
tmMathemati
al Publi
ationsDOI: 10.2478/v10127-011-0039-8Tatra Mt. Math. Publ. 50 (2011), 87�101HARDWARE OPTIMIZATIONS OF STREAMCIPHER RABBITJozef Tome
ekABSTRACT. Stream
iphers form part of
ryptographi
 primitives fo
used onpriva
y. Syn
hronous, symmetri
 and software-oriented stream
ipher Rabbit ismember of �nal portfolio of European Union's eStream proje
t. Although it wasdesigned to perform well in software, employed operations seem to
ompute e�-
iently in hardware. 128-bit se
urity, with no known se
urity weaknesses is
laimedby Rabbit's designers. Sin
e hardware performan
e of Rabbit was only estimatedin the proposal of algorithm,
omparison of dire
t and optimized FPGA im-plementations of Rabbit stream
ipher is presented, identifying algorithm bot-tlene
ks, dis
ussing optimization te
hniques applied to algorithm
omputations,along with key area/time trade-o�s.1. Introdu
tionThe goal of modern
ryptography is to deliver se
urity to binary data
onvey-ing information. Information is
onsidered se
ured, when
ertain
ryptographi
obje
tives are ful�lled. As stated in [16℄, all
ryptographi
 obje
tives are dividedinto four main groups�
on�dentiality (priva
y), data integrity, authenti
ationand non-repudiation. Me
hanism that defends data utilizing mostly mathemat-i
al problems is
alled
ryptographi
 primitive.Software oriented stream
ipher Rabbit was
hosen as a representative ofpriva
y delivering
ryptographi
 obje
tives. The di�eren
e between blo
k
ipherand stream
ipher relies in en
ryption transformation [19℄. While en
ryptiontransformation in blo
k
iphers operates on large blo
ks of data and remainsun
hanged, en
ryption transformation in stream
iphers dynami
ally evolveswith ea
h pro
essed bit.The goal of the stream
ipher is to transform short (hundreds of bits) se-
ret key into long sequen
e of bits that looks like randomly generated. Most of
© 2011 Mathemati
al Institute, Slovak A
ademy of S
ien
es.2010 Mathemat i
 s Sub j e
 t C la s s i f i
 a t i on: 94A60.Keywords: Rabbit, stream
ipher, FPGA, optimization, eStream.Supported by the Grant VEGA 2/0206/10. 87

JOZEF TOMECEKthe stream
iphers
onsist of key-dependent random-like sequen
e generator andoutput transformation blo
k. The heart of the
ipher is random-like sequen
egenerator
hara
terized by the state of all internal system variables and updatedby next-state fun
tion. At the beginning of the en
ryption pro
ess internal statevariables are initialized with initialization ve
tor (IV). Random-like sequen
e ofbits is extra
ted from internal state variables regarding output transformationfun
tion. Most popular stream
ipher ar
hite
tures are based on linear feedba
kshift registers (LFSRs) with various output transformations based on irregu-lar
lo
king of these registers, non-linear
ombination of values, in parti
ularregisters, or non-linear �ltering of output values.Rabbit stream
ipher is an iterative
ipher with innovative
ounter-assistedar
hite
ture. Moreover, the next-state fun
tion in Rabbit is highly non-linear.This algorithm was deeply
ryptanalyzed [10℄, [18℄, but so far no weaknesses werefound in it. It utilizes simple bitwise operations, modular addition and squaringmodulo 232. Performan
e of software implementation of Rabbit was evaluatedby its designers, but the hardware performan
e was only estimated. TraditionalCPUs exe
ute bitwise operations and other spe
i�

omputations ine�
iently,a

ording to their universality and ar
hite
ture. Also,
ertain amount of CPUperforman
e is
onsumed by
omputation maintenan
e overhead. So,
ompu-tations realized on CPUs are generally slower than hardware realizations, nomatter how many
ores are integrated on the
hip and how fast they
an run.On the other hand, FPGAs are slower in terms of frequen
y, but they are very�exible due to their granularity and very e�
ient due to
on
entration of theirresour
es to spe
i�
 fun
tion with smaller maintenan
e overhead depending onoptimization
omplexity. Designers of hardware algorithms exploit all of thesefeatures to over
ome CPU
omputing performan
e. Implementing an algorithmto perform e�
iently in hardware is not an easy job. Compared to software pro-gramming in high level language su
h as C/C++, hardware algorithm designerhas to invest approximately ten times more in e�ort than software designer.Sin
e hardware performan
e of Rabbit was only estimated, dire
t hardwareimplementation of this stream
ipher was developed. Criti
al parts of the al-gorithm were optimized using various te
hniques to a

elerate the
omputationand whole design was simulated, veri�ed and programmed into FPGA.In the next se
tion, the stream
ipher Rabbit is des
ribed in detail, identify-ing
omputationally most intensive parts. The se
ond se
tion ends with a fewwords about Rabbit's se
urity. E�
ien
y improving te
hniques
ommonly usedin hardware implementations and applied to Rabbit algorithm are outlined inthe third se
tion. The last se
tion summarizes performan
e ben
hmarks of var-ious optimized implementations of Rabbit and
omparison with other hardwareimplementations of stream
iphers is given.88

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT2. Rabbit stream
ipherRabbit algorithm
onsists of the three most important stages. They are keysetup, next-state fun
tion and output transformation. The algorithm takes128-bit se
ret parameter as input and 64-bit initialization ve
tor optionally. Allbits of se
ret key are expanded into internal state variables and
ounters duringkey initialization stage. After ea
h iteration of next-state fun
tion, 128-bit outputsequen
e is extra
ted from internal state variables regarding output transforma-tion. Internal state of the
ipher
onsists of 513-bits divided into eight 32-bitstate variables and eight 32-bit
ounters. The one remaining bit stores infor-mation about
arry from the previous iteration. At the beginning of generatingrandom-like sequen
e of bits this
arry bit is set to 0. Optionally,
ounter valuesare initialized with initialization ve
tor after key setup stage.2.1. Key setup stageDuring key setup stage, parti
ular bits of 128-bits long input se
ret parameterare
ombined into eight 32-bit internal state variables xj , j ∈ {0, 1, . . . , 7} andeight 32-bit
ounters cj , j ∈ {0, 1, . . . , 7}. Input sequen
e K [127..0] of 128-bitsde�ning se
ret key is divided into eight sub-sequen
es of 16
onse
utive bits k0 =
K [15..0], k1 = K [31..16], . . . , k7 = K [127..112]. Values of internal state variables aregiven by expanding se
ret key bits

xj,0 =

{

k(j+1 mod 8)||kj for j even,
k(j+5 mod 8)||k(j+4 mod 8) for j odd,where ||means
on
atenation of bit strings, kj represents jth 16-bit sub-sequen
efrom se
ret key K and identi�er xj,0 denotes value of jth internal state variablebefore the �rst iteration.Similarly,
ontent of all eight 32-bit
ounters is initialized by

cj,0 =

{

k(j+4 mod 8)||k(j+5 mod 8) for j even,
kj ||k(j+1 mod 8) for j odd.Again, ||means
on
atenation of bit strings, kj represents jth 16-bit sub-sequen
efrom se
ret key K and identi�er cj,0 denotes value of jth
ounter before the �rstiteration.After the key setup stage, the system is iterated four times a

ording to next--state fun
tion. Mixing of bits in internal state variables and
ounters performedduring these four iterations dims dire
t dependen
ies between se
ret key bits andvalues in internal state variables and
ounters. After four iterations of next-statefun
tion,
ounter values are modi�ed by XOR-ing appropriate state variablevalue given by:
cj,4 = cj,4 ⊕ x(j+4 mod 8),4, 89

JOZEF TOMECEK
⊕ denotes bitwise addition modulo 2 (or XOR), cj,4 denotes value of jth
ounterafter the fourth iteration and xj,4 represents value of jth internal state variableafter the fourth iteration.2.2. Next-state fun
tionIn the next-state fun
tion, all eight 32-bit state variables and all eight 32-bit
ounters are updated. Pre
eding update of state variables, new
ounter valuesare
al
ulated by:

c0,i+1 = c0,i + a0 + φ7,i mod 232,

c1,i+1 = c1,i + a1 + φ0,i+1 mod 232,

c2,i+1 = c2,i + a2 + φ1,i+1 mod 232,

c3,i+1 = c3,i + a3 + φ2,i+1 mod 232,

c4,i+1 = c4,i + a4 + φ3,i+1 mod 232,

c5,i+1 = c5,i + a5 + φ4,i+1 mod 232,

c6,i+1 = c6,i + a6 + φ5,i+1 mod 232,

c7,i+1 = c7,i + a7 + φ6,i+1 mod 232.

(1)
In the above equations, φj,i+1 denotes new (i + 1) value of jth
ounter
arrybit, whi
h is
omputed from a
tual
ounter value (cj,i), a
onstant aj and
arryfrom previous
ounter value
al
ulation by

φj,i+1 =











1 if c0,i + a0 + φ7,i ≥ 232 and j = 0,

1 if cj,i + aj + φj−1,i+1 ≥ 232 and j > 0,

0 others, (2)where
onstants aj are de�ned as follows
aj =











0x4D34D34D for j = 0, 3, 6,

0xD34D34D3 for j = 1, 4, 7,

0x34D34D34 for j = 2, 5.Please note that 0x denotes number in hexade
imal format. When
ounter up-date stage is
ompleted, new state variable values are
al
ulated by:
x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16),

x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i,

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16),

x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i,

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16),

x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i,

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16),

x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i,

(3)
90

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITwhere gj,i represents a
tual value of jth g-fun
tion, gj,i ≪ m denotes bitwiserotation of binary sequen
e representing
urrent value of jth g-fun
tion bym bitsto the left and xj,i+1 denotes new value of jth state variable. In state variableupdate equations all additions are modulo 232. Ea
h state variable is updated by
ombination of output from three di�erent g-fun
tions. g-fun
tions deliver highnonlinearity to state variable values and thus whole system. Values of g-fun
tionsare
omputed by rule
gj,i =

(

(xj,i + cj,i+1)
2 ⊕

(

(xj,i + cj,i+1)
2 ≫ 32

)

)

mod 232. (4)Sin
e ea
h g-fun
tion value depends on one internal state variable value xj,iand appropriate
ounter value cj,i+1, total number of g-fun
tion values is 8,indexed by j ∈ {0, 1, . . . , 7}. Updated value of jth
ounter is denoted by cj,i+1,
xj,i denotes
urrent value of jth internal state variable, (. . .)2 means squaringoperation and (. . .) ≫ m denotes shift of binary sequen
e by m bits to the right.Shifted sequen
e is �lled with m 0s from the left. Again, both additions in alleight g-fun
tion
omputations are modulo 232.Output value from jth g-fun
tion is produ
ed by
ombination of
urrent jthinternal state variable value xj,i and updated value of jth
ounter cj,i+1. Binaryrepresentations of these two values are both 32-bits long. Sum of two 32-bitnumbers produ
es at most 33-bit number, thus only the last 32-bits of the sumare taken. Resulting sum of internal state variable value and
ounter value is thensquared, produ
ing 64-bits long number. Squared sum is shifted by 32 positionsto the right afterwards and shifted sequen
e is �lled with sequen
e of 32 zerosfrom the left. Shifted version of squared sum is added to the original squaredsum, produ
ing 64-bit number. Only the last 32-bits are taken as output valuefrom g-fun
tion.2.3. Initialization ve
torBy using initialization ve
tor and requesting 232 di�erent IVs, an atta
kerdoes not gain an advantage over using the same IV [9℄. After key expansion intointernal state variables and
ounters, four iterations of the system, and
ounterre-mixing with internal state variables in key setup stage,
ounters in the internalstate are modi�ed with initialization ve
tor bits a

ording to:

c0,4 = c0,4 ⊕ IV [31..0], c1,4 = c1,4 ⊕
(

IV [63..48]||IV [31..16]
)

,

c2,4 = c2,4 ⊕ IV [63..32], c3,4 = c3,4 ⊕
(

IV [47..32]||IV [15..0]
)

,

c4,4 = c4,4 ⊕ IV [31..0], c5,4 = c5,4 ⊕
(

IV [63..48]||IV [31..16]
)

,

c6,4 = c6,4 ⊕ IV [63..32], c7,4 = c7,4 ⊕
(

IV [47..32]||IV [15..0]
)

,where ⊕ denotes XOR, cj,4 represents 32-bit value stored in
ounter j after fouriterations of next-state fun
tion, IV [u..v] represents bits from u to v of initializa-tion ve
tor and || operation is
on
atenation of bit strings. When
ounter values91

JOZEF TOMECEKare updated with initialization ve
tor bits, whole system is iterated four timesfor se
urity reasons [9℄. Overall system fun
tion
an be visualized as on Figure 1.

Figure 1. Graphi
al illustration of Rabbit.2.4. Output transformationBeginning with the 5th iteration when no IV is used, or 9th iteration when IVis used, output random-like sequen
e of 128-bits is extra
ted from internal statevariables after the iteration is performed. The extra
tion rule is de�ned as:
s
[15..0]
i = x

[15..0]
0,i ⊕ x

[31..16]
5,i , s

[31..16]
i = x

[31..16]
0,i ⊕ x

[15..0]
3,i ,

s
[47..32]
i = x

[15..0]
2,i ⊕ x

[31..16]
7,i , s

[63..48]
i = x

[31..16]
2,i ⊕ x

[15..0]
5,i ,

s
[79..64]
i = x

[15..0]
4,i ⊕ x

[31..16]
1,i , s

[95..80]
i = x

[31..16]
4,i ⊕ x

[15..0]
7,i ,

s
[111..96]
i = x

[15..0]
6,i ⊕ x

[31..16]
3,i , s

[127..112]
i = x

[31..16]
6,i ⊕ x

[15..0]
1,i ,

(5)where ⊕ denotes XOR, x[u..v]
j,i denotes bits from u to v of jth internal statevariable in
urrent (ith) iteration and s

[u..v]
i represents bits from u to v of outputrandom-like sequen
e s in a
tual (ith) iteration. En
ryption of the message issimple bitwise XOR of message bitsmi with output sequen
e bits si, so en
rypted92

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITmessage bits are produ
ed by ci = mi ⊕ si. De
ryption follows by reapplyingoutput sequen
e bits to the
ipher-text bits as mi = ci ⊕ si.2.5. Se
urity of RabbitSe
urity of potentially vulnerable blo
ks of Rabbit stream
ipher were deeplyanalyzed in [3℄, [5℄, [6℄ and [4℄. 128-bit se
urity is
laimed for Rabbit. It means,that reasonable atta
k has to be more e�
ient than 2128 trial en
ryptions [9℄.Guess-and-Verify atta
k to Rabbit g-fun
tion has
omplexity equivalent to192-bits [9℄. Also in Guess-and-Determine atta
k, atta
ker must guess morethan 128-bits before determining pro
ess
an start. Known algebrai
 atta
ksto stream
ipher designs mostly exploit vulnerabilities in linear properties ofnext-state fun
tions in stream
iphers. Sin
e Rabbit updates its internal statein non-linear fashion it is
onsidered, that algebrai
 atta
ks are not appli
ableto Rabbit [9℄.3. Hardware implementation of RabbitRabbit was originally designed as software-oriented algorithm, thus perfor-man
e was tested on many pro
essors from 32-bit 1.7 GHz Pentium 4 pro
essorto simple 8-bit mi
ro-
ontrollers. It
an be seen, that set of operations requiredby key setup fun
tion in
luding initialization pro
ess, next-state fun
tion andoutput transformation in
ludes XOR-ing, rotations, shifts, modular addition andmodular multipli
ation. From hardware point of view, XOR-ing, shifting and bitrotation are quite simple operations. On the lowest hardware level, where FPGAdevi
es belong, generally we have no preprogrammed
omplex fun
tions, eventhere are no instru
tions for parti
ular operations. Thus, hardware implementa-tion of any algorithm is more
omplex than software implementation on any levelof abstra
tion. When programming FPGAs, programmer deals with logi
 gates,look-up tables, registers and wiring
onne
tions between them. On the other sidelies �exibility of hardware implementation. The simplest example is adding oftwo numbers. On 32-bit CPU it is no matter if those two operands are 5-, 12- or30-bits long. Sin
e 32-bit CPU has only 32-bit wide arithmeti
-logi
 unit, it isharnessed for any of above operations. Hardware designer
an implement adderblo
k with as many
hained one-bit adders as needed, building adder blo
k withexa
tly required size. Moreover, with respe
t to available resour
es of used logi
gate array, more adders
an be synthesized and used in parallel.3.1. Criti
al path in RabbitWhat is fundamental for hardware algorithm speed is the longest path forele
tri
 signal to travel through logi
 gates from the input pin of logi
 array93

JOZEF TOMECEKto the output pin. Ea
h logi
 gate or blo
k of logi
 gates has some
ombina-tional delay. The highest
ombinational delay on the
riti
al path through logi
elements between two syn
hronous registers
orresponds to the worst-
ase routeof ele
tri
 signal when propagating signal through
ombinational logi
 and givesminimal period of one algorithm iteration. Maximum frequen
y of whole designis then given by inverting this minimal period. Redu
tion of
ombinational delaysin design leads to signi�
ant algorithm a

eleration. In
ase of Rabbit, outputpseudo-random sequen
e is extra
ted from state variable values (5). Going ba
kto state variable value update during next-state fun
tion it is visible, that ea
hstate variable value is given by
ombination of output from three g-fun
tions (3).In the rule for g-fun
tions (4), a
tual internal state variable value is added to up-dated
ounter value, so
riti
al path goes up to new
ounter value
al
ulation (1),whi
h is performed at the beginning of ea
h iteration. From (3) it follows, thatall eight g-fun
tion values are needed in ea
h iteration for state variable update.Looking into (1) it is
lear, that c7,i+1 = c7,i + a7 + φ6,i+1 mod 232 is
omputedlast, be
ause it is waiting for φ6,i+1, whi
h is
omputed by (2), thus dependingon
arry from previous
ounter value
al
ulation and vi
e versa.Counting from the �rst
ounter, on the
riti
al path of Rabbit is eight 32-bitadders, one 32-bit squaring blo
k and two 32-bit XORs (one in g-fun
tion and onein output transformation). Shifts and rotations have no
ost in hardware otherthan routing the wires. Criti
al path of Rabbit is
oarse-dashed on Figure 2.
c0,i+1 c1,i+1

φ7,i φ0,i+1 c2,i+1
φ1,i+1 c3,i+1

φ2,i+1 c4,i+1
φ3,i+1 c5,i+1

φ4,i+1 c6,i+1
φ5,i+1 c7,i+1

φ6,i+1

g7,ig6,ig5,i

x5,i x6,i x7,i

+

Output transformation

x7,i+1Figure 2. Criti
al path in Rabbit.3.2. Optimal squaring in g-fun
tionAs noted in [9℄,
omputationally most
ompli
ated operation is squaring of32-bit number in g-fun
tion. Sin
e squaring is in other words multiplying number94

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITby itself, we
an save some
omputation time by repla
ing 32-bit squaring withequivalent formula of three 16-bit multipli
ations, two 32-bit additions and twoshifts.Let w = (xj,i + cj,i+1) mod 232. We
an split 32-bit word w to two 16-bitwords w = wh||wl, then
w2 = w2

l + 216 ∗ 2 ∗ wl ∗ wh + 232 ∗ w2
h. (6)Corresponding to basi
 multipli
ation of two distin
t de
adi
 numbers, beforeadding up intermediate results, those must be proprietary shifted (w2

h is shiftedby 32-bits and wh∗wl is shifted by 16+1-bit, both numbers are shifted to the left).Multipli
ation with n− th power of two is the same as left shift by n positions inhardware, thus repla
ing resour
e demanding 32-bit multipli
ation with more,but narrower operations seems reasonable. Moreover, in squaring we
an saveone multipli
ation, sin
e wh ∗ wl = wl ∗ wh. That's why wh ∗ wl is shifted by16 + one bit to the left. Similarly, when squaring a 16-bit number v, it
an besplit into two bytes v = vh||vl and squared with formula v2 = v2l + 28 ∗ 2 ∗
vl ∗ vh + 216 ∗ vh utilizing only 8-bit multipli
ation units. Squaring operationperformed on 32-bit number partitioned into one-byte words then takes tenmultipli
ations (three multipli
ations per 16-bit squaring, resting four for innerprodu
t multipli
ation), two 32-bit and four 16-bit additions and six shifts.3.3. Sequential and parallel tasksExploiting great �exibility of FPGA devi
es, optimal implementation of Rab-bit stream
ipher algorithm
an be designed,
ompared to sequentially exe
utedsoftware implementation. Adopting methods from parallelizing software algo-rithms [17℄, hardware implementation of Rabbit stream
ipher algorithm was de-
omposed to sequentially and parallely exe
uted tasks. Tra
ing the
riti
al pathof algorithm by following data dependen
y seems most suitable for hardwarealgorithm de
omposition, see Figure 3. Se
ret key bits are parallely expandedinto state variables and
ounters,
ounters are parallely updated with initializa-tion ve
tor and reinitialized during key setup and initialization pro
ess. Eightparallel implementations of
ounter update fun
tions with
arry predi
tion wereimplemented. Carry predi
tion
omes from fa
t that
ounter update fun
tion issimple two input 32-bit adder with
arry input and
arry output. If sum of twoinput 32-bit numbers is greater than or equal to 232,
arry bit is propagated tonext
ounter update fun
tion, no matter if there is
arry from previous
ounter.Sin
e parti
ular
ounters are
hained through
arry bits,
arry predi
tion
anspeed-up
ounter update and thus g-fun
tion
al
ulation. Also, eight parallel g-fun
tions are implemented. When output from g-fun
tions is
ombined into statevariable values in next-state fun
tion, pseudo-random sequen
e is extra
ted inparallel from state variables. 95

JOZEF TOMECEK
c0,i+1 c1,i+1

φ7,i φ0,i+1 c2,i+1
φ1,i+1 c3,i+1

φ2,i+1 c4,i+1
φ3,i+1 c5,i+1

φ4,i+1 c6,i+1
φ5,i+1 c7,i+1

φ6,i+1

g7,ig6,ig5,i

x5,i x6,i x7,i

+

Output transformation

x7,i+1

g4,i

x4,i

g3,i

x3,i

g2,i

x2,i

g1,i

x1,i

g0,i

x0,i

+
x6,i+1

+
x5,i+1

+
x4,i+1

+
x3,i+1

+
x2,i+1

+
x1,i+1

+
x0,i+1 Figure 3. Parallel and sequential blo
ks in Rabbit.3.4. E�
ient resour
e utilizationThe goal of de
omposition an algorithm into sequential and parallel blo
ks isto rea
h optimal balan
e between keeping parallel blo
ks busy with
omputation,while holding surrounding
ontrol logi
 small and e�
ient. If the granularity ofparallel blo
ks is very �ne,
omplexity of �nite state ma
hines monitoring and
ontrolling them grows, thus slows algorithm exe
ution. So hardware algorithmsoften fa
e the same
hallenge as universal mi
ropro
essors (CPUs) in e�
ientresour
e utilization. Rabbit algorithm
an be logi
ally divided into three stageswhi
h run almost independently, but have syn
hronized data input and output.Counter system forms �rst logi
 blo
k, be
ause
ounter values depend only onse
ret key bits, ex
ept
ounter re-initialization. So after key setup stage is
om-pleted, during iterations of next-state fun
tion, new
ounter values are
omputedindependently in
ounter system blo
k. Output from
ounter blo
k is registeredand readiness of new data is signaled to parti
ular g-fun
tion. In the se
ondlogi
 blo
k, g-fun
tion values are
omputed. Within g-fun
tion, output valuefrom
ounter blo
k is
ombined with
urrent internal state variable value andresult is squared, shifted and the sum of original and shifted version of innerprodu
t is
omputed. When g-fun
tion values are ready, new state variable val-ues are generated from appropriate g-fun
tion output values in the third stage.Whole loop is
ontrolled by �nite state ma
hine, whi
h is monitoring data �owand s
hedules work-�ow for parti
ular stages.96

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT3.5. Horizontal foldingWhen optimizing hardware algorithm, designers are fo
used on three basi
targets: speed, area and power
onsumption. Algorithm
an be a

elerated withparallely exe
uted
omputations, but it needs more
ombinational and
ontrollogi
 and sometimes more energy. On the other hand, parallel operations
an be
omputed in sequen
e of many iterations, redu
ing
onsumed logi
, but in
reas-ing time to
omplete
omputation. As is visible from (3), state variables are
omputed by
ombination of
onse
utive g-fun
tions. In our resour
e-e�
ientimplementation of Rabbit stream
ipher, there is only one g-fun
tion blo
k im-plemented and shared between eight state variables with registered output, soea
h g-fun
tion is
omputed on
e, but used in three state variable
al
ulations.Similarly,
ounter update blo
k is shared between all eight
ounters. Sharinglogi
 blo
ks is
alled horizontal folding [15℄ and needs slightly updated
ontrollogi
 to register and syn
hronize output values from shared blo
ks. This ap-proa
h is also s
alable, where one
ounter blo
k and next-state fun
tion blo
k
an be shared between two, four or all eight data sets.3.6. Verti
al foldingE�
ient implementation of multipli
ation in Rabbit g-fun
tion was des
ribedin subse
tion 3.2. The reason for
rumbling wide operands in multipli
ation intomore, but narrower 16-bit or 8-bit multipli
ations is, that some FPGAs have em-bedded blo
ks of �xed logi
 for frequently
omputed operations. Multipli
ationunit synthesized in programmable logi
 is far slower than hardwired multipli-
ation unit of �xed width. Although the speed, size and
omplexity of FPGAdevi
es is growing, even latest Xilinx Virtex 7 FPGAs have only 25 x 18-bit em-bedded multipliers [21℄. Con�gurable (9×9, 18×18, 24×24, or 36×36) multipliersare more
ommon [1℄, but native support of wider (24× 24-bit and more) multi-pliers is rare and available mostly in FPGA devi
es spe
ialized for digital signalpro
essing [2℄. Usually, en
ryption/de
ryption engine is embedded into
omplexdevi
e and FPGA resour
es are shared. Likely, embedded FPGA resour
es arefully utilized by other systems and fun
tions, so
ryptographi
 algorithms tendto have minimal available resour
es. In Rabbit, s
alability of e�
ient squaringand other fun
tional blo
ks is important, be
ause it delivers versatility and �ex-ibility to the algorithm implementation. In verti
al folding, data-path width andlogi
 blo
k interfa
es are narrowed to pro
ess shorter operands at the expense oflonger pro
essing time. In
ase of verti
ally folded [15℄ 16-bit and 8-bit Rabbitimplementations, all routing wires and fun
tional blo
ks in
luding
ounter up-date, next-state fun
tion, squaring in g-fun
tion and output transformation areimplemented with 16-bit and 8-bit widths respe
tively. Again, additional
ontrollogi
 is required for bu�ering, partitioning, registering and syn
hronizing data.97

JOZEF TOMECEKFor example in 16-bit version of the next-state fun
tion, rotation by 16-bits tothe left is performed by reordering output from g-fun
tion.4. ResultsDistin
t hardware implementations of Rabbit stream
ipher algorithm weredesigned. In the �rst dire
t implementation, squaring is implemented using em-bedded multipliers with no optimization and
riti
al path of algorithm was op-timized by parallel implementation of
ounter update blo
ks, g-fun
tions, next--state fun
tions and output transformation. In the se
ond implementation (ES),squaring in g-fun
tion is repla
ed with optimal formula 3.2. The third optimiza-tion
omes with partitioned and pipelined (PP) Rabbit design, where the se
ondimplementation is divided into logi
al blo
ks, whi
h operate independently withdata syn
hronized between them. The next is area optimized, horizontally folded(HF8) implementation, where eight parallel blo
ks are merged to one sharedpipeline. In verti
ally folded implementation, partitioned and pipelined design(with parallel blo
ks) is optimized by datapath and blo
k width redu
tion to 16(VF16) and eight (VF8) bits. The last two area optimizations are
ombined intohorizontally and verti
ally folded ar
hite
ture with one shared pipeline narrowedto eight bits wide blo
k and datapaths (HF8VF8).Hardware implementations were designed [20℄ on Xilinx FPGA Virtex 5(XC5VLX50T) en
ompassed with 7,200 sli
es, 28,800 registers and 48 25×18-bitmultipliers in DSP sli
es. In FPGA design �ow, everything starts with hardwaredes
ription language (HDL)
ode input. Programmati

ode is analyzed, veri�edfor formal
orre
tness and synthesized by software design environment. Duringsynthesis of veri�ed HDL
ode, so-
alled post-synthesis netlist of used logi
 el-ements and their inter
onne
tions is generated. The next step in FPGA design�ow is ��tting�, when post-synthesis database of logi
 elements and their inter-
onne
tions is mapped to available resour
es of the target devi
e, with respe
t todesigner-de�ned (or default)
onstraints. When pla
e and route step is �nished,post-�t netlist is analyzed for timing
onstraints before target FPGA devi
e is
on�gured and programmed. Results summarized in Table 4 were evaluated af-ter the pla
e and route step of the design �ow, be
ause frequen
y estimationof the designed algorithm is based on
riti
al path in post-�t netlist, whi
hleads to worst-
ase frequen
y of designed algorithm physi
ally programmed intoFPGA devi
e. Fair
omparison of hardware implemented algorithms is
om-pli
ated, be
ause many subje
tive and obje
tive fa
tors, su
h as fun
tionality,target hardware platform, design optimization, or stage of the design �ow [12℄must be taken into a

ount.98

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITTable 1. Rabbit hardware implementation
omparison.Rabbit Design Frequen
y Throughput Logi
 sli
es DSP Blo
ks(MHz) (Gbps) (%) (%)Dire
t 53.658 6.86 654 (9.08) 32 (66)ES 62.996 8.06 788 (10.94) 24 (50)PP 76.677 9.81 827 (11.48) 24 (50)HF8 47.259 6.04 357 (4.95) 4 (8.33)VF16 44.454 5.69 229 (3.18) 2 (4.17)VF8 42.349 5.42 211 (2.93) 1 (2.08)Estimated [9℄ 17.80 24 (50)Our best performing implementation is parallelized and pipelined versionof Rabbit, running on frequen
y of 76.677 MHz, pro
essing 9.81 Gb per se
ond,while utilizing 24 multipliers in dedi
ated DSP blo
ks. The di�eren
e betweenestimated and obtained throughput probably follows from di�erent pipeline or-ganization of
ompared designs. The pipeline of our design is divided into threestages (
ounter updates, g-fun
tion
omputations and state variable updates)and this pipeline realization looks not ideally e�
ient, when
omparing
om-plexity of
omputations involved in pipeline stages. On the other hand, themore stages are in the pipeline, the more
ontrol logi
 must be implemented toorganize data in it. We have no information about FPGA implementation (andpipeline organization) of stream
ipher Rabbit used for performan
e evaluation,other than availability of more than 24 dedi
ated multipliers with 2.4 ns laten
ywas assumed and two-pipeline design was implemented for performan
e estima-tion [9℄. Target FPGA devi
e of implementation for performan
e estimation wasalso not spe
i�ed. Future work will be fo
used on more e�
ient pipeline orga-nization of the Rabbit hardware algorithm. Horizontally and verti
ally foldedimplementations are bit slower, but they utilize less logi
 blo
ks and less ded-i
ated multipliers. It is visible, that narrowing datapath and fun
tional blo
ksize slightly slows algorithm exe
ution, but redu
tion of resour
e utilization israpid. Versatility of algorithm implementation is important for designs realizedin resour
e-
onstrained devi
es. The smallest implementation of stream
ipherRabbit runs on frequen
y of 42.349 MHz,
overs 211 sli
es and utilizes only onemultiplier in DSP blo
k. Throughput of this implementation is 5.42 Gbps. Imple-mentations of other eStream hardware pro�le
andidates on the same or similarFPGA devi
es are not evaluated. Performan
e of eStream phase 3
iphers Triv-ium [11℄, Grain [14℄, Salsa20 [8℄ and Mi
key-128 [7℄ on Xilinx Spartan 3 FPGAdevi
e, optimized for maximum throughput to area ratio was evaluated in [13℄.The highest throughput had highly-parallelized Trivium implementation (12.16Gbps on 388 CLB sli
es), followed by Grain (2.48 Gbps on 356 CLBs), Salsa2099

JOZEF TOMECEK(1.20 Gbps per 1615 CLBs) and Mi
key-128 with maximum throughput of0.16 Gbps, implemented on 261 CLB sli
es.REFERENCES[1℄ ALTERA: Stratix IV devi
e family overview, 2011, http://www.altera.
om/literature/hb/stratix-iv/stx4_siv51001.pdf.[2℄ ALTERA: Stratix V devi
e family overview, 2011, http://www.altera.
om/literature/hb/stratix-v/stx5_51001.pdf.[3℄ CRYPTICO A/S: Algebrai
 analysis of Rabbit, 2003, http://www.
rypti
o.
om (Whitepaper)[4℄ CRYPTICO A/S: Analysis of the key setup fun
tion in Rabbit, 2003,http://www.
rypti
o.
om (White paper).[5℄ CRYPTICO A/S: Di�erential properties of the g-fun
tion, 2003,http://www.
rypti
o.
om (White paper).[6℄ CRYPTICO A/S: Se
urity analysis of the IV-setup for Rabbit, 2003,http://www.
rypti
o.
om (White paper).[7℄ BABBAGE, S.�DODD, M.: The stream
ipher MICKEY-128 (version 1), eSTREAM,ECRYPT Stream Cipher Proje
t, Report 2005/016, 2005,http://www.e
rypt.eu.org/stream.[8℄ BERNSTEIN,D.: Salsa20, eSTREAM, ECRYPT Stream Cipher Proje
t, Report 2005/025,2005, http://www.e
rypt.eu.org/stream.[9℄ BOESGAARD, M.�VESTERAGER, M.�CHRISTENSEN, T.�ZENNER, E.:The stream
ipher Rabbit, eSTREAM, 2006.[10℄ BOESGAARD, M.�VESTERAGER, M.�PEDERSEN, T.�CHRISTIANSEN, J.��SCAVENIUS, O.: Rabbit: A new high-performan
e stream
ipher, in: Pro
. Fast SoftwareEn
ryption�FSE '03, 10th International Workshop (T. Johansson, ed.), Lund, Sweden,2003, Le
t. Notes in Comput. S
i., Vol. 2887, Springer-Verlag, Berlin, 2003, pp. 307�329.[11℄ DE CANNIERE, C.�PRENEEL, B.: Trivium�A stream
ipher
onstru
tion inspiredby blo
k
ipher design prin
iples, eSTREAM, ECRYPT Stream Cipher Proje
t, Report2005/030, 2005, http://www.e
rypt.eu.org/stream.[12℄ GAJ, K.�KAPS, J.�AMIRINENI, V.�ROGAWSKI, M.�HOMSIRIKAMOL, E.��BREWSTER, B. Y.: ATHENa�Automated tool for hardware evaluation: Toward fairand
omprehensive ben
hmarking of
ryptographi
 hardware using FPGAs, in: Pro
. FieldProgrammable Logi
 and Appli
ations�FPL '10, Internat. Conf., Milano, Italy, 2010(F. Ferrandi et al., eds.), IEEE Comput. So
., 2010, pp. 414�421.[13℄ GAJ, K.�SOUTHERN, G.�BACHIMANCHI, R.: Comparison of hardware performan
eof sele
ted phase II eSTREAM
andidates, eSTREAM, ECRYPT Stream Cipher Proje
t,Report 2007/026, 2007, http://www.e
rypt.eu.org/stream.[14℄ HELL, M.�JOHANSSON, T.�MEIER, W.: Grain�A stream
ipher for
onstrainedenvironments, eSTREAM, ECRYPT Stream Cipher Proje
t, Report 2005/010, 2005,http://www.e
rypt.eu.org/stream.[15℄ HOMSIRIKAMOL, E.�ROGAWSKI, M.�GAJ, K.: Comparing hardware performan
eof round 3 SHA-3
andidates using multiple hardware ar
hite
tures in Xilinx and AlteraFPGAs, in: Pro
. ECRYPT II Hash Workshop, Tallinn, Estonia, 2011.[16℄ MENEZES, A. J.�OORSCHOT, P. C. VAN�VANSTONE, S. A.: The Handbook ofApplied Cryptography. CRC Press, Singapore, 1996.[17℄ RAUBER, T.�RUNGER, G.: Parallel Programming. Springer-Verlag, Berlin, 2007.100

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT[18℄ SCAVENIUS, O.�BOESGAARD, M.�VESTERAGER, M.�CHRISTIANSEN, J.��RIJMEN, V.: Periodi
 properties of
ounter assisted stream
ipher, in: CT-RSA '04,Le
ture Notes in Comput. S
i., Vol. 2964, Springer-Verlag, Berlin, 2004, pp. 39�53.[19℄ SIMMONS, J. G. (ED.): Contemporary Cryptology. IEEE Press, Pis
ataway, New Jersey,1992.[20℄ XILINX: Virtex 5 family overview, http://www.xilinx.
om/support/do
umentation/data_sheets/ds100.pdf, 2009.[21℄ XILINX: Xilinx 7 series overview, http://www.xilinx.
om/support/do
umentation/data_sheets/ds180_7series_overview.pdf, 2011.Re
eived September 22, 2011 Mathemati
al InstituteSlovak A
ademy of S
ien
es�tefánikova 49SK�814 73 BratislavaSLOVAKIAE-mail : tome
ek�mat.savba.sk

101

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7series_overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7series_overview.pdf

	1. Introduction
	2. Rabbit stream cipher
	2.1. Key setup stage
	2.2. Next-state function
	2.3. Initialization vector
	2.4. Output transformation
	2.5. Security of Rabbit

	3. Hardware implementation of Rabbit
	3.1. Critical path in Rabbit
	3.2. Optimal squaring in g-function
	3.3. Sequential and parallel tasks
	3.4. Efficient resource utilization
	3.5. Horizontal folding
	3.6. Vertical folding

	4. Results
	REFERENCES

