) of this paper,
namely the term logbN − t in (2) is replaced by logbN +

∑
ei in their result.

As for any odd base b, it is obvious that their new upper bound is always
bigger than the upper bound in (2). Even for any even base b, whereas the
term bei is reduced to bei− 1, the same situation happens at least if N < bbt.

Furthermore, in the paragraph just after the proof of Lemma 7 of their paper,
the significance of their new finding “N ≥ 1” in Theorem 2 is emphasized.
However, this paragraph is completely wrong and misleading. First, we should
notice that their upper bound in Theorem 2 is bigger than bt. Second, all of us
know the trivial upper bound of the discrepancy, i.e., D∗(N,X) ≤ N . Combining
these two facts, we find that their Theorem 2 is meaningless unless N > bt.

In conclusion, their “new bound” gives almost no improvement compared
to the previous bound of (2).

4. Discussions

Generalized Niederreiter sequences [14], [15] include Sobol’ sequences, Nieder-
reiter sequences, generalized Faure sequences, polynomial Halton sequences, etc.
The generator matrices of this class of sequences are constructed by using ratio-
nal functions, which consist of numerators and denominators. In the construc-
tion, numerators are commonly called direction numbers, and denominators are
called base polynomials. When we apply the discrepancy bounds (2) and (4)
to generalized Niederreiter sequences, we set the parameter ei to be the degree
of the ith base polynomial for i = 1, . . . , s.

Figure 1 shows numerical results of the leading constants, 2sc∗s(new),
of the unanchored discrepancy for the Sobol’ sequence and the Niederreiter
sequence in base b = 2, up to 360 dimensions. The difference between the two se-
quences is as follows: the Sobol’ sequence uses primitive polynomials over GF (2)
for the base polynomials, except for the first base polynomal which is p(z) = z.
On the other hand, the Niederreiter sequence uses irreducible polynomials for
the base polynomials. In both cases, the degrees of the base polynomials are
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Figure 1. The leading constants of the unanchored discrepancy for the
Sobol’ sequence and the Niederreiter sequence in base b = 2, up to 360

dimensions.

sorted in a nondecreasing order. Surprisingly enough, the figure shows that the
Sobol’ constant looks going to infinity, while the Niederreiter constant looks
converging to zero. Although the difference between the primitivity and the ir-
reducibility is small, the constants based on (t, e, s)-sequences clearly distinguish
them. We should note that the constants obtained for Sobol’ and Niederreiter
sequences based on (t, s)-sequences cannot do, because both of them, whichever
star or unanchored discrepancy, super-exponentially go to infinity. Further the-
oretical investigation into this phenomenon will be interesting.

It is well known that direction numbers are very important parameters
for obtaining good practical performance in real world applications. As easily
seen, discrepancy bounds of generalized Niederreiter sequences based on (t, e, s)-
-sequences as well as (t, s)-sequences do not contain any information about di-
rection numbers. A general framework of (TE , E , s)-sequences is capable of deal-
ing with such information by an appropriate choice of the set E . For example,
getting back to Example 1, if we choose E = {l | l ≥ 3}, the generator G2 has
TE ≡ 0, while the generator G1 has TE 
≡ 0. In order to employ the signed
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splitting method for analyzing (TE , E , s)-sequences, the set E must be a direct
product, i.e.,

E = E(1)× · · · ×E(s),

with

E(i) =
{
l
(i)
1 , l

(i)
2 , . . .

}
, 1 ≤ i ≤ s,

where 0 ≤ l
(i)
1 < l

(i)
2 < · · · are an increasing sequence of integers for i = 1, . . . , s.

This direction of research must be interesting.
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