



ON ONE TYPE OF COMPACTIFICATION OF POSITIVE INTEGERS

Milan Paštéka

ABSTRACT. The object of observation is a compact metric ring containing positive integers as dense subset. It is proved that this ring is isomorphic with a ring of reminder classes of polyadic integers.

Let \mathbb{N} be the set of positive integers. A mapping $|| \cdot || : \mathbb{N} \to < 0, \infty$) will be called norm if and only if the following conditions are satisfied for $a, b \in \mathbb{N}$

 $||a|| = 0 \Leftrightarrow a = 0, \quad ||a + b|| \le ||a|| + ||b||, \quad ||ab|| \le ||b||.$

There are various examples of norms on \mathbb{N} . One of these is polyadic norm defined in [N], [N1]. We start by a generalization of polyadic norm. Denote by a+(m) the arithmetic progression with difference m which contains a. Instead of 0 + (m) we write only (m).

A subset $A \subset \mathbb{N}$ we call *closed to divisibility* or shortly CD-set if and only if

$$1 \in A$$
, $m \in A, d | m \Rightarrow d \in A$, $m_1, m_2 \in A \Rightarrow [m_1, m_2] \in A$,

for $d, m, m_1, m_2 \in \mathbb{N}$.

Suppose that A is infinite CD-set and $\{B_n\}$ is such sequence elements of A that for every $d \in A$ there exists n_0 that $d|B_n$ for $n > n_0$. It is easy to see that the mapping

$$||a||_A = \sum_{n=1}^{\infty} \frac{h_n(a)}{2^n}$$

for $a \in \mathbb{N}$, where $h_n(a) = 1 - \mathcal{X}_{(B_n)}$, is a norm. This norm will be called generalized polyadic norm and the completion with respect the metric given by this norm will be called the ring of generalized polyadic integers.

^{© 2015} Mathematical Institute, Slovak Academy of Sciences.

²⁰¹⁰ Mathematics Subject Classification: 11K06.

Keywords: density, polyadic integers.

Research was supported by grant VEGA 2/0146/14.

MILAN PAŠTÉKA

If $A = \mathbb{N}$ and $B_n = n!$, we get polyadic norm and the completion will be the ring of polyadic integers. In the case $A = \{p^n; n = 0, .., 2, ..\}$ and $B_n = p^n$ for a given prime p we a obtain p-adic norm and the completion will be the ring of p-adic integers.

In the following text we shall assume that there is given a compact metric space (Ω, ρ) containing \mathbb{N} as a dense subset. We suppose that the operations addition and multiplication on \mathbb{N} are continuous and are extended to whole Ω to continuous operations. Thus $(\Omega, +, \cdot)$ is a topological commutative semiring.

Since Ω is compact, we can suppose that there exists an increasing sequence of positive integers $\{x_n\}$ convergent to an element of Ω . Put

$$a_n = x_{2n} - x_n, \qquad n = 1, 2, \dots$$

Then

$$a_n \ge n \quad \text{and} \quad a_n \to 0 \tag{1}$$

in the topology of Ω .

For $\beta \in \Omega$ and $b_n \to \beta$, $b_n \in \mathbb{N}$ we can consider the sequence of positive integer $\{a_{k_n} - b_n\}$, for a suitable increasing sequence $\{k_n\}$, such that

$$a_{k_n} - b_n \to \beta'$$
, where $\beta + \beta' = 0$.

We see that $(\Omega, +)$ is a compact group.

Clearly, for every $m \in \mathbb{N}$ there holds $cl(r + (m)) = r + m\Omega$, where $m\Omega$ is the principal ideal in the ring $(\Omega, +, \cdot)$ generated by m. This yields

$$\Omega = m\Omega \cup (1 + m\Omega) \cup \dots \cup (m - 1 + m\Omega).$$
⁽²⁾

Since the divisibility by m in \mathbb{N} is not necessary equivalent with the divisibility by m in Ω , it is not assumed that the last decomposition is disjoint.

LEMMA 1. Let $m \in \mathbb{N}$ be such positive integer that it is also the minimal generator of the ideal $m\Omega$. Then every positive integer is divisible by m in \mathbb{N} if and only if it is divisible by m in Ω .

Proof. One implication is trivial. Suppose now that some positive integer a is divisible by m in Ω . Thus $a \in m\Omega$. Put d = (a, m)—the greatest common divisor in \mathbb{N} . Then d = ax + my for certain integers x, y. This yields $d \in m\Omega$. We get $d\Omega = m\Omega$ and the minimality of m implies m = d.

For every $n \in \mathbb{N}$ we can define g(n) as the minimal positive generator of $n\Omega$. Put $\mathcal{A} = \{g(n); n \in \mathbb{N}\}.$

The set $r + m\Omega$ is closed and so from (2) we see that also open, which we refer as *clopen* set.

It is easy to check that the set \mathcal{A} is a CD-set.

Let $\{a_n\}$ be the sequence of positive integers given in (1). Clearly,

$$\bigcap_{n=1}^{\infty} a_n \Omega = \{0\},$$
$$\bigcap_{m \in \mathcal{A}} m\Omega = \{0\}.$$
(3)

this yields

So we obtain that the set \mathcal{A} is infinite. Since $m\Omega$ is open for $m \in \mathcal{A}$, equality (3) implies that for each sequence $\{\alpha_n\}$ there holds

$$\alpha_n \to 0 \iff \forall m \in \mathcal{A} \exists n_0; \quad n \ge n_0 \Longrightarrow m | \alpha_n$$

If we define the congruence by the natural manner: $\alpha \equiv \beta \pmod{\gamma}$ if and only if γ divides $\alpha - \beta$, for $\alpha, \beta, \gamma \in \Omega$, then there holds:

$$\alpha_n \to \beta \iff \forall m \in \mathcal{A} \exists n_0; \quad n \ge n_0 \Longrightarrow \alpha_n \equiv \beta \pmod{m}.$$

Thus the convergence can be metrised by the generalized polyadic norm. Let

$$\mathcal{A} = \{m_n, n = 1, 2, ...\}$$
 and $M_n = [m_1, ..., m_n], n = 1, 2, ...,$

then

$$||\alpha||_{\mathcal{A}} = \sum_{n=1}^{\infty} \frac{1 - \mathcal{X}_{M_n \Omega}(\alpha)}{2^{-n}}$$

We get the following

Theorem 1. The metric ρ is equivalent with the metric ρ_A , where

$$\rho_{\mathcal{A}}(\alpha,\beta) = \|\alpha - \beta\|_{\mathcal{A}} \quad for \ \alpha,\beta \in \Omega.$$

So for every set $S \subset \Omega$ we have

$$cl(S) = \bigcap_{n=1}^{\infty} (S + M_n \Omega).$$
(4)

Denote the Haar probability measure defined on $(\Omega, +)$ by P. For $m \in \mathcal{A}$ the decomposition (2) is disjoint and so $P(r + m\Omega) = \frac{1}{m}$. If we define the submeasure ν^* on the system of subsets of \mathbb{N} as $\nu^*(S) = P(cl(S))$, we get from (4) and upper semicontinuity of measure that for each S

$$\nu^*(S) = \lim_{n \to \infty} \frac{R(S:M_n)}{M_n}$$

where $R(S : M_n)$ the number of elements of S incongruent modulo M_n . Thus ν^* is the covering density defined in [P].

THEOREM 2. Let $\alpha, \beta \in \Omega$. There exist $\alpha_1, \beta_1 \in \Omega$ such that the element $\delta = \alpha_1 \alpha + \beta_1 \beta$ divides α and β .

MILAN PAŠTÉKA

Proof. Let $\{a_n\}, \{b_n\}$ be the sequences of positive integers that $a_n \rightarrow \alpha, b_n \rightarrow \beta$. Let d_n the greatest common divisor of $a_n, b_n, n = 1, 2, ...$ Then $d_n = v_n a_n + u_n b_n$ for some u_n, v_n -integers. The compactness of Ω provides that $u_{k_n} \rightarrow \alpha_1$ and $v_{k_n} \rightarrow \beta_1$ for a suitable increasing sequence $\{k_n\}$. Put $\delta = \alpha_1 \alpha + \beta_1 \beta$. We see that $d_{k_n} \rightarrow \delta$. For n = 1, 2, ... we have $a_{k_n} = c_n d_{k_n}$. Since $\{c_n\}$ contains a convergent subsequence, we get that δ divides α . Analogously, it can be derived that δ divides β .

The element δ from Theorem 2 will be called the greatest common divisor of α , β and we shall write $\delta \sim (\alpha, \beta)$.

COROLLARY 1. If $p \in A$ is a prime then for every $\alpha \in \Omega$ there holds p divides α or $(\alpha, p) \sim 1$.

Proof. If p does not divide α then $\alpha \in \Omega \setminus p\Omega$. Consider a sequence of positive integers $\{a_n\}$ which converges to α . The set $\Omega \setminus p\Omega$ is open, thus we can suppose that $(a_n, p) = 1$. This yields $\ell_n a_n + s_n p = 1$ for suitable integers ℓ_n, s_n . Since Ω is a compact space there exists an increasing sequence $\{k_n\}$ that $\ell_{k_n} \to \lambda, s_{k_n} \to \sigma$. And so $\lambda \alpha + \sigma p = 1$.

Corollary 2 can be proved analogously

COROLLARY 2. An element $\alpha \in \Omega$ is invertible if and only if $(\alpha, p) \sim 1$ for every prime $p \in A$.

LEMMA 2. Each closed ideal in Ω is principal ideal.

Proof. Let $I \subset \Omega$ be closed ideal. Let $\alpha \in I$. Denote by I_{α} the set of all divisors of α belonging to I. The compactness of Ω yields that I_{α} is a closed set. From Lemma 2 we get that for every $\alpha, \beta \in I$ there exists $\delta \in I$ so that $I_{\delta} \subset I_{\alpha} \cap I_{\beta}$. And so it can be proved by induction that $I_{\alpha}, \alpha \in I$ is a centered system of closed sets. Thus its intersection is non empty, and contains an element γ . Then $I = \gamma \Omega$.

In the sequel we denote Ω the ring of polyadic integers, thus completion of \mathbb{N} with respect to norm $|| \cdot ||_{\mathbb{N}}$ and we suppose that an infinite CD-set A is given. The completion of \mathbb{N} with respect to the norm $|| \cdot ||_A$ we denote as Ω_A .

Lemma 2 provides that $\cap_{a \in A} a \Omega = \alpha \Omega$ for suitable $\alpha \in \Omega$.

We will prove the following

THEOREM 3. The ring Ω_A is isomorphic with the factor ring $\Omega/\alpha\Omega$.

Proof. If a sequence of positive integers is Cauchy's with respect to $|| \cdot ||_{\mathbb{N}}$, then it is Cauchy's with respect to $|| \cdot ||_A$ as well.

If $\{a_n\}, \{b_n\}$ are sequences of positive integer, then

 $|||a_n - b_n|||_{\mathbb{N}} \to 0 \Longrightarrow |||a_n - b_n|||_A \to 0.$

ON ONE TYPE OF COMPACTIFICATION OF POSITIVE INTEGERS

Therefore we can define a mapping $F : \Omega \to \Omega_A$ in the following way. If $\beta \in \Omega, b_n \to \beta$ with respect to $|| \cdot ||_{\mathbb{N}}$, then $F(\beta)$ is the limit of $\{b_n\}$ with respect to $|| \cdot ||_A$. Clearly, F is a surjective morphism with kernel $\cap_{a \in A} a\Omega$ and the assertion follows.

THEOREM 4. The ring Ω_A is an integrity domain if and only if $A = \{p^n; n = 0, 1, 2...\}$, where p is a prime number.

Proof. Suppose that $A = \{p^n; n = 0, 1, 2...\}$. It suffices to prove that $\bigcap_{a \in A} a\Omega$ is a prime ideal. Let α, β do not belong to $\bigcap_{a \in A} a\Omega$. Then $\alpha = p^k \alpha_1, \beta = p^j \beta_1$, where $(p, \alpha_1) \sim 1, (p, \beta_1) \sim 1, j, k < \infty$. Thus

$$\alpha\beta = p^{k+j}\alpha_1\beta_1 \notin \bigcap_{a \in A} a\Omega.$$

Assume that A contains at least two different primes. The elements of the sequence $\{M_k\}$ can be decomposed into $M_k = d_k c_k$ such that

$$(d_k, c_k) = 1, \quad d_k > 1, \quad c_k > 1, \quad k = 1, 2, \dots$$

Let $\{k_n\}$ be a subsequence such that $d_{n_k} \to \delta, c_{n_k} \to \gamma$. Then $\gamma, \delta \notin \bigcap_{a \in A} a\Omega$ and $\gamma \delta \in \bigcap_{a \in A} a\Omega$, thus $\bigcap_{a \in A} a\Omega$ is not a prime ideal.

REFERENCES

- [N] NOVOSELOV, E. V.: Topological theory of polyadic numbers, Trudy Tbilis. Mat. Inst. 27 (1960), 61–69. (In Russian)
- [N1] NOVOSELOV, E. V.: New method in the probability number theory, Doklady Akademii Nauk. Ser. Mat. 28 (1964) no. 2, 307–364. (In Russian)
- [P] PAŠTÉKA, M.: Covering densities, Math. Slovaca 42 (1992), 593–614.
- [Po] POSTNIKOV, R.G.: Introduction to Analytic Number Theory. Moscov, Nauka, 1971. (In Russian); Amer. Math. Soc., Providence RI, 1981 (English translation).
- [P-P] PAŠTÉKA, M.—PORUBSKÝ, Š.: On the distribution on the sequences of integers, Math. Slovaca 43 (1993), 521–639.

Received October 12, 2015

Department of Mathematics and Computer Science Faculty of Education University of Trnava Priemyselná 4 SK-918-43 Trnava SLOVAKIA E-mail: milan.pasteka@mat.savba.sk