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APPLICATIONS OF UNIFORM DISTRIBUTION

THEORY TO THE RIEMANN ZETA-FUNCTION

Selin Selen Özbek — Jörn Steuding

ABSTRACT. We give two applications of uniform distribution theory to the
Riemann zeta-function. We show that the values of the argument of ζ

(
1
2
+ iP (n)

)

are uniformly distributed modulo π
2
, where P (n) denotes the values of a polyno-

mial with real coefficients evaluated at the positive integers. Moreover, we study
the distribution of arg ζ′

(
1
2
+iγn

)
modulo π, where γn is the nth ordinate of a zeta

zero in the upper half-plane (in ascending order).

1. Uniform distribution of the argument
of the zeta-function on the critical line

In a recent paper [14] the authors studied the distribution of the argument
of the Riemann zeta-function ζ(s) on arithmetic progressions on the critical line
1
2 + iR. Among other things it was shown that the argument of the Riemann
zeta-function on an arbitrary infinite arithmetic progression on the critical line,
arg ζ

(
1
2+i(τ+nδ)

)
for n = 1, 2, . . . , is uniformly distributed modulo π

2 (and even
modulo π under a certain condition). In this note we shall consider the more
general situation where the arithmetic progression is replaced by the values
of an arbitrary real polynomial P of positive degree at the positive integers.

������� 1� Let P be a polynomial with real coefficients of positive degree. Then
the sequence of the arguments arg ζ

(
1
2+iP (n)

)
for n=1, 2, . . . is uniformly distri-

buted modulo π
2 . If the number m(N) of zeros of ζ

(
1
2 + iP (n)

)
for n=1, 2, . . . , N

satisfies m(N) = o(N) as N → ∞, then arg ζ
(
1
2+iP (n)

)
is uniformly distributed

modulo π.

Recall that a sequence of real numbers xn is said to be uniformly distributed
modulo μ, where μ is a fixed positive real number, if for all α, β with 0≤α<β≤μ

c© 2015 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11M06, 11M26.

Keywords: Riemann zeta-function, uniform distribution.

67
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the proportion of the fractional parts of the xn modulo μ in the interval [α, β)
corresponds to its length in the following sense:

lim
N→∞

1

N
�
{
1 ≤ n ≤ N : xn mod μ ∈ [α, β)

}
=

β − α

μ
.

Here xn mod μ is defined by xn mod μ := xn − ⌊
xn

μ

⌋
μ, where �x� denotes

the largest integer less than or equal to x. This notion has been introduced
by H. W e y l [20] in the case μ = 1; however, for our purpose a modulus related
to the geometry of the complex plane (i.e., a modulus μ such that 2π

μ is a positive

integer) is more natural.

The method of proof is rather similar to the one in [14]. Our reasoning starts
with the functional equation

ζ(s) = Δ(s)ζ(1− s), (1)

where

Δ(s) = 2sπs−1 sin πs
2 Γ(1 − s),

and Γ denotes Euler’s gamma-function. (For this and further details about
the zeta-function we refer to H. E. E d w a r d s’ monography [3].) In view

of the identity ζ(s) = ζ(s) (a consequence of the reflection principle) it fol-
lows that the zeros are symmetrically distributed with respect to the real axis
and the critical line (which also explains that we discuss only zeros in the upper
half-plane). Recall that ζ(s) has so-called trivial zeros at s = −2n for n ∈ N;
all other zeros are called nontrivial and they are known to be located in the
critical strip 0 < Re s < 1 but not on the real axis. The yet unsolved Riemann
Hypothesis claims that all nontrivial zeros ρ = β+ iγ of ζ(s) lie on the so-called
critical line Re s = 1

2 . The number N(T ) of nontrivial zeros ρ = β + iγ with
0 < γ < T (counting multiplicities) is asymptotically given by the Riemann-von
Mangoldt formula:

N(T ) =
T

2π
log

T

2πe
+O(log T ). (2)

Now let

S(t) :=
1

π
arg ζ

(
1

2
+ it

)
;

here the argument of the zeta-function on the critical line is defined as follows.
In view of the multi-valued complex logarithm we may fix the value of the
logarithm log ζ at 1

2 + it by continuous variation along the polygon with vertices

2, 2+it, 12+it, provided t is not equal to an ordinate of a nontrivial zero ρ = β+iγ;
otherwise, when t = γ, we define S(γ) by

S(γ) = 1
2 lim
ε→0+

(
S(γ + ε) + S(γ − ε)

)
. (3)
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Since ζ(2) is a positive real number, we may choose log ζ(s) as the principal
branch of the logarithm on the subinterval (1,∞) of the real axis. Notice that
S(t) is a continuous function for t different from any zeta ordinate γ. The argu-
ment is linked with the zero counting function by

N(T ) =
T

2π
log

T

2πe
+

7

8
+ S(T ) +O

(
T−1

)
.

(Actually, the estimate of S(T ) = O(log T ) implies the Riemann-von Magoldt
formula (2) from above.) Moreover, the latter formula implies that πS(t) jumps
at each ordinate by an integer multiple of π (according to the multiplicity of the
zero). Thus, for μ= π

2 , arg ζ
(
1
2 + it

)
is continuous modulo π

2 . For the case μ=π,
however, we have to use the assumption that there is only a negligible number
of zeros in the sequence 1

2 + iP (n) (which matches what is widely expected).

In order to prove uniform distribution we shall use H. W e y l’ s criterion [20],
resp. its variation from [14] which claims that arg ζ

(
1
2 + iP (n)

)
is uniformly

distributed modulo μ if, and only if, for all integers m �= 0
∑

M<n≤M+N

exp
(

2π
μ im arg ζ

(
1
2 + iP (n)

))
= o(N), (4)

as N → ∞, where M ∈ N.

Without loss of generality we may assume that for sufficiently large n the
values P (n) are positive, bounded below by M, and strictly increasing, i.e.,

P (n+ 1) > P (n) 	 M for all n > M.

Moreover, taking into account m(N)=o(N) we may assume that

ζ
(
1
2 + iP (n)

) �= 0.

Hence, there exist real numbers rn > 0 and φn ∈ [0, 2π) such that

ζ
(
1
2 + iP (n)

)
= rn exp(iφn),

and
arg ζ

(
1
2 + iP (n)

) ≡ φn mod 2π.

In view of the functional equation (1) and the reflection principle, ζ(s) = ζ(s),
we find

exp(2iφn) = Δ
(
1
2 + iP (n)

)
.

(Indeed, (1) implies that Δ(s) is of absolute value one for s ∈ 1
2 + iR.) Next

we shall make use of

Δ(σ + it) =

(
t

2π

)1
2−σ−it

exp
(
i(t+ π

4 )
)(

1 +O
(
t−1

))
(5)

(see E. C. T i t c h m a r s h [17, § 7.4]).
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Thus, we need to show that the values 1
2P (n) log P (n)

2πe are uniformly distributed
modulo μ which is, by Weyl’s criterion,

∑
M<n≤M+N

exp

(
π

μ
imP (n) log

P (n)

2πe

)
= o(N). (6)

Recall J. v a n d e r C o r p u t’ s difference theorem: if (xn) is a sequence of real
numbers such that for every positive integer h the sequence (xn+h − xn) is uni-
formly distributed modulo one, then (xn) is also uniformly distributed modulo one
[19] (resp. the monography [12] of L. K u i p e r s and H. N i e r d e r r e i t e r).
This result might be influenced by Weyl’s reasoning for proving the uniform dis-
tribution modulo one of polynomials with at least one irrational coefficient [20].
For our purpose we need the difference theorem for the moduli π

2 and π in place
of 1, however, the proof of van der Corput’s theorem easily extends to an arbi-
trary modulus. Consequently, in order to establish (5) we may prove

∑
M<n≤M+N

exp

(
π

μ
imQh(n) log

Qh(n)

2πe

)
= o(N)

with Qh(n) = P (n+ h)− P (n), where h ∈ N.

Since Qh is a polynomial in n of degree degQh = degP − 1, the latter estimates
follow by induction on degP from our previous result [14], where we have shown
the uniform distribution result for arbitrary linear polynomials. This reason-
ing would also apply for other moduli provided that a corresponding uniform
distribution result holds for linear polynomials.

2. Shanks’ conjecture

D. S h a n k s [16] conjectured that the curve C : t �→ ζ
(
1
2
+ it

)
approaches

the origin most of the times from the third or fourth quadrant; this has been
proved by A. F u j i i [7] and T. S. T r u d g i a n [18]. In view of

∂

∂t
ζ
(
1
2 + it

)
= iζ′

(
1
2 + it

)
the values of the derivative ζ′

(
1
2 + iγ

)
at zeta zeros are thus positive real on av-

erage. Moreover, we observe that the argument of ζ′
(
1
2 + iγ

)
minus π

2 coincides
modulo 2π with the direction of the slope of the curve C at time t = γ (as long
as 1

2 + iγ is not a multiple zero). Therefore, it seems unlikely that the argument
of the first derivative of the zeta-function at its nontrivial zeros is uniformly
distributed modulo 2π. However, we believe that the picture with the module
2π replaced by the smaller module π changes the situation completely.
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For our discussion of this case we have to assume the truth of two open conjec-
tures, namely the Riemann Hypothesis and the Essential Simplicity Hypothesis
on the zeros of zeta-function. Recall the Essential Symplicity Hypothesis which
states that almost all zeros are simple; more precisely, the latter conjecture
can be formulated such that the limit

lim
T→∞

1

N(T )
�
{
ρ = β + iγ : ζ′(ρ) �= 0

}

exists and equals one. In order to obtain a uniform distribution result for
arg ζ′(12 + iγn) we even have to assume some hypothetical bounds for certain
exponential sums which seem to be out of reach with present day methods:

������� 2� Assume the Riemann Hypothesis and the Essential Simplicity
Hypothesis. If additionally the following estimates for exponential sums hold,

lim
N→∞

1

N

∑
M<n≤M+N

exp

(
imγn log

γn
2πe

)
= 0 for all m ∈ Z \ {0}, (7)

then the sequence arg ζ′(12 + iγn) is uniformly distributed modulo π, where γn
denotes the ordinate of the nth nontrivial zero in the upper half-plane in ascend-
ing order.

For the proof we differentiate the functional equation (1) which leads to

ζ′(s) = Δ′(s)ζ(1− s)−Δ(s)ζ′(1− s).

Since ζ(1− s) vanishes for a zeta zero s = ρ = 1
2 + iγ too, it follows that

ζ′
(

1
2 + iγ

)
= −Δ

(
1
2 + iγ

)
ζ′
(

1
2 − iγ

)
. (8)

Similarly as for the zeta-function we have

ζ′
(

1
2
− iγ

)
= ζ′

(
1
2
+ iγ

)

for its derivative. Assuming the simplicity of the zeta zero 1
2 + iγ, we may write

ζ′
(

1
2
+ iγn

)
= rn exp(iφn) (9)

with real numbers rn > 0 and φn ∈ [0, 2π). Notice that the argument of the first
derivative of the zeta-function can be defined by continuous variation in a rather
analogous way as the argument of the zeta-function in Section 1. In view of (4),
(8) and (9) we find

arg ζ′
(

1
2 + iγn

)
≡ φn mod 2π

and
exp(2iφn) = −Δ

(
1
2 + iγn

)
.
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Taking into account (5) we need to show that, for every integer m �= 0,
∑

M<n≤M+N

exp
(
imγn log

γn
2πe

)
= o(N),

which is just a reformulation of (7). Unfortunately, such estimates are not known
to hold for general m ∈ Z \ {0}. Assuming (7), however, the assertion of The-
orem 2 follows. The non-vanishing of ζ′

(
1
2 + iγ

)
for a zeta zero 1

2 + iγ appears
relevant only once. It turns out that a small number of multiple zeta zeros would
not damage our reasoning. Therefore we only have to assume the Essential Sim-
plicity Hypothesis.

The history of the exponential sums in (7) is rather long. It was E. L a n d a u
[13] who obtained an asymptotic formula for sums of the form

∑
ρ x

ρ, where the
summation is over all nontrivial zeros. His explicit formula has been extended and
generalized by several authors; see, for example, K. F o r d, K. S o u n d a r a r a -
j a n and A. Z a h a r e s c u [5]. This has found many applications, for instance
in the celebrated proof of the uniform distribution modulo one of the ordi-
nates of the nontrivial zeros by H. R a d e m a c h e r [15], P. E l l i o t t [4], and
E. H l a w k a [11]. The slightly different exponential sum (7) has first been stud-
ied by G. H. H a r d y and J. E. L i t t l e w o o d [10] and later by A. F u j i i
in a series of papers, e.g., [6], [8] (to mention only two). It appears that only
for small |m| an estimate of the form (7) is available by present day methods.
Recently, J. A r i a s d e R e y n a [1] investigated the uniform distribution mod-
ulo one of the normalized nontrivial zeros (which is of interest since the average
spacing then is equal to one). He provides the limit

lim
T→∞

1

N(T )

∑
0<γ≤T

exp
(
2iκγ log

γ

2πe

)
= 0, valid for κ ∈

(
0,

6

5

)
.

It is an open conjecture that the values of the Riemann zeta-function ζ(s)
on the critical line 1

2 + iR lie dense in the complex plane (in some literature
attributed to K. R am a c h a n d r a). It may be noticed that H. B o h r and
R. C o u r a n t [2] proved that the set{

ζ(σ + it) : t ∈ R
}

is dense in C for every fixed σ ∈ (12 , 1]. However, R. G a r u n k š t i s and
J. S t e u d i n g [9] showed under assumption of the truth of the Riemann Hy-
pothesis that {

ζ(σ + it) : t ∈ R
}

is not dense in C for every fixed σ < 1
2 ; the graphics in Figure 1 are taken

from their paper. It seems that Theorem 2 alone does not imply the existence
of a neighbourhood of the origin in which the curve t �→ ζ

(
1
2 + it

)
is dense.
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Figure 1: The curves t �→ ζ(σ + it) for σ = 1
5
, 1
2
, and 4

5
from left to right, all

for t ∈ [0, 100]. The curve on the right is known to be dense in the complex plane,
the curve on the left is not dense if Riemann’s Hypothesis is true, and for the curve
in the middle this question is open.
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