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SOME OBSERVATIONS CONCERNING
IRREDUCIBLE TRINOMIALS
AND PENTANOMIALS OVER Z,

ANDRZEJ PASZKIEWICZ

ABSTRACT. In this paper we observe the number of irreducible trinomials and
pentanomials over Z, .

1. Introduction

Primitive and irreducible polynomials with coefficients from finite fields play
an important role in coding theory [1] and eryptography [2], [3]. Primitive poly-
nomials of degree n over Z_ form a subset of irreducible polynomials of the same
degree over Z,. For p = 2 and n such that 2" — 1 is a Mersenne prime both
sets—primitive and irreducible polynomials of degree n—are the same. There
can also be proved [4] the following

THEOREM 1. Let I and J, be the number of irreducible and primitive poly-
nomials of degree n , respectivelly, with coefficients from Z., then for every € > 0
there exist infinitely many natural numbers n with the property J /I >1—c¢.

Proof. The number of irreducible polynomials of degree n over Z., can be

expressed by the following formula I, = 1 %" u(d) - 27, where p denotes the
d|n
Moebius function. The number of primitive polynomials of degree n over Z, is

expressed by the formula J = 271 <1 — L) <1 — pl—k> , where p ,py, ..., P

n P1
are all different prime factors of the number 2™ — 1. Substituting in the last

2nn_1 by the smaller number I, we obtain

2 () 0w) »
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It is a well known fact that each prime factor of the number 2 —1, where n is
prime has the form k-n+1, where k is a positive integer. Let p, <p, <--- < p,
be the different factors of the number 2" —1. That means 2" —1 > p, -p,---p, >
2% hence n >k and p; ZzJn+1>gn for y = 1,2,...,k. The last implies

k
1 1 1 1 1 1+1Ink 1+1nn
—-I-"'—I-—<E .—:—E - < < .
Py Py — Jn

n <y n n

From (1) it follows

J 1 1 1 1 141
—"><1——>...<1——>>1—<—+---+—>>1— tmn o)
I, Py Py Py Py n

and because the expression (1+1Inn)/n tends to 0 as n tends to infinity we can
make it smaller than arbitrary positive number e, what finishes our proof. O

Otherwise it can also be proved [5] the following

THEOREM 2. For every natural number n > 1 and ¢ > 0 there exist infinitely
many prime numbers p > 2 that J /I < e, where I and J, are the number of
irreducible and primitive polynomials of degree n , respectivelly, with coefficients
from 7 .

P

1 n
Proof. As we know I > —<p"—n-p5> and J = L
n n

where ¢

denotes the Euler’s totient function, hence

o oo =1 Pt
I, = pr—=1 pr—mn-pr/2’

We obviously have

Moreover from the formula

it follows, that if r|s then

Hence
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If we will choose, prime numbers ¢,,...,q, such that

H(l_qi)<

and a prime number p such that ¢,...,¢,|p—1 and

[N AN

"1
P <2
pn —n- pn/2
we shall have
t
plp—1) ( 1 ) €
<[[lit—-=)<=
~
and finally
J, €
S < - 2=¢
I, 2
Such a prime number p exists on the base of Dirichlet’s theorem on prime
numbers in arithmetic progressions, what ends the proof of our theorem. O

The situation described in the first theorem is more interesting from the prac-
tical point of view. The Theorem 1 gives for polynomials with coefficients from
Z, a starting point to the 2nd stage strategy of generating primitive polynomi-
als. The first and easy stage is to generate an irreducible polynomial of a given
degree and the second and more complicated stage is to verify whether it is also
primitive. It is also easy to see that having one primitive polynomial of a given
degree we can produce all other primitive polynomials of the same degree. It
is interesting to generate irreducible polynomials with only few non-zero coeffi-
cients. These polynomials are very suitable to generate modular arithmetic of a
finite field for coding theory as well as for cryptography. Short irreducible poly-
nomials (polynomials with only few nonzero coeflicients such as trinomials and
pentanomials [3]) are well suitable for generating modular arithmetic by hard-
ware. Moreover, having only one irreducible polynomial of the set of irreducible
polynomials of a given degree, we can generate all other irreducible polynomials
of that degree. This gives an easy way to replicate one irreducible polynomial
over finite field.

2. Observations on irreducible
trinomials and pentanomials over Z,

In the technical report [6] I have presented the largest table of primitive
trinomials and pentanomials over Z, up to degree of 640 without gaps. The
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computation have been continued. All primitive trinomials and pentanomials
(if a trinomial of a given degree does not exist) for degrees between 641 and
740 with two gaps for degrees 713 and 739. We do not include these results
here because of existing large tables of primitive polynomials ([7]). It is worth
mentioning that our software is at least twice as fast than the best presented
in [7]. The method of obtaining primitive polynomials consists, as mentioned
above, of 2 stages. In the first stage we generate an irreducible trinomial or if it
does not exist a pentanomial. We did not find any case of positive integer n for
which an irreducible pentanomial of degree n does not exist. In the second stage
we investigate the order of the monomial X modulo polynomial f(X) which is
just tested for irreducibility. If the order is maximal and equal to 2" — 1, where
n = deg(f(X)) then f(X) is primitive. In the present paper we describe some
observations concerning polynomials with three and five nonzero coefficients over
Z,, called trinomials and pentanomials. This is result of a huge computational
project for searching irreducible polynomials of high degree. In this project we
have found for every number n < 13122 an irreducible trinomial (if it exists)
and for each n < 4000 all irreducible trinomials of degree n. (Recently we
have computationally advanced a project of finding all irreducible trinomials
of degree n for each n < 10000.) For every n < 10000 we have found one
irreducible pentanomial. Some interesting facts can be observed:

1. For about one half (exactly 5147) of all degrees n < 10000 there exists
an irreducible trinomial over Z, (see Fig. 1 below). In fact the rate of
such n < 10000 for which an irreducible trinomial exists is a bit greater

than 0.5.

2. The rate of trinomials of the degree of the form 8k +:, : =0,1,...,7,
seems to tend to some positive limits if ¢ # 3, 5. The rate of irreducible
trinomials of degree having the form 8k +3 or 8k +5 is extremely small.
All trinomials of that form are collected in the Table 4.

3. For every n < 10000 there exists an irreducible pentanomial.

4. The maximum growth rate of the number of irreducible trinomials of
a given degree n seems to be a logarithmic function of n (see Fig. 6

below).

5. The number L.(n) of pentanomials of degree n has a characteristic
behavior. It is in some sense periodical with local minimal values for
degrees being divisible by 8 (see Fig. 14 below).

6. The growth rate of the number of irreducible pentanomials of a given
degree n seems to be a quadratic function of n (see Fig. 15-30).

7. The number L,(n) of irreducible trinomials of a given degree n over Z,
is in general an even number. There are only few numbers n < 13122
for which the number of irreducible trinomials of degree n is an odd
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number. All these polynomials are of degree n of the form n = 2 - 3%,
We listed all these polynomials in the Table 2.

8. A,(n)—the number of degrees of the form 8k +1, 1 = 1,2,..

., 7, not

exceeding n having irreducible trinomials seems to be proportional to n

(Fig. 7-13).

TABLE 1. Ly(n, k) = #{the number of irreducible
trinomials of degree { n: Ly(n) = k} for n = 400.

E| Ly(n,k)| k| Ly(n, k)| k| Ly(n, k)| k| Ly(n, k)
1 2 1 0 21 0 31 0
2 589 12 88 22 7 32 3
3 4 13 0 23 0 33 0
4 490 14 37 24 8 34 1
5) 5) 15 0 25 0 35 0
6 353 16 23 26 3 36 0
7 0 17 0 27 0 37 0
8 253 18 14 28 4 38 1
9 0 19 0 29 0 39 0
10 160 20 13 30 2 40 1

TaBLE 2. Complete list of degrees 1 < n € 13122 and irreducible trinomials of
degree n such that the number of irreducible trinomials of degree n is odd

6,1,0 162, 63, 0 1374, 729, 0

6,3, 0 162, 81, 0 4374, 1701, 0

6,5, 0 162, 99, 0 4374, 2187, 0

18, 1, 0 162, 135, 0 | 4374, 2673, 0

18, 7, 0 186, 81, 0 4374, 3645, 0

18,9,0 | 486, 189,0 | 13122, 1547, 0
18, 11,0 | 486, 243, 0 | 13122, 2187, 0
18,15, 0 | 486, 207, 0 | 13122, 2923, 0
54.9,0 | 486,405, 0 | 13122,5103,0
54,21, 0 | 1458,243,0 | 13122, 6561, 0
54,27, 0 | 1458,567,0 | 13122, 8019, 0
54,33,0 | 1458, 729,0 | 13122, 10199,0
54, 15,0 | 1458, 891, 0 | 13122, 10935, 0
162, 27, 0 | 1458, 1215, 0 | 13122, 11575, 0

The set {6,18,54,162,486,1458,4374,13122} is a complete list of all degrees
n, 1 <n < 13122, such that the number of irreducible polynomials of degree
n is an odd number. It is easy to see that all these numbers are of the form
n = 2-3%. We checked that for the next number n = 39366, which is of the form
2. 3% all the irreducible polynomials of degree n = 39366 are as listed in the
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Table 4 below. The triplets (n,k,0) in tables 2, 3, and 4 denote an irreducible
trinomial of the form X" + X% + 1.

One can prove the following

THEOREM 3. Every of the five trinomials below is irreducible over Z,
x23" 4 X33t
23" —|—X7'3k_2 +1:
23" —|—X9'3k_2 +1;
23" —|—X11'3k_2 +1;

23" —|—X15'3k_2 +1.
We omit the proof of the theorem. As we can see from Tables 2 and 3, the

gk—2

AN S

list of 5 trinomials in Theorem 3 is not complete, because for degrees 13122 and
39366 we have exactly 9 irreducible trinomials.

TaBLE 3. Complete list of irreducible trinomials of degree n = 39366

39366, 4641, 0

39366, 15309, 0

39366, 30597, 0

39366, 6561, 0

39366, 19683, 0

39366, 32805, 0

39366, 8769, 0

39366, 24057, 0

39366, 34725, 0
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TABLE 4
Irreducible trinomials of degree 8k + 3 Irreducible trinomials of degree 8k + 5

below 10000 below 10000
3,1,0 52,0
11,2, 0 21, 2, 0
35,2, 0 29,2, 0
123, 2, 0 93,2, 0
147, 14, 0 253, 46, 0
155, 62, 0 333,20
651, 14, 0 845, 2, 0
979, 178, 0 861, 14, 0
2331, 178, 0 1029, 98, 0
2667, 254, 0 1085, 62, 0

5819, 1058, 0 2485, 142, 0
6027, 98, 0 4125, 2, 0

7203, 686, 0 4445, 254, 0
4557, 98, 0

4805, 1922, 0

6757, 466, 0

7077, 674, 0
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Irreducible trinomials
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The number of irreducible trinomials of degree < 3000
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Irreducible pentanomials
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3. Observations on gaps between degrees for
which irreducible trinomials over Z, exist

Let n < k be natural numbers such that for n and k there exists an ir-
reducible trinomial of degree n and k. If degrees n + 1,... kK — 1 are free of
irreducible trinomials then the number n — k — 1 will be called a gap. If for n
and n + 1 there exist irreducible trinomials then the gap between them is equal
to 0. Some observation on gaps between degrees for which irreducible trinomials
over Z. exist can be observed:

1. The rate of gaps of a given length seems to tend fast to some limits;

2. The gaps (number of consecutive natural numbers for which an irre-
ducible trinomial does not exist) does not seem to be large. The largest
gap is equal to 7. We illustrate below the behavior of gaps.

4. Problems for further investigations

Ai(n)

7

PROBLEM 1. Do there exist limits lim ,1=1,2,...,7, where A (n) is
n—>00

the number of degrees of the form 8k + ¢ not exceeding n having irreducible

trinomials over Z., 7

PROBLEM 2. Does there exist the limit lim L‘;(Qn) , where L.(n) is the number

n—>00
of irreducible pentanomials of degree n'?

PROBLEM 3. Are the gaps (number of consecutive natural numbers for which
an irreducible trinomial does not exist) without irreducible trinomials over Z,
arbitrary large?
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