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CLOSURE THEORIES OF POWERSET THEORIES

Jiř́ı Močkoř

ABSTRACT. A notion of a closure theory of a powerset theory in a ground cat-
egory is introduced as a generalization of a topology theory of a powerset theory.
Using examples of powerset theories in the category Set of sets and in the category

of sets with similarity relations, it is proved that these theories can be used as
ground theories for closure theories of powerset theories in these two categories.
Moreover, it is proved that all these closure theories of powerset theories are
topological constructs. A notion of a closure operator which preserves a canoni-
cal form of fuzzy objects in these categories is introduced, and it is proved that
a closure theory of a powerset theory in the ground category Set is a coreflective

subcategory of the closure theory of (Zadeh’s) powerset theory, which preserves
canonical forms of fuzzy sets.

1. Introduction

In almost all branches of mathematics the notion of the powersets and power-
set operators in classical set theory is one of the most useful and exploited tools.
Recall that given a set X, there exists the set P(X) = {S : Y ⊆ X}, called
the powerset of X and such that every map f : X → Y can be extended to the
powerset operators f→ : P(X)→ P(Y ) and f← : P(Y )→ P(X), such that

f→(S) = f(S), f←(T ) = f−1(T ).

The powerset structures are widely used in algebra, logic, topology and also
in computer science, for illustrative examples of possible applications in see,
e.g., the introductory part of the paper of [18], for applications of powerset ob-
jects in abstract interpretation see, e.g., [1], [6]. Because the classical set theory
can be considered to be a special part of fuzzy set theory, introduced by [28], is
natural that powerset objects associated with fuzzy sets soon were investigated
as generalizations of classical powerset objects. A fuzzy set in a set A with values
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in some partly ordered structure Q is defined as a map A→ Q and an investiga-
tion of objects of all fuzzy sets IX was of interest. The first approach was done
again by [28], who defined IX to be a new powerset object instead of P(X) and
introduced new powerset operators f→Z : IX→ IY and f←Z : IY → IX, such that
for s ∈ IX, t ∈ IY, y ∈ Y,

f→Z (s)(y) =
∨

x,f(x)=y

s(x), f←Z (t) = t ◦ f.

A lot of papers were published about Zadeh’s extension and its generaliza-
tions, see, e.g., [22], [23], [25]. Zadeh’s extension (which could be considered as
an extension of a forward powerset operator f→) was for the first time inten-
sively studied by [14], especially the relation between f→ and f→Z . This paper
was in fact the first real attempt to uniquely derive the powerset operators
f←Z , f

→
Z from f→ and f← and not only explicitly stipulate them. Whatever

works of Rodabaugh gave very serious basis for further research of powerset
objects and operators, only abstract theory of powerset objects based on similar
principles as the theory of monads has brought another important ideas to the
research of powerset objects. The principal idea of the categorical approach was
an observation that classical powerset objects constitute the so-called algebraic
theory (or monad), introduced by E. G. M a n e s [19]. Roughly speaking, there
exists an algebraic theory (in clone form) P = (P, η,♦) in the category Set,
where P(X) = 2X (see [2]), such that the operator f→P : P(X)→ P(Y ) induced
from P by setting f→P = (ηB ◦ f)♦1P(X) is the same as f→. Similarly can be
derived the powerset operator f←P . In this sense, an algebraic theory P generates
the traditional powerset theory [2]. In the same manner as in the case of an alge-
braic theory P = (P, η,♦), which generates powerset operators in the category
Set, we can formally proceed in defining algebraic theory Z = (Z, μ,�) which
defines powerset operators for Q-valued fuzzy sets, where Q is an appropriate
lattice. In that case, Z(X) = QX, and μX(x) is the Q-valued characteristic mor-
phism of a subset {x} in X and such that for any f : X → QY, g : Y → QZ,
the clone composition g�f : X → QZ is defined by[

(g�f)(x)
]
(z) =
∨
y∈Y

f(x)(y)⊗ g(y)(z).

S. E. R o d a b a u g h [6] then proved that Z is an algebraic theory if and only if
(Q,≤,⊗) is a unital quantale with unit. Moreover, he also proved that in that
case, for each morphism f : X → Y, the lifting (μX ◦ f)�1Z(X) equals to the
classical Zadeh’s powerset operator f→Z : Z(X)→ Z(Y ). In that case, Z : Set→
Set is a functor, Z(f)=f→Z . Because a significant part of the theory of Q-fuzzy
sets is built on some variants of residuated lattices which fulfill that condition,
it is possible even in such cases to use algebraic theory for the construction
of powerset operators.
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E. G. M a n e s [20] introduced also a new structure T =
(
T, e, (−)∗

)
, called

fuzzy theory, such that T assigns to each set X a set T (X), e assigns to each
set X a map eX : X → T (X), and (−)∗ assigns to each function f : X→T (Y )
a function f∗ : T (X)→T (Y ), satisfying some additional conditions. Fuzzy the-
ory is, in fact, identical with the algebraic theory (T,♦, e) in the category Set,
if we set g♦f = g∗ ◦ f.

Instead of algebraic theory (in clone form) introduced by [19], more explicit
powerset theory was introduced by S. E. R o d a b a u g h [16] as a special struc-
ture describing powerset objects. A slight modification of that structure de-
fined in a category K, is represented by a system P = (P,→, V, η), where
P : |K| → CSLAT is a powerset generator (where CSLAT is the category
of complete semilattices), → is a forward powerset operator, such that for each
f : X → Y in K, f→P : P (X) → P (Y ) in CSLAT , V : K → Set is a concrete
functor and ηX : V (X) → P (X) is a map for each object X. He then proved
that some powerset theories can be generated by algebraic theories.

Since the original Z a d e h’ s paper was published, the notion of “fuzzy set”
has been changed significantly and it is now more general. The first important
modification concerns the value set: instead of real number interval I = [0, 1],
more general lattice structures Q are considered. Among these lattice struc-
tures, complete residuated lattices play important role, (see, e.g., [21]), in mod-
ern terminology unital and commutative quantale, (see [7]), i.e., a structure
Q = (L,∧,∨,⊗,→, 0, 1) such that (L,∧,∨) is a complete lattice, (L,⊗, 1) is
a commutative monoid with operation ⊗ isotone in both arguments and → is
a binary operation which is adjoint with respect to ⊗, i.e.,

α⊗ β ≤ γ if and only if α ≤ β → γ.

A well known example is the �Lukasiewicz algebra �L =
(
[0, 1],∨,∧,⊗,→�L, 0, 1

)
,

where
a⊗ b = 0 ∨ (a+ b− 1)

a→�L b = 1 ∧ (1− a+ b).

Further, classical fuzzy sets (or even fuzzy sets with values in residuated
lattice Q) were originally defined on sets. But any set A can be considered as
a couple (A,=), where = is a standard equality relation defined on A. It is
then natural instead of the crisp equality relation =, to consider some more
“fuzzy” equality relation defined on A, which is called a similarity relation.
Hence, instead of a classical set A as a basic set and a fuzzy set s : A → Q,
we can use a set with similarity relation (A, δ) (called a Q-set) and a map
s : (A, δ) → Q. Such a map then represents some new “fuzzy object” in (A, δ).
The next step in our generalization process is more abstract. Instead of maps
A → Q, or (A, δ) → Q, we can use more general structures, i.e., morphisms
in some categories. In the fuzzy set theory various categories are used to describe
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JIŘ́I MOČKOŘ

properties of such “fuzzy objects”. Properties of such categories were intensively
investigated, e.g., [4]. In the paper, we use a category with Q-sets as objects
and naturly defined morphisms. A morphism f : (A, δ)→ (B, γ) in the category
Set(Q) is a map f : A → B such that γ

(
f(x), f(y)

) ≥ δ(x, y) for all x, y ∈ A.
It is then natural to speak about a fuzzy object (A, δ)→ (Q,↔) in the category
Set(Q), instead of a “fuzzy set”, where ↔ is the biresiduation operation in Q
defined by α↔ β = (α→ β)∧ (β → α). These fuzzy objects generalize classical
fuzzy sets A → Q. In fact, if we consider, for example, Q-sets (A,=), then
s : (A,=)→ (Q,↔) is a morphism in Set(Q) if and only if s : A→ Q is a map,
i.e., a classical fuzzy set.

By using that general approach, we can even define fuzzy objects which are
neither maps nor morphisms. The motivation for these fuzzy objects comes
from α-cuts of classical fuzzy sets. Any classically defined fuzzy set X in a set A
with values in Q can be defined equivalently by a system of level sets Xα, α ∈ Q,
where Xα =

{
a ∈ A : X(a) ≥ α}. Conversely, any (nested) system (Yα)α of sub-

sets of A such that for any a ∈ A the set {α ∈ Q : a ∈ Yα} has the greatest
element (such system is called a cut in A), defines a fuzzy set Y such that
Y (a)=

∨
{β:a∈Yβ} β. In our previous papers [9], [10], we proved that analogously

any morphisms (A, δ) → (Q,↔) in the category Set(Q) can be defined equiv-
alently by a system of some special subsets of A or A × Q, respectively, called
f-cuts. Hence, f-cuts then represent another fuzzy objects in (A, δ) in our cate-
gories K, which generalize classical fuzzy sets.

It is important to know that all these fuzzy objects represent object functions
of functors from a corresponding category into the category Set (see [9], [10]),
or even into the category CSLAT of all complete

∨
-semilatices. It means, that

sets of fuzzy objects can be ordered in a natural way, such that the resulting
ordered sets are complete

∨
-semilattices, and the above mentioned functors are,

in fact, functors from corresponding categories to the category CSLAT .

For these new fuzzy objects it is important that the corresponding powerset
objets, i.e., sets F (A, δ) of all morphisms (A, δ)→ (Q,↔) and sets C(A, δ) of all
f-cuts have analogical properties to those of classical fuzzy sets. In the paper [12]
we proved that all these fuzzy objects has powerset structures which are pow-
erset theories in corresponding categories, in the sense of Rodabaugh and some
of these powerset theories are defined by algebraic theories. For classical power-
set theories Z and P there exists a strong relation between these two theories,
which can be represented as some homomorphism P→ Z. In [12] we proved that
analogously for these new fuzzy theories F there exist “new classical” powerset
theories R and a homomorphism R→ F.

Algebraic theories and powerset theories were used to develop a fuzzy topo-
logical theories for lattice-valued mathematics. The basic idea of this approach
is the definition of a new theory that contains, among powerset objects also
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topology defined on these powerset objects, and the inclusion of relevant axioms
concerning continuity to this new theory (see, e.g., S. E. R o d a b a u g h [16],
S. A. S o l o v y o v [18] with extended list of references).

In this paper we want to investigate powerset objects in ground categories
Set and Set(Q) in two different but interconnected sections. Firstly, we intro-
duce the notion of a closure theory of a powerset theory in a ground category
as a natural generalization of a topology theory of a powerset theory, which was
previously defined by S. E. R o d a b a u g h [16]. Using examples of powerset the-
ories presented in previous papers of S. E. R o d a b a u g h [16], U. H ö h l e [13],
J. M o č k o ř [12] and others, we show that these powerset theories can be used
as ground theories for closure theories of powerset theories in a ground category
Set or Set(Q) and that all these closure theories of powerset theories are topo-
logical constructs, which also generalizes results of S. E. R o d a b a u g h [16].

The other section will deal with properties of objects of closure theories
of powerset theories. In our previous paper [11] we proved several extension theo-
rems for closure operators, under which a closure operator defined on a powerset
structure of one type can be extended to a closure operator defined on another
powerset structure. We also investigated relationships between continuity of pairs
of morphisms f, g in categories of powerset structures, with respect to a closure
operators, where f and g are morphisms between powerset structures of different
types. In the paper we will continue in such investigation of these properties.
An important notion will be the notion of a closure operator which preserves
a canonical form of fuzzy objects. Using that notion we will describe some ex-
tensions of closure operators. Moreover, using that notion we show that a clo-
sure theory of a classical powerset theory in the ground category Set is a core-
flective subcategory in the subcategory of closure theory of (Zadeh’s) powerset
theory, which is based on closure operators which preserves a canonical forms
of (Zadeh’s) fuzzy sets.

2. Preliminaries

For a convenience of potential readers we repeat in this section several no-
tions and facts about sets with similarity relations and the category Set(Q)
of these sets. We also repeat some results about special morphisms in the cate-
gory Set(Q), which are considered to be a generalization of classical fuzzy sets.
Some results will be also mentioned about isomorphisms between these fuzzy sets
and special cut systems in the category Set(Q), which generalize relationships
between classical fuzzy sets and α-cuts. We also repeat some basic theorem about
extensions of closure operators, under which a closure operator defined on one
powerset structure can be extended to a closure operator defined on another
powerset structure. Most of results were published in the papers [9]–[11].
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In the paper the symbol Q is used for a a structure Q = (L,∧,∨,⊗,→, 0, 1)
such that (L,∧,∨) is a complete lattice, (L,⊗, 1) is a commutative monoid
with operation ⊗ isotone in both arguments and → is a binary operation which
is adjoint with respect to ⊗, i.e.,

α⊗ β ≤ γ if and only if α ≤ β → γ.

Recall that a system (Cα)α∈Q is a cut systems in a set X, if Cα ⊆ X and if
a ∈ X is such that

∨
β:a∈Cβ

β ≥ α, then a ∈ Cα. It is well known that there

exists a bijection between the set of all cut systems in a set X and a set QX.

Recall that a set with similarity relation (or Q-set) is a couple (A, δ), where
δ : A× A→ Q is a map such that

(a) (∀x ∈ A) δ(x, x) = 1Q,

(b) (∀x, y ∈ A) δ(x, y) = δ(y, x),

(c) (∀x, y, z ∈ A) δ(x, y)⊗ δ(y, z) ≤ δ(x, z) (generalized transitivity).

We will use the category Set(Q) with Q-sets as objects and with morphisms
f : (A, δ)→(B, γ) defined as a map f : A→B, such that γ

(
f(x), f(y)

)≥δ(x, y),
for all x, y ∈ A. The category Set(Q) has its origin in Wyler’s category introduced
in [27], and in a more general way developed by U. H ö h l e in [4]. The category
Set(Q) and some its modifications are frequently used as a natural background
for categorical investigation of fuzzy set theory.

Cut systems (called f-cut systems) can be defined also in the category Set(Q)
(see [9], [10]), where a system of subsets (Cα)α∈Q of A is an f-cut system
in a Q-set (A, δ), if

(a) ∀a, b ∈ A, a ∈ Cα ⇒ b ∈ Cα⊗δ(a,b),
(b) ∀a ∈ A, ∀α ∈ Q,

∨
{β:a∈Cβ} β ≥ α⇒ a ∈ Cα.

We will use the following notations for powerset objects:

• P (A) = (2A,⊆), A ∈ |Set|,
• Z(A) = (QA,≤), ordered pointwise, A ∈ |Set|,
• D(A) is the set of all cut systems in A, ordered by inclusion, A ∈ |Set|,
• F (A, δ) = HomSet(Q)

(
(A, δ), (Q,↔)

)
, ordered pointwise, (A, δ) ∈ |Set(Q)|,

• C(A, δ) is the set of all f-cut systems in (A, δ) in the category Set(Q),
ordered by inclusion, (A, δ) ∈ |Set(Q)|, and

• R(A, δ) = (2A,⊆), (A, δ) ∈ |Set(Q)|.
In the paper [8] we proved that for every Q-set (A, δ), there exists a map̂:

Z(A)→ F (A, δ) defined by

ŝ(a) =
∨
x∈A

s(x)⊗ δ(a, x),
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and this map is a closure operator on the set Z(A). Analogously, in the paper [9]
we proved that there exists a map˜: D(A)→ C(A, δ), defined by

˜(Cα)α = (C̃α)α, C̃α =

{
a ∈ A :

∨
{(x,β):x∈Cβ}

β ⊗ δ(a, x) ≥ α
}
.

We will use those closure operatorŝand˜in the rest of the paper. In the paper [11]
we investigated a possibility to extend a closure operator defined on a powerset
objects of some fuzzy objects to a closure operator defined on another powerset
object of fuzzy objects. For example, if c is a closure operator defined on an or-
dered set

(
Z(A),≤) of fuzzy sets in a setA, then using c, another closure operator

ψZ(A),A(c) can be defined on A. In fact, let (A,≤) be an ordered set and let
U(A,≤) be the set of all closure operators defined on (A,≤). Then the following
theorem was proved.

������� 2.1 ([11, Theorem 3.1])� Let A be a set.

(1) There exist maps such that the diagram commutes.

U(Z(A)
)ψZ(A),A�� U(P (A)

) ψA,Z(A)�� U(Z(A)
)

ψZ(A),D(A)

��
U(D(A)

)ψD(A),A��

ψD(A),Z(A)

��

U(P (A)
)ψA,D(A)�� U(D(A)

)
.

(2) ψZ(A),A ◦ ψA,Z(A) = idU(P (A)).

(3) ψD(A),A ◦ ψA,D(A) = idU(P (A)).

(4) ψD(A),Z(A) and ψZ(A),D(A) are mutually inverse maps.

Moreover, in [11] we also proved that it is possible to describe continuous prop-
erties of functors P,Z,D with respect to closure operators. Recall that if (V, c)
and (W, d) are ordered sets with closure operators, then a map f : V → W
is continuous if f

(
c(x)
) ≤ d
(
f(x)
)
, for any x ∈ V. The following theorem was

proved (for the definition of f→P , f
→
Z see examples in Section 3).

���	�
���� 2.1 ([11, Proposition 4.1])� Let A,B be sets and let c (d, respec-
tively) be a closure operator on the set A (B, respectively). Let v = ψA,Z(A)(c),
w = ψB,Z(B)(d), and let f : A → B be a map. Then the following statements
are equivalent.

(1) f→P :
(
P (A), c

)→ (P (B), d
)
is continuous.

(2) f→Z :
(
Z(A), v

)→ (Z(B), w
)
is continuous.

Analogical results can be obtained for closure operators defined on object
functions of functors R,F,C. In fact the following theorem and proposition was
proved, where Ũ(R(A, δ)

)
is the set of all closure operators c defined on a po-
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werset R(A, δ), which satisfy the condition c(Ẽα) ⊆ ˜c(Eα), for every cut system

(Eα)α ∈ D(A) and a given Q-set (A, δ).

������� 2.2 ([11, Theorem 3.2])� Let (A, δ) be a Q-set.

(1) There exist maps such that the diagram commutes.

U(F (A, δ)
) ϕF (A,δ),A−−−−−−−→ U(R(A, δ)

) ⊇ Ũ(R(A, δ)
) ϕA,F (A,δ)−−−−−−−→ U(F (A, δ)

)
�⏐⏐ϕC(A,δ),F (A,δ)

∥∥∥ ϕF (A,δ),C(A,δ)

⏐⏐�
U(C(A, δ)

) ϕC(A,δ),A−−−−−−−→ U(R(A, δ)
) ⊇ Ũ(R(A, δ)

) ϕA,C(A,δ)−−−−−−−→ U(C(A, δ)
)
.

(2) ϕC(A,δ),F (A,δ) and ϕF (A,δ),C(A,δ) are mutually inverse maps.

(3) ϕF (A,δ),A ◦ ϕA,F (A,δ) = id
˜U(R(A,δ)).

(4) ϕC(A,δ),A ◦ ϕA,C(A,δ) = id
˜U(R(A,δ)).

For the definition of f→R , f
→
F in the next proposition see also examples in Sec-

tion 3.

���	�
���� 2.2 ([11, Proposition 4.3])� Let (A, δ), (B, γ) be Q-sets and let

c∈Ũ(A) and d∈Ũ(B) be closure operators.Let v=ϕA,F (A,δ)(c), w=ϕB,F (B,γ)(d),
and let f : (A, δ)→ (B, γ) be a morphism in the category Set(Q). Let us consider
the following statements:

(1) f→R :
(
R(A, δ), c

)→ (R(B, γ), d
)
is continuous,

(2) f→F :
(
F (A, δ), v

)→ (F (B, γ), w
)
is continuous.

Then (1) ⇒ (2). If the closure operator cB,γ is trivial on the set B, then also
(2)⇒ (1).

3. Closure theory of a powerset theory

Because of the convenience of the reader we repeat the basic definition of the
powerset theory, which was introduced by S. E. R o d a b a u g h [16] as an anal-
ogy of algebraic theory in clone form.

�������� 3.1 (S. E. R o d a b a u g h [16])� Let K be a ground category.
Then P = (P,→, V, η) is called CSLAT -powerset theory in K, if

(1) P : |K| → |CSLAT | is an object-mapping,

(2) for each f : A→ B in K, there exists f→P : P (A)→ P (B) in CSLAT ,

(3) for each f : A→ B in K, there exists f←P : P (B)→ P (A) in CSLAT ,

(4) (f→P , f
←
P ) is a Galois connection,
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(5) there exists a concrete functor V : K→ Set, such that η determines in Set
for each A ∈ K a mapping ηA : V (A)→ P (A),

(6) for each f : A→ B in K, f→P ◦ ηA = ηB ◦ V (f).

We will frequently deal with the following situation. Let K be a category and
let P : K → CSLAT be a covariant functor. It follows that for any morphism
f : A→ B, P (f) is a map preserving all sup. Instead of P (f), we use f→P .

By using the well known Adjoint Functor Theorem (see, e.g., [5], [15]) for any
morphism f : A→ B in K, there exists the map f←P : P (B)→ P (A) defined by(∀Y ∈ P (B)

)
f←P (Y ) =

∨
{X∈P (A):f→

P (X)≤Y }
X. (1)

It is then clear that f←P : P (B)→ P (A) preserves all existing meets and (f→P , f
←
P )

is a Galois connection. If a functor P will be given, then by f←P we will understand
the map defined by (1) from P (f) = f→P .

In the paper we will deal with several examples of CSLAT -powerset theories.
Some of these examples were derived by previous authors, e.g., S. E. R o d a -
b a u g h [16], U. H ö h l e [13], S. A. S o l o v y o v [18], other examples was
presented in J. M o č k o ř [12].

Example 3.1. CSLAT -Powerset theory P = (P,→, id, η) in the category Set,
where

(1) P : |Set| → |CSLAT |
is defined by P (X) = (2X,⊆),

(2) for each f : X → Y in Set, f→P : P (X)→ P (Y )
is defined by f→P (S) = f(S),

(3) for each f : X → Y in Set, f←P : P (Y )→ P (X)
is defined by f←P (T ) = f−1(T ),

(4) for each X ∈ Set, ηX : X → P (X)
is defined by ηX(a) = {a}.

Example 3.2. CSLAT -Powerset theory Z = (Z,→, id, χ) in the category Set,
where

(1) Z : |Set| → |CSLAT | is defined by Z(X) = QX,
where Q is a complete residuated lattice,

(2) for each f : X → Y in Set, f→Z : QX → QY

is defined by f→Z (s)(y) =
∨
x∈X,f(x)=y s(x),

(3) for each f : X → Y in Set, f←Z : Z(Y )→ Z(X)
is defined by f←Z (t) = t ◦ f ,

(4) for each X ∈ Set, χX : X → QX, χX({a})
is the characteristic map of a subset {a} in a set X.
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Example 3.3. CSLAT -Powerset theory D = (D,→, id, ρ) in the category Set,
where

(1) D : |Set| → |CSLAT | is defined by D(X) = the set of all cut systems
(Cα)α∈Q in a set X, naturally ordered by inclusion,

(2) for each f : X → Y in Set, f→D : D(X)→ D(Y )

is defined by f→D
(
(Cα)α
)

=
(
f(Cα)
)
α
∈ D(Y ), where the closure (Sα)α

in a set Y is defined by Sα =
{
a ∈ Y :

∨
β:a∈Cβ

β ≥ α},
(3) for each f : X → Y in Set, f←D : D(Y )→ D(X)

is defined by f←D ((Sα)α) =
(
f−1(Sα)

)
α

,

(4) for each X ∈ Set, ρX : X → D(X)
is defined by ρX(a) = ({a})α.

Example 3.4. CSLAT -Powerset theoryR=(R,→, V, η) in the category Set(Q),
where

(1) R : |Set(Q)| → |CSLAT | is defined by R(X, δ) = P (X),

(2) for each morphism f : (X, δ) → (Y, γ) in Set(Q), f→R : R(X, δ) → R(Y, γ)
is defined by f→R (S) = f→P (S),

(3) for each morphism f : (X, δ) → (Y, γ) in Set(Q), f←R : R(Y, γ) → R(X, δ)
is defined by f←R (T ) = f←P (T ),

(4) V : Set(Q)→ Set is the forgetfull functor, V (A, δ) = A, V (f) = f ,

(5) for each (X, δ) ∈ Set(Q), η(X,δ) : X → R(X) is defined by η(X,δ)(a) = {a}.
Example 3.5. CSLAT -Powerset theory F=(F,→, V, χ̂) in the category Set(Q),
where

(1) F : |Set(Q)| → |CSLAT | is defined by

F (X, δ) =
(
HomSet(Q)

(
(X, δ), (Q,↔)

)
,≤
)
,

(2) for each morphism f : (X, δ) → (Y, γ) in Set(Q), f→F : F (X, δ) → F (Y, γ)
is defined by f→F (s)(y) =

∨
x∈X s(x)⊗ γ(f(x), y

)
,

(3) for each morphism f : (X, δ) → (Y, γ) in Set(Q), f←F : F (Y, γ) → F (X, δ)
is defined by f←F (t) = t ◦ f .

(4) V : Set(Q)→ Set is the forgetfull functor,

(5) for each (X, δ) ∈ Set(Q), χ̂(X,δ) : X → F (X, δ)

is defined by χ̂(X,δ)(a)(x) = δ(a, x), for a, x ∈ X.

Example 3.6. CSLAT -Powerset theory C=(C,→, V, χ̃) in the category Set(Q),
where

(1) C : |Set(Q)| → |CSLAT | is defined by C(X, δ) = set of all f-cut systems
in (A, δ) in the category Set(Q), naturally ordered by inclusion,
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(2) for each morphism f : (X, δ) → (Y, γ) in Set(Q), f→C : C(X, δ) → C(Y, γ)
is defined by

f→C
(
(Eα)α
)

=
(

˜f(Eα)
)
α
, ˜f(Eα) =

{
b ∈ Y :

∨
(y,β):y∈f(Eβ)

β ⊗ γ(b, y) ≥ α
}
,

(3) for each morphism f : (X, δ) → (Y, γ) in Set(Q), f←C : C(Y, γ) → C(X, δ)
is defined by f←C

(
(Eα)α
)

=
(
f−1(Eα)

)
α

,

(4) V : Set(Q)→ Set is the forgetfull functor,

(5) for each (X, δ) ∈ Set(Q), χ̃(X,δ) : X → C(X, δ)

is defined by χ̃(X,δ)(a) = ({̃a})α, where {̃a}α =
{
b ∈ X : δ(a, b) ≥ α}.

S. E. R o d a b a u g h [16] introduced the notion of a topological theory TKP

of a powerset theory P in a ground category K which extends powerset theory P
in such a way that, roughly speaking, objects of TKP are pairs (A, τ), where A
is an object of a powerset theory P and τ is a topology τ ⊆ P (A) such that
morphisms f→P :

(
P (A), τ

) → (P (B), σ
)

are continuous. He then proved that
topological theory TKP of a powerset theory P in a ground category K is in fact
a topological category. (For a notion of a topological category or topological
construct see, e.g., [13].)

In this section we introduce a notion of a closure theory of a powerset theory,
which is weaker than the notion of a topological theory. We begin the section
with the definition of the closure theory of a powerset theory in the ground
category which mostly will be the category Set or the category Set(Q) of sets with
similarity relations. We will use the category CSLAT of complete

∨
-semilatices

with complete
∨

-preserving maps as morphisms.

�������� 3.2� Let K be a ground category and let T = (T,→, V, η) be
a CSLAT -powerset theory in K. Then a closure theory of a powerset the-
ory T in a ground category K is a collection K[T] of objects and morphisms
satisfying the following axioms:

(1) objects in K[T] are pairs (A, c), such that
(i) A is an object in K,
(ii) c is a closure operator on an ordered set T (A) ∈ CSLAT ,

(2) f : (A, c)→ (B, d) is a morphism in K[T], if
(i) f : A→ B is a morphism in K,
(ii) f→T :

(
T (A), c

)→ (T (B), d
)

is continuous in CSLAT , i.e.,

f→T
(
c(x)
) ≤ d(f→T (x)

)
.

(3) Composition of morphisms is inherited from K, i.e., if f : (A, c)→ (B, d),
g : (B, d)→ (C, e), then g ◦ f : (A, c)→ (C, e).

(4) Identities are inherited from K, i.e., for each (A, c) ∈ K[T], idA : (A, c)→
(A, c) in K[T].
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It is then clear that T : K→ CSLAT is a functor such that T (f) = f→T and
K[T] is a category.

Using examples of powerset theories presented above, we can present basic
examples of closure theories of powerset theories in the ground category Set or
the category Set(Q).

Example 3.7. The following are examples of closure theories of powerset theo-
ries in the ground category Set or Set(Q).

(1) Closure theory of powerset theory Set[P ] in the category Set,

(2) Closure theory of powerset theory Set[Z] in the category Set,

(3) Closure theory of powerset theory Set[D] in the category Set,

(4) Closure theory of powerset theory Set(Q)[R] in the category Set(Q),

(5) Closure theory of powerset theory Set(Q)[F ] in the category Set(Q),

(6) Closure theory of powerset theory Set(Q)[C] in the category Set(Q).

The following theorem extends in some way results of S. E. R o d a b a u g h [16]
about topological theories of powerset theories.

������� 3.1� Let K be a topological construct with respect to a forgetfull func-
tor U :K→Set and let T=(T,→, U, η) be a CSLAT -powerset theory in a ground
category K. Then the closure theory K[T] of a powerset theory T in a ground
category K is also a topological construct.

P r o o f. Let V : K[T]→ Set be a forgetfull functor such that V (A, d) = U (A),
V (f) = f, U (g) = g, where (A, d) ∈ K[T], g is a morphism in K and f is
a morphism in K[T]. Let X ∈ |Set| and let fi : X → V (Ai, di), i ∈ I, be
a V -structured source from X. Since fi, i ∈ I, is also a U -structured source
fromX, it follows that in a topological construct K, there exists the unique initial
lift gi : Y → Ai, i ∈ I and a bijection g : U (Y ) → X, such that U (gi) = fi ◦ g
for each i. For each i ∈ I, the closure ci on T (Y ) is defined by

s ∈ T (Y ), ci(s) = g←i,T
(
di
(
g→i,T (s)
))
.

We have ci(s) = g←i,T
(
di(f

→
i,T (s))
) ≥ g←i,T

(
g→i,T (s)
) ≥ s. Further, we have

cici(s) = f←i,T

(
di

(
f→i,T
(
c(s)
)))

= f←i,T

(
di

(
f→i,T
(
di
(
f→i, (s)
)))) ≤ f←i,T(didi(f→i,T (s)

))
= c(s).

Hence, ci is a closure operator on T (Y ). We set c =
∧
i∈I ci. Clearly, c(s) ≥ s and

we have cc(s) =
∧
i∈I ci
(∧

j∈I cj(s)
) ≤ ∧i∈I cici(s) = c(s). Hence c is a closure
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operator on T (Y ). We show that gi : (Y, c)→ (Ai, di) is an initial lift.

X
fi−−−−→ U (Ai) = V (Ai, di)

g

�⏐⏐ �⏐⏐V (gi)

U (Y ) V (Y, c) .

In fact, for s ∈ T (Y ), we have g→i,T
(
c(s)
)

= g→i,T
(
g←i,T (di(g

→
i,T (s)))

) ≤ di(g→i,T (s)
)
,

and g→i,T is continuous. Now let (Z,w) ∈ K[T] with morphisms hi : (Z,w) →
(Ai, di) in K[T] and a map h : V (Z,w)→ X be such that fi ◦ h = V (hi), i ∈ I.
Because Y is an initial lift of fi, i ∈ I in a category K, there exists morphism
n :Z→Y in K, such that U (n)◦g = h, V (gi)◦U (n)=V (hi), i ∈ I. We show that
in that case, n→T :

(
T (Z), w

)→ (T (Y ), ci
)

is continuous for every i ∈ I. In fact,

since hi is continuous, we have g→i,T
(
n→T (w(s))

)
=h→i,T
(
w(s)
) ≤ di(h→i,T (s)

)
. Then

we obtain

n→T
(
w(s)
) ≤ g←i,T(g→i,T(n→T (w(s)

)))
≤ g↔i,T
(
di
(
h→i,T (s)

))
= g←i,T
(
di(gi ◦ n)→i,T (s)

)
= ci
(
n→T (s)
)
.

It is then clear that n→T :
(
T (Z), w

) → (T (Y ), c) is also continuous and that
(Y, c) is the unique lift. Hence, K[T] is a topological construct. �

��������� 3.1� Each closure theory of a powerset theory from Example 3.7 is
a topological construct.

P r o o f. We need to prove only that Set(Q) is a topological construct. Let
U : Set(Q)→ Set be the forgetfull functor such that U (A, δ) = A,U (f) = f and
let fi : X → U (A, δi), i ∈ I be a U -structured source from X. Then (X, δ) with
δ(x, y) =

∧
i∈I δi(x, y), is an initial lift and Set(Q) is a topological construct. �

4. Closure theories of powerset theories
in the category Set

In this section we deal with properties of objects of closure theories of pow-
erset theories in the category Set. An important notion in the section will be
the notion of a closure operator which preserves a canonical form of fuzzy ob-
jects. Using that notion we will characterize some extensions of closure operators
defined on different powerset objects in the category Set. Moreover, using that
notion we show that a closure theory of a classical powerset theory in the ground
category Set is a coreflective subcategory in the subcategory of closure theory
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of (Zadeh’s) powerset theory, which is based on closure operators which preserves
a canonical forms of (Zadeh’s) fuzzy sets.

In the paper [14] it was proved that any fuzzy set s ∈ Z(A) can be expressed
in the following canonical form, where α is a constant fuzzy set with the constant
value α:

s =
∨
α∈Q

α⊗ χ(sα),

where χ = χA : P (A) → Z(A) is the characteristic map, i.e., χA(X)(a) = 1Q
if and only if a ∈ X, and 0Q, otherwise. Sometimes instead of χA(X) we write
χ(X) only.

Let us consider the full subcategory Set[Z]0 of the category Set[Z] with objects
(A, d), such that a closure operator d preserves canonical form, i.e., for any fuzzy
set s ∈ Z(A), the following condition holds:

d(s) =
∨
α∈Q

α⊗ d(χ(sα)
)
.

���	�
���� 4.1� Let (A, c) ∈ Set[P ]. Then
(
A,ψA,Z(A)(c)

) ∈ Set[Z]0.

P r o o f. For simplicity we set d = ψA,Z(A)(c). Let s ∈ Z(A). It is clear that

d(s) = d

⎛⎝∨
α∈Q

α⊗ χ(sα)

⎞⎠≥∨
α∈Q

d
(
α⊗ χ(sα)

)
.

Now, for any β ∈ Q, β > 0, we have(
α⊗ χ(sα)

)
β

=
{
x ∈ A : α⊗ χ(sα)(x) ≥ β} = sα,

if β ≤ α, or ∅, if β �≤ α. It follows that

d
(
α⊗ χ(sα)

)
(a) =

∨
β,a∈c((α⊗χ(sα))β)

β =
∨

β,β≤α,a∈c(sα)

β = α⊗ χ(c(sα)
)
(a).

On the other hand, we have αβ = {x ∈ A : α ≥ β} = A, if β ≤ α, or ∅, otherwise.
It follows that

d(α)(a) =
∨

β,a∈c(αβ)

β =
∨

β,β≤α,a∈A
β = α.

Further, we have χ(sα)β =
{
x ∈ A : χ(sα)(x) ≥ β} = sα, and it follows that

d
(
χ(sα)
)
(a) =

∨
β,a∈c(χ(sα)β)

β =
∨

β,a∈c(sα)
β = χ

(
c(sα)
)
(a).

Hence, we obtain

d(α)(a)⊗ d(χ(sα)
)
(a) = α⊗ χ(c(sα)

)
(a) = d

(
α⊗ χ(sα)

)
(a),

114



CLOSURE THEORIES OF POWERSET THEORIES

and it follows that

d(s) = d

( ∨
α∈Q

α⊗ χ(sα)

)
≥
∨
α∈Q

d
(
α⊗ χ(sα)

)
=
∨
α∈Q

α⊗ χ(c(sα)
)

=
∨
α∈Q

α⊗ d(χ(sα)
)
.

Now we show that d(s)≤∨α∈Q α⊗ d(χ(sα)
)
. In fact, for any a ∈ A, we have

d(s)(a) =
∨

β,a∈c(sβ)
β,

∨
α∈Q

α(a)⊗ d(χ(sα)
)
(a) =
∨
α∈Q

α⊗
⎛⎝ ∨
γ,a∈c(χ(sα)γ)

γ

⎞⎠=
∨
α∈Q

α⊗
⎛⎝ ∨
γ,a∈c(sα)

γ

⎞⎠ = (∗).

If β ∈ Q is such that a ∈ c(sβ), then we have

(∗) ≥ β ⊗
⎛⎝ ∨
γ,a∈c(sβ)

γ

⎞⎠= β ⊗ 1Q = β,

and it follows that (∗) ≥ ∨β,a∈c(sβ) β = d(s)(a). �

������� 4.1� There exist adjoint functors

Set[P ]
G−−−−→ Set[Z]0.←−−−−
H

P r o o f. Let f : (A, c) → (B, d) be a morphism in Set[P ]. The object func-
tion of G is defined by G(A, c) =

(
A,ψA,Z(A)(c)

)
and G(f) = f . According

to Property 4.1, G(A, c) ∈ Set[Z]0 and according to Property 2.1, f→Z = Z(f) :(
Z(A), ψA,Z(A)(c)

) → (Z(B), ψB,Z(B)(d)
)

is continuous and G is a functor.
The functor H is defined symmetrically, i.e., for any continuous morphism
g : (A, c) → (B, d) in Set[Z]0, the object function is defined by H(A, c) =(
A,ψZ(A),A(c)

)
and H(g) = g. We show that g→P = P (g) :

(
P (A), ψZ(A),A(c)

)→(
P (B), ψZ(B),B(d)

)
is continuous.

In fact, we need to prove that if g is continuous, i.e., g→Z
(
c(s)
) ≤ d
(
g→Z (s)
)
,

for any s ∈ Z(A), for any X ⊆ A,

g
(
core c(χX)

)
= g→P
(
ψZ(A),A(c)(X)

) ⊆ ψZ(B),B(d)
(
g→P (X)

)
= core d(χg(X))

holds. Let a ∈ core c(χX), i.e., c(χX)(a) = 1Q. From the continuity of g→Z
it follows, that

1Q = c(χX)(a) =
∨

x,g(x)=g(a)

c(χX)(x) = g→Z
(
c(χX)
(
g(a)
)) ≤ d(g→Z (χX)

)(
g(a)
)
.
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Since g→Z (χX)=χg(X), we obtain that d
(
χg(X)

)(
g(a)
)

= d
(
g→Z (χX)

)(
g(a)
)

= 1Q
and it follows that g(a) ∈ core d

(
χg(X)

)
. Hence, g→P is continuous and H is

a functor.

We prove that there exist natural transformations

ε : G ◦H → 1Set[Z]0 ,

τ : 1Set[P ] → H ◦G.
According to Theorem 2.1, for any object (A, c) ∈ Set[P ], H ◦G(A, c) = (A, c)
and we can set τ(A,c) = 1A in the category Set[P ] and τ is a natural transfor-
mation. Now, for (A, c)∈Set[Z]0, we set ε(A,c) =1A in the category Set[Z]0, i.e.,

ε(A,c) = 1A : G ◦H(A, c) =
(
A,ψA,Z(A) ◦ ψZ(A),A(c)

)→ (A, c).

We need only to prove that Z(1A) is continuous, i.e., for any s ∈ Z(A), ψA,Z(A) ◦
ψZ(Z),A(c)(s) ≤ c(s). For every a ∈ A, we have

ψA,Z(A) ◦ ψZ(A),A(c)(s)(a) =
∨

{β:a∈ψZ(A),A(c)(sβ)}
β =

∨
{β:c(χ(sβ))(a)=1}

β .

According to [14], s can be expressed by s =
∨
α∈Q α ⊗ χ(sα). Let β ∈ Q be

such that c
(
χ(sβ)
)
(a) = 1Q. Since the closure operator c preserves the canonical

form, we have

c(s)(a) = c

⎛⎝∨
α∈Q

α⊗ χ(sα)

⎞⎠(a) ≥
∨
α∈Q

α(a)⊗ c(χ(sα)
)
(a)

≥ β(a)⊗ c(χ(sβ)
)
(a) = β.

It follows that c(s)(a) ≥ ∨{β:c(χ(sβ))(a)=1Q} β = ψA,Z(A) ◦ ψZ(Z),A(c)(s)(a), and

ε(A,c) is continuous. Moreover, it is clear that the following compositions are
identities:

H
τH−−−−→ H ◦G ◦H Gε−−−−→ H,

G
Gτ−−−−→ G ◦H ◦G εG−−−−→ G.

Hence, H and G are adjoint functors. �

������� 4.2� Set[P ] is a coreflective subcategory in the category Set[Z]0.

For the proof of the theorem we need the following proposition.

���	�
���� 4.2� Let A,B be sets and let c (d, respectively) be a closure
operator on Z(A) (Z(B), respectively). Let f : A → B be a map such that
Z(f) :

(
Z(A), c

)→ (Z(B), d
)
be continuous, Then

P (f) :
(
P (A), ψZ(A),A(c)

)→ (P (B), ψZ(B),B(d)
)

is continuous.
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P r o o f. We need to prove that

f
(
core c(χX)

)
= f
(
ψZ(A),A(c)(X)

) ⊆ ψZ(B),B(d)
(
f(X)
)

= core d
(
χf(X)

)
,

for any X ⊆ A. Suppose that it is not true. Then there exists a ∈ core c(χX)
such that f(a) �∈ core d(χf(X)). Hence, c(χX)(a) = 1Q, d(χf(X))

(
f(a)
)
< 1Q.

Since Z(f) is continuous, for χX ∈ Z(A) we have Z(f)
(
c(χX)
) ≤ d(Z(f)(χX)

)
.

Then for f(a) we obtain

Z(f)
(
c(χX)
)(
f(a)
)

=
∨

f(x)=f(a)

c(χX)(x) ≥ c(χX)(a) = 1Q,

and it follows that d
(
Z(f)(χX)

)
(f(a)) = 1Q. On the other hand, since

Z(f)(χX)
(
f(a)
)

=
∨

f(x)=f(a)

χX(x) = χf(X)

(
f(a)
)
,

we obtain 1Q = d
(
Z(f)(χX)

)
(f(a))=d(χf(X))

(
f(a)
)
<1Q, a contradiction. �

P r o o f o f T h e o r e m. Since G is a left adjoint of the functor H, to prove
that Set[P ] is a coreflective subcategory in Set[Z]0 we need to prove only that
the functor G is full and faithfull. Hence, we need to show that for arbitrary
objects (A, c), (B, d) from the category Set[P ],

G : HomSet[P ]

(
(A, c), (B, d)

)→ HomSet[Z]0

(
G(A, c), G(B, d)

)
is a bijection. Let f :G(A, c)→G(B, d) be a morphism in Set[Z]0, i.e., f :A→B is
a map such that Z(f) :

(
Z(A), ψA,Z(A)(c)

)→ (Z(B), ψA,Z(A)(d)
)

is continuous.
Then according to Proposition 2.2 and Theorem 2.1,

P (f) :
(
P (A), c = ψZ(A),AψA,Z(A)(c)

)→ (P (B), d = ψZ(B),BψB,Z(B)(d)
)

is continuous and it follows that f : (A, c)→ (B, d) is a morphism in the category
Set[P ], G(f) = f . Hence, G is full and it is clear that G is also faithfull. �

In the following two propositions we internally characterize closure operators
ψZ(A),A(c) and ψA,Z(A)(d).

���	�
���� 4.3� Let (A, c) ∈ Set[Z]. Then ψZ(A),A(c) is the largest closure

operator d on
(
P (A),⊆), such that

χ :
(
P (A), d

)→ (Z(A), c
)

is continuous, where χ is the characteristic map.

P r o o f. Let X ∈ P (A). We show that

χ :
(
P (A), ψZ(A),A(c)

)→ (Z(A), c
)

is continuous. Since

χ
(
ψZ(A),A(c)(X)

)
(a)=1Q if and only if c

(
χ(X)
)
(a)=1Q,
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otherwise χ
(
ψZ(A),A(c)(X)

)
(a) = 0Q, then χ

(
ψZ(A),A(c)(X)

) ≤ c
(
χ(X)
)

and χ
is continuous. Now, let d be another closure operator on P (A), such that
χ :
(
P (A), d

)→(Z(A), c
)

is continuous. Then for any X⊆A, a∈A, χ
(
d(X)
)
(a)≤

c
(
χ(X)
)
(a). If a ∈ d(X), then c

(
χ(X)
)
(a) = 1Q and we have a ∈ ψZ(A),A(c)(X).

Hence, d ≤ ψZ(A),A. �

���	�
���� 4.4� Let (A, c) ∈ Set[P ]. Then ψA,Z(A)(c) is the smallest closure

operator d on
(
Z(A),≤) which preserves canonical form and such that

χ :
(
P (A), c

)→ (Z(A), d
)

is continuous, where χ is a characteristic map.

P r o o f. According to Proposition 4.1, d := ψA,Z(A)(c) preserves canonical form.

We show that χ :
(
P (A), c

) → (Z(A), d
)

is continuous. It follows directly from

d(c)
(
χ(X)
)
(a)=
∨
β,a∈c(χ(X)β)

β=
∨
β,a∈c(X) β=χ

(
c(X)
)
(a). Now, let r be a clo-

sure operator on Z(A) such that χ is continuous and r preserves canonical form,
i.e., for any s ∈ Z(A), we have r(s)≥∨α∈Q α⊗r(χ(sα)

)
and χ
(
c(X)
)≤r(χ(X)

)
.

Then for any s ∈ Z(A), we have χ
(
c(sα)
) ≤ r(χ(sα)

)
. Then we obtain

d
(
χ(sα)
)
(a) = ψA,Z(A)(c)

(
χ(Sα)
)
(a) =∨

β,a∈c(χ(sα)β)

β =
∨

β,a∈c(sα)

β = χ
(
c(sα)
)
(a) ≤ r(χ(sα)

)
.

Hence, we obtain

r(s) ≥
∨
α∈Q

α⊗ r(χ(sα)
) ≥∨

α∈Q
α⊗ d(χ(sα)

)
= d(s).

�

It is clear that the category Set can be considered to be a subcategory of Set[P ]
and also Set[Z]. In fact, we can introduce embedding functors

1P : Set→ Set[P ], 1Z : Set→ Set[Z],

such that for any A ∈ Set and any map f : A → B in Set, 1P (A) = (A, 1P (A)),
1P (f) = f , and, analogously, 1Z(A) = (A, 1Z(A)), 1Z(f) = f , where 1P (A) and
1Z(A) are considered to be (trivial) closure operators. Then the power objects
functors P and Z which are defined as P,Z : Set → CSLAT can be extended
to the power objects functors defined over categories Set[P ] and Set[Z] as follows.

Let CSLATcl be the category with objects (V,≤, c), where (V,≤) is a complete
∧-semilattice and let c be a closure operator on (V,≤). Morphisms in CSLATcl
are continuous, ∧-preserving maps f : (V,≤, c)→ (W,≤, d). Then the functors

Pcl : Set[P ]→ CSLATcl, Zcl : Set[Z]→ CSLATcl
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are defined as follows.

(A, c) ∈ Set[P ], Pcl(A, c) =
(
P (A),⊆, c), Pcl(f) = f→P ,

(A, d) ∈ Set[Z], Zcl(A, d) =
(
Z(A),≤, d), Zcl(f) = f→Z .

All these functors can be represented by the following commutative diagram.

Set[P ]
1P←−−−− Set

Pcl

⏐⏐� ⏐⏐�P
CSLATcl

forgetfull−−−−−−→ CSLAT

Zcl

�⏐⏐ �⏐⏐Z
Set[Z]

1Z←−−−− Set .

In many papers a relationships between powerset functor P and fuzzy objects
functor Z were investigated, see, e.g., [14], [19], [24], [26], [29] for some examples.
The basic relationship between functors P,Z can be represented by the fact, that
the characteristic maps χA : P (A) → Z(A) represent natural transformation
between these functors, i.e.,

χ : P → Z.

In the following proposition we extend that relationship to the case of power-
set functors with closure operators, i.e., instead of functors P,Z we consider
the functors Pcl, Zcl.

���	�
���� 4.5� There exists a natural transformation

χ : Pcl → Zcl ◦G.
P r o o f. Let (A, c) ∈ Set[P ]. We define

χ(A,c) :
(
P (A),⊆, c)→ (Z(A),≤, ψA,Z(A)(c)

)
by χ(A,c)(X) = χ(X) : A→ Q. According to Prop. 4.4, χ(A,c) is continuous. It is
then easy to verify that for any morphism f : (A, c)→ (B, d) in Set[P ], the fol-
lowing diagram commutes:

Pcl(A, c)
χ(A,c)−−−−→ Zcl(A, c)

f→
P

⏐⏐� ⏐⏐�f→
Z

Pcl(B, d)
χ(B,d)−−−−→ Zcl(B, d)

and χ is a natural transformation. �

The functor D : Set → Set is a special case of the functor C : Set(Q) → Set
(for similarity relations equal to classical identity relation) and from [9], [10],
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it follows that there is a natural equivalence between functorsD and Z, σ :D→Z,
such that for any set A, E = (Eα)α ∈ D(A) and any s ∈ Z(A), we have

a ∈ A, σA(E)(a) =
∨

β,a∈Eβ

β, σ−1A (s) = (sα)α.

Using that result and results from Theorem 2.1, we can prove the following
theorem.

���	�
���� 4.6� The categories Set[Z] and Set[D] are isomorphic.

P r o o f. We define a functor J : Set[Z] → Set[D], such that for any morphism
f : (A, c)→ (B, d) in the category Set[Z], we put

J(A, c) =
(
A,ψZ(A),D(A)(c)

)
, J(f) = f.

Then according to [11]; Theorem 3.1 and Proposition 4.2,

f :
(
A,ψZ(A),D(A)(c)

)→ (B,ψZ(B),D(B)(d)
)

is a morphism in Set[D] and the definition of J is correct and, analogously, it can
be showed that there exists the inverse functor I such that for any morphism
g : (X, u)→ (Y, v) from the category Set[D],

I(X, u) =
(
X,ψD(A),Z(A)(u)

)
, I(g) = g. �

5. Closure theories of powerset theories
in the category Set(Q)

In this section we deal with properties of objects of closure theories of power-
set theories in the category Set(Q). An important notion in the section will be
again the notion of a closure operator which preserves a canonical form of fuzzy
objects. Using that notion we will characterize some extensions of closure oper-
ators defined on different powerset objects in the category Set.

In the paper [12, Lemma 2], we proved that any fuzzy object s ∈ F (A, δ)
can be expressed by the following canonical form, in which we use the closure
operator̂:

s =
∨
α∈Q

α⊗̂χ(sα).

Then we say that a closure operator d defined on F (A, δ) preserves the canonical
form, if for any s ∈ F (A, δ), we have

d(s) =
∨
α∈Q

α⊗ d(̂χ(sα)
)
.
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Let Set(Q)[P ]1 be the full subcategory of the category Set(Q)[P ] with objects(
(A, δ), c

)
, such that c is continuous with respect to the extension map ∼ :

D(A) → C(A, δ) (see [11, Def. 3.1]). If we set w = ψA,Z(A)(c), then c satisfies

that property if and only if w(ŝ)≤ ŵ(s), for any s ∈ Z(A) (see [11, Lemma 3.7]).

Let

η(A,δ) : P (A, δ)→ F (A, δ)

be an extension of the classical characteristic map, i.e., η(A,δ)(X) = ̂χ(X), for
any X ∈ P (A, δ). Then the following analogy of Proposition 4.4, holds.

���	�
���� 5.1� Let
(
(A, δ), c

) ∈ Set(Q)[P ]1. Then ϕA,F (A,δ)(c) is the small-
est closure operator d on F (A, δ), which preserves canonical form and such that

η(A,δ) : (P (A, δ), c)→ (F (A, δ), d
)

is continuous.

P r o o f. We show firstly that d := ϕA,F (A,δ)(c) preserves canonical form. Ac-

cording to [11]; Theorem 3.2,
(
(A, δ), d

) ∈ Set(Q)[F ] and d(s) = ̂ψA,Z(A)(c)(s).

For simplicity, we put w = ψA,Z(A)(c). Let s ∈ F (A, δ). Then we have

s =
∨
α∈Q

α⊗̂χ(sα).

According to Proposition 4.1, w preserves canonical form and for any a ∈ A, we

obtain

d(s)(a) = ŵ(s)(a) =

̂

w

⎛⎝∨
α∈Q

α⊗̂χ(sα)

⎞⎠(a) =
̂

∨
α∈Q

α⊗ w(̂χ(sα)
)
(a) =

∨
x∈A

⎛⎝∨
α∈Q

α⊗ w(̂χ(sα)
)
(x)

⎞⎠⊗ δ(a, x) =
∨
α∈Q

(∨
x∈A

α⊗ w(̂χ(sα)
)
(x)

)
⊗ δ(a, x) =

∨
α

(α⊗ ̂

w
(
̂χ(sα)
)
(a) =
∨
α∈Q

α(a)⊗ d(̂χ(sα)
)
(a).

Now we show that η(A,δ) :
(
P (A, δ), c

)→(F (A, δ), d
)

is continuous. In fact, for any
X ∈ P (A, δ) and a ∈ A, we need to prove

η(A,δ)
(
c(X)
)
(a) ≤ d(η(A,δ)(X)

)
(a).
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For any s∈F (A, δ), we have

d(η(A,δ))(a) = d
(
̂χ(X)
)
(a) =

̂

w
(
̂χ(X)
)
(a) =∨

x∈A
w
(
̂χ(X)
)
(x)⊗ δ(a, x) =

∨
x∈A

∨
β,x∈c(̂χ(X)β)

β ⊗ δ(a, x) ≥

∨
x∈A

∨
β,x∈c(X)

β ⊗ δ(a, x) ≥
∨

x∈c(X)

δ(a, x) =

∨
x∈A

χ
(
c(X)
)⊗ δ(a, x) = ̂χ

(
c(X)
)
(a) = η(A,δ)

(
c(X)
)
(a),

since

̂χ(X)β =

{
y ∈ A :

∨
z∈X

δ(y, z) ≥ β
}
⊇ X,

and, hence, c(X) ⊆ c(̂χ(X)β
)
.

Now, let r be another closure operator on F (A, δ), such that it preserves
canonical form and η(A,δ) :

(
P (A, δ), c

) → (F (A, δ), r) is continuous. Then

for any s ∈ F (A, δ) and any α ∈ Q, we have η(A,δ)
(
c(sα)
) ≤ r
(
η(A,δ)(sα)

)
,

and we receive

d
(
̂χ(sα)
)
(a) = d

(
η(A,δ)(sα)

)
(a) = ̂w

(
η(A,δ)(sα)

)
(a) =

̂

w
(
̂χ(sα)
)
(a) ≤ ̂

̂w
(
χ(sα)
)
(a) = ̂w

(
χ(sα)
)
(a).

Since

w
(
χ(sα)
)
(a) =

∨
β,a∈c(χ(sα)β)

β =
∨

β,a∈c(sα)
β = χ
(
c(sα)
)
,

we obtain

d
(
̂χ(sα)
)
(a) ≤ ̂w

(
χ(sα)
)
(a) = ̂χ

(
c(sα)
)
(a) = η(A,δ)

(
c(sα)
) ≤ r(̂χ(sα)

)
(a).

It follows that

d(s) =
∨
α∈Q

α⊗ d(̂χ(sα)
) ≤∨

α∈Q
α⊗ r(̂χ(sα)

)
= r(s).

�

���	�
���� 5.2� Let
(
(A, δ), c

) ∈ Set(Q)[F ]. Then ϕF (A,δ),A(c) is the largest
closure operator d on P (A, δ) such that

η(A,δ) :
(
P (A, δ), d

)→ (F (A, δ), c
)

is continuous.
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P r o o f. To be η(A,δ) continuous, we need to prove

η(A,δ)
(
ϕF (A,δ),A(c)(X)

)
(a) ≤ c(η(A,δ)(X)

)
(a), for any X ⊆ A, a ∈ A.

We have

η(A,δ)
(
ϕF (A,δ),A(c)

)
(a) = ̂χ

(
ϕF (A,δ),A(c)(X)

)
(a) =∨

x∈A
χ
(
ϕF (A,δ),A(c)(X)

)
(x)⊗ δ(a, x) =

∨
x∈A

χ
(

core c
(
̂χ(X)
))

(x)⊗ δ(a, x) =

∨
x,c(̂χ(X))(x)=1

δ(a, x) =
∨

x,c(̂χ(X))(x)=1

c
(
̂χ(X)
)
(x)⊗ δ(a, x) ≤

∨
x,c(̂χ(X))(x)=1

c
(
̂χ(X)
)
(a) = c

(
̂χ(X)
)
(a) = c

(
η(A,δ)(X)

)
(a).

Now, let d be another closure operator on P (A, δ), such that η(A,δ) :
(
P (A, δ), d

)→(
F (A, δ), c

)
is continuous. Then we have

η(A,δ)
(
d(X)
)
(a) = ̂χ

(
d(X)
)
(a) =
∨
x∈A

χ
(
d(X)
)
(x)⊗ δ(a, x) =

∨
x∈d(X)

δ(a, x) ≤ c(η(A,δ)(X)
)
(a) = c

(
̂χ(X)
)
(a).

Now, let a∈d(X), then we have 1=
∨
x∈d(X)δ(a, x)≤c(̂χ(X)

)
(a), and it follows

that a ∈ core c
(
̂χ(X)
)

= ϕF (A,δ),A(c)(X). Hence, d ≤ ϕF (A,δ),A(c). �

���	�
���� 5.3� The categories Set(Q)[F ] and Set(Q)[C] are isomorphic.

P r o o f. The proof can be done analogously as the proof of Proposition 4.6.
In fact, we define a functor K : Set(Q)[F ]→ Set(Q)[C], such that for any mor-
phism f :

(
(A, δ), c

)→ ((B, γ), d
)

in the category Set(Q)[F ], we put

K
(
(A, δ), c

)
=
(
(A, δ), ϕF (A,δ),C(A,δ)(c)

)
, J(f) = f.

Then according to [11, Theorem 3.2 and Proposition 4.4],

f :
(
(A, δ), ϕF (A,δ),C(A,δ)(c)

)→ ((B, γ), ϕF (B,γ),C(B,γ)(d)
)

is a morphism in Set(Q)[C] and the definition of K is correct. Analogously,
it can be showed that there exists the inverse functor M such that for any
morphism g :

(
(X, ρ), u

)→ ((Y, τ), v
)

from the category Set(Q)[C],

M
(
(X, ρ), u

)
=
(
(X, ρ), ϕC(X,ρ),F (X,ρ)(u)

)
, I(g) = g. �

���	�
���� 5.4� There exists a functor

K : Set(Q)[P ]1 → Set(Q)[F ].

123
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P r o o f. Let f :
(
(A, δ), c

)→((B, γ), d
)

be a morphism in Set(Q)[P ]1, then we set

K
(
(A, δ), c

)
=
(
(A, δ), ϕA,F (A,δ)(c)

)
, K(f) = f→F .

From Theorem 2.2 and Proposition 2.2, it then follows that K is a functor. �

Analogously, as for the categories Set[P] and Set[Z], the category Set(Q)
can be considered to be a subcategory of Set(Q)[P ]1 and also Set(Q)[F ]. In fact,
we can introduce embedding functors

1P : Set(Q)→ Set(Q)[P ]1, 1F : Set(Q)→ Set(Q)[F ],

such that for any (A, δ) ∈ Set(Q) and any morphism f : (A, δ) → (B, γ)
in Set(Q), 1P (A, δ) =

(
(A, δ), 1P (A,δ)

)
, 1P (f) = f , and, analogously, 1F (A, δ) =(

(A, δ), 1F (A,δ)

)
, 1F (f) = f, where 1P (A,δ) and 1F (A,δ) are considered to be (triv-

ial) closure operators. It is cleat that 1P (A,δ) ∈ Ũ(A) and 1P (A, δ) ∈ Set(Q)[P ]1.
Then the power objects functors P and F can be extended to the power objects
functors Pcl, Fcl defined over categories Set(Q)[P ]1 and Set(Q)[F ], respectively,
with values in the category CSLATcl as follows.

Pcl : Set(Q)[P ]1 → CSLATcl, Fcl : Set(Q)[F ]→ CSLATcl,(
(A, δ), c

) ∈ Set(Q)[P ]1, Pcl
(
(A, δ), c

)
=
(
P (A, δ),⊆, c), Pcl(f) = f→P ,(

(A, δ), d
) ∈ Set(Q)[F ], Fcl

(
(A, δ), d

)
=
(
F (A, δ),≤, d), Fcl(f) = f→F .

All these functors can be represented by the following commutative diagram.

Set(Q)[P ]1
1P←−−−− Set(Q)

Pcl

⏐⏐� ⏐⏐�P
CSLATcl

forgetfull−−−−−−→ CSLAT

Fcl

�⏐⏐ �⏐⏐F
Set(Q)[F ]

1F←−−−− Set(Q)

���	�
���� 5.5� There exists a natural transformation

η : Pcl → Fcl ◦K.

P r o o f. Let
(
(A, δ), c

) ∈ Set(Q)[P ]. Then we set η((A,δ),c)(X) = χ̂X , for any
X ∈ P (A, δ). According to Proposition 5.1,

η((A,δ),c) : P
(
(A, δ), c

)→ (F (A, δ), ϕA,F (A,δ)(c)
)

is continuous and it is also clear that it preserves
∨

. Since f→F (χ̂X) = χ̂f(X), it
can be proved simply that η is a natural transformation. �
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et all., eds.), The Hnadbook of Fuzzy Sets Series, Vol. 3, Kluwer Acad. Publ., Dordrecht,

1999, pp. 91–116.
[15] RODABAUGH, S. E.: Powerset operator based foundation for point-set lattice theoretic

(poslat) fuzzy set theories and topologies, Quaest. Math. 20 (1997), 463–530.
[16] RODABAUGH, S. E.: Relationship of algebraic theories to powerset theories and fuzzy

topological theories for lattice-valued mathematics, Int. J. Math. Math. Sci. 2007 (2007),
1–71.

[17] RODABAUGH, S. E.: Relationship of algebraic theories to powersets over objects in Set
and SetxC, Fuzzy Sets Syst. 161 (2010), 453–470.

[18] SOLOVYOV, S. A.: Powerset oeprator foundations for catalg fuzzy set theories, Iran. J.
Fuzzy Syst. 8 (2001), 1–46.

[19] MANES, E. G.: Algebraic Theories. Springer-Verlag, Berlin, 1976.
[20] MANES, E. G.: A class of fuzzy theories, J. Math. Anal. Appl. 85 (1982), 409–451.
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