
tmMathematial PubliationsDOI: 10.2478/v10127-011-0039-8Tatra Mt. Math. Publ. 50 (2011), 87�101HARDWARE OPTIMIZATIONS OF STREAMCIPHER RABBITJozef TomeekABSTRACT. Stream iphers form part of ryptographi primitives foused onprivay. Synhronous, symmetri and software-oriented stream ipher Rabbit ismember of �nal portfolio of European Union's eStream projet. Although it wasdesigned to perform well in software, employed operations seem to ompute e�-iently in hardware. 128-bit seurity, with no known seurity weaknesses is laimedby Rabbit's designers. Sine hardware performane of Rabbit was only estimatedin the proposal of algorithm, omparison of diret and optimized FPGA im-plementations of Rabbit stream ipher is presented, identifying algorithm bot-tleneks, disussing optimization tehniques applied to algorithm omputations,along with key area/time trade-o�s.1. IntrodutionThe goal of modern ryptography is to deliver seurity to binary data onvey-ing information. Information is onsidered seured, when ertain ryptographiobjetives are ful�lled. As stated in [16℄, all ryptographi objetives are dividedinto four main groups�on�dentiality (privay), data integrity, authentiationand non-repudiation. Mehanism that defends data utilizing mostly mathemat-ial problems is alled ryptographi primitive.Software oriented stream ipher Rabbit was hosen as a representative ofprivay delivering ryptographi objetives. The di�erene between blok ipherand stream ipher relies in enryption transformation [19℄. While enryptiontransformation in blok iphers operates on large bloks of data and remainsunhanged, enryption transformation in stream iphers dynamially evolveswith eah proessed bit.The goal of the stream ipher is to transform short (hundreds of bits) se-ret key into long sequene of bits that looks like randomly generated. Most of© 2011 Mathematial Institute, Slovak Aademy of Sienes.2010 Mathemat i  s Sub j e  t C la s s i f i  a t i on: 94A60.Keywords: Rabbit, stream ipher, FPGA, optimization, eStream.Supported by the Grant VEGA 2/0206/10. 87



JOZEF TOMECEKthe stream iphers onsist of key-dependent random-like sequene generator andoutput transformation blok. The heart of the ipher is random-like sequenegenerator haraterized by the state of all internal system variables and updatedby next-state funtion. At the beginning of the enryption proess internal statevariables are initialized with initialization vetor (IV). Random-like sequene ofbits is extrated from internal state variables regarding output transformationfuntion. Most popular stream ipher arhitetures are based on linear feedbakshift registers (LFSRs) with various output transformations based on irregu-lar loking of these registers, non-linear ombination of values, in partiularregisters, or non-linear �ltering of output values.Rabbit stream ipher is an iterative ipher with innovative ounter-assistedarhiteture. Moreover, the next-state funtion in Rabbit is highly non-linear.This algorithm was deeply ryptanalyzed [10℄, [18℄, but so far no weaknesses werefound in it. It utilizes simple bitwise operations, modular addition and squaringmodulo 232. Performane of software implementation of Rabbit was evaluatedby its designers, but the hardware performane was only estimated. TraditionalCPUs exeute bitwise operations and other spei� omputations ine�iently,aording to their universality and arhiteture. Also, ertain amount of CPUperformane is onsumed by omputation maintenane overhead. So, ompu-tations realized on CPUs are generally slower than hardware realizations, nomatter how many ores are integrated on the hip and how fast they an run.On the other hand, FPGAs are slower in terms of frequeny, but they are very�exible due to their granularity and very e�ient due to onentration of theirresoures to spei� funtion with smaller maintenane overhead depending onoptimization omplexity. Designers of hardware algorithms exploit all of thesefeatures to overome CPU omputing performane. Implementing an algorithmto perform e�iently in hardware is not an easy job. Compared to software pro-gramming in high level language suh as C/C++, hardware algorithm designerhas to invest approximately ten times more in e�ort than software designer.Sine hardware performane of Rabbit was only estimated, diret hardwareimplementation of this stream ipher was developed. Critial parts of the al-gorithm were optimized using various tehniques to aelerate the omputationand whole design was simulated, veri�ed and programmed into FPGA.In the next setion, the stream ipher Rabbit is desribed in detail, identify-ing omputationally most intensive parts. The seond setion ends with a fewwords about Rabbit's seurity. E�ieny improving tehniques ommonly usedin hardware implementations and applied to Rabbit algorithm are outlined inthe third setion. The last setion summarizes performane benhmarks of var-ious optimized implementations of Rabbit and omparison with other hardwareimplementations of stream iphers is given.88



HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT2. Rabbit stream ipherRabbit algorithm onsists of the three most important stages. They are keysetup, next-state funtion and output transformation. The algorithm takes128-bit seret parameter as input and 64-bit initialization vetor optionally. Allbits of seret key are expanded into internal state variables and ounters duringkey initialization stage. After eah iteration of next-state funtion, 128-bit outputsequene is extrated from internal state variables regarding output transforma-tion. Internal state of the ipher onsists of 513-bits divided into eight 32-bitstate variables and eight 32-bit ounters. The one remaining bit stores infor-mation about arry from the previous iteration. At the beginning of generatingrandom-like sequene of bits this arry bit is set to 0. Optionally, ounter valuesare initialized with initialization vetor after key setup stage.2.1. Key setup stageDuring key setup stage, partiular bits of 128-bits long input seret parameterare ombined into eight 32-bit internal state variables xj , j ∈ {0, 1, . . . , 7} andeight 32-bit ounters cj , j ∈ {0, 1, . . . , 7}. Input sequene K [127..0] of 128-bitsde�ning seret key is divided into eight sub-sequenes of 16 onseutive bits k0 =
K [15..0], k1 = K [31..16], . . . , k7 = K [127..112]. Values of internal state variables aregiven by expanding seret key bits

xj,0 =

{

k(j+1 mod 8)||kj for j even,
k(j+5 mod 8)||k(j+4 mod 8) for j odd,where ||means onatenation of bit strings, kj represents jth 16-bit sub-sequenefrom seret key K and identi�er xj,0 denotes value of jth internal state variablebefore the �rst iteration.Similarly, ontent of all eight 32-bit ounters is initialized by

cj,0 =

{

k(j+4 mod 8)||k(j+5 mod 8) for j even,
kj ||k(j+1 mod 8) for j odd.Again, ||means onatenation of bit strings, kj represents jth 16-bit sub-sequenefrom seret key K and identi�er cj,0 denotes value of jth ounter before the �rstiteration.After the key setup stage, the system is iterated four times aording to next--state funtion. Mixing of bits in internal state variables and ounters performedduring these four iterations dims diret dependenies between seret key bits andvalues in internal state variables and ounters. After four iterations of next-statefuntion, ounter values are modi�ed by XOR-ing appropriate state variablevalue given by:
cj,4 = cj,4 ⊕ x(j+4 mod 8),4, 89



JOZEF TOMECEK
⊕ denotes bitwise addition modulo 2 (or XOR), cj,4 denotes value of jth ounterafter the fourth iteration and xj,4 represents value of jth internal state variableafter the fourth iteration.2.2. Next-state funtionIn the next-state funtion, all eight 32-bit state variables and all eight 32-bitounters are updated. Preeding update of state variables, new ounter valuesare alulated by:

c0,i+1 = c0,i + a0 + φ7,i mod 232,

c1,i+1 = c1,i + a1 + φ0,i+1 mod 232,

c2,i+1 = c2,i + a2 + φ1,i+1 mod 232,

c3,i+1 = c3,i + a3 + φ2,i+1 mod 232,

c4,i+1 = c4,i + a4 + φ3,i+1 mod 232,

c5,i+1 = c5,i + a5 + φ4,i+1 mod 232,

c6,i+1 = c6,i + a6 + φ5,i+1 mod 232,

c7,i+1 = c7,i + a7 + φ6,i+1 mod 232.

(1)
In the above equations, φj,i+1 denotes new (i + 1) value of jth ounter arrybit, whih is omputed from atual ounter value (cj,i), a onstant aj and arryfrom previous ounter value alulation by

φj,i+1 =











1 if c0,i + a0 + φ7,i ≥ 232 and j = 0,

1 if cj,i + aj + φj−1,i+1 ≥ 232 and j > 0,

0 others, (2)where onstants aj are de�ned as follows
aj =











0x4D34D34D for j = 0, 3, 6,

0xD34D34D3 for j = 1, 4, 7,

0x34D34D34 for j = 2, 5.Please note that 0x denotes number in hexadeimal format. When ounter up-date stage is ompleted, new state variable values are alulated by:
x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16),

x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i,

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16),

x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i,

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16),

x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i,

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16),

x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i,

(3)
90



HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITwhere gj,i represents atual value of jth g-funtion, gj,i ≪ m denotes bitwiserotation of binary sequene representing urrent value of jth g-funtion bym bitsto the left and xj,i+1 denotes new value of jth state variable. In state variableupdate equations all additions are modulo 232. Eah state variable is updated byombination of output from three di�erent g-funtions. g-funtions deliver highnonlinearity to state variable values and thus whole system. Values of g-funtionsare omputed by rule
gj,i =

(

(xj,i + cj,i+1)
2 ⊕

(

(xj,i + cj,i+1)
2 ≫ 32

)

)

mod 232. (4)Sine eah g-funtion value depends on one internal state variable value xj,iand appropriate ounter value cj,i+1, total number of g-funtion values is 8,indexed by j ∈ {0, 1, . . . , 7}. Updated value of jth ounter is denoted by cj,i+1,
xj,i denotes urrent value of jth internal state variable, (. . .)2 means squaringoperation and (. . .) ≫ m denotes shift of binary sequene by m bits to the right.Shifted sequene is �lled with m 0s from the left. Again, both additions in alleight g-funtion omputations are modulo 232.Output value from jth g-funtion is produed by ombination of urrent jthinternal state variable value xj,i and updated value of jth ounter cj,i+1. Binaryrepresentations of these two values are both 32-bits long. Sum of two 32-bitnumbers produes at most 33-bit number, thus only the last 32-bits of the sumare taken. Resulting sum of internal state variable value and ounter value is thensquared, produing 64-bits long number. Squared sum is shifted by 32 positionsto the right afterwards and shifted sequene is �lled with sequene of 32 zerosfrom the left. Shifted version of squared sum is added to the original squaredsum, produing 64-bit number. Only the last 32-bits are taken as output valuefrom g-funtion.2.3. Initialization vetorBy using initialization vetor and requesting 232 di�erent IVs, an attakerdoes not gain an advantage over using the same IV [9℄. After key expansion intointernal state variables and ounters, four iterations of the system, and ounterre-mixing with internal state variables in key setup stage, ounters in the internalstate are modi�ed with initialization vetor bits aording to:

c0,4 = c0,4 ⊕ IV [31..0], c1,4 = c1,4 ⊕
(

IV [63..48]||IV [31..16]
)

,

c2,4 = c2,4 ⊕ IV [63..32], c3,4 = c3,4 ⊕
(

IV [47..32]||IV [15..0]
)

,

c4,4 = c4,4 ⊕ IV [31..0], c5,4 = c5,4 ⊕
(

IV [63..48]||IV [31..16]
)

,

c6,4 = c6,4 ⊕ IV [63..32], c7,4 = c7,4 ⊕
(

IV [47..32]||IV [15..0]
)

,where ⊕ denotes XOR, cj,4 represents 32-bit value stored in ounter j after fouriterations of next-state funtion, IV [u..v] represents bits from u to v of initializa-tion vetor and || operation is onatenation of bit strings. When ounter values91



JOZEF TOMECEKare updated with initialization vetor bits, whole system is iterated four timesfor seurity reasons [9℄. Overall system funtion an be visualized as on Figure 1.

Figure 1. Graphial illustration of Rabbit.2.4. Output transformationBeginning with the 5th iteration when no IV is used, or 9th iteration when IVis used, output random-like sequene of 128-bits is extrated from internal statevariables after the iteration is performed. The extration rule is de�ned as:
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(5)where ⊕ denotes XOR, x[u..v]
j,i denotes bits from u to v of jth internal statevariable in urrent (ith) iteration and s

[u..v]
i represents bits from u to v of outputrandom-like sequene s in atual (ith) iteration. Enryption of the message issimple bitwise XOR of message bitsmi with output sequene bits si, so enrypted92



HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITmessage bits are produed by ci = mi ⊕ si. Deryption follows by reapplyingoutput sequene bits to the ipher-text bits as mi = ci ⊕ si.2.5. Seurity of RabbitSeurity of potentially vulnerable bloks of Rabbit stream ipher were deeplyanalyzed in [3℄, [5℄, [6℄ and [4℄. 128-bit seurity is laimed for Rabbit. It means,that reasonable attak has to be more e�ient than 2128 trial enryptions [9℄.Guess-and-Verify attak to Rabbit g-funtion has omplexity equivalent to192-bits [9℄. Also in Guess-and-Determine attak, attaker must guess morethan 128-bits before determining proess an start. Known algebrai attaksto stream ipher designs mostly exploit vulnerabilities in linear properties ofnext-state funtions in stream iphers. Sine Rabbit updates its internal statein non-linear fashion it is onsidered, that algebrai attaks are not appliableto Rabbit [9℄.3. Hardware implementation of RabbitRabbit was originally designed as software-oriented algorithm, thus perfor-mane was tested on many proessors from 32-bit 1.7 GHz Pentium 4 proessorto simple 8-bit miro-ontrollers. It an be seen, that set of operations requiredby key setup funtion inluding initialization proess, next-state funtion andoutput transformation inludes XOR-ing, rotations, shifts, modular addition andmodular multipliation. From hardware point of view, XOR-ing, shifting and bitrotation are quite simple operations. On the lowest hardware level, where FPGAdevies belong, generally we have no preprogrammed omplex funtions, eventhere are no instrutions for partiular operations. Thus, hardware implementa-tion of any algorithm is more omplex than software implementation on any levelof abstration. When programming FPGAs, programmer deals with logi gates,look-up tables, registers and wiring onnetions between them. On the other sidelies �exibility of hardware implementation. The simplest example is adding oftwo numbers. On 32-bit CPU it is no matter if those two operands are 5-, 12- or30-bits long. Sine 32-bit CPU has only 32-bit wide arithmeti-logi unit, it isharnessed for any of above operations. Hardware designer an implement adderblok with as many hained one-bit adders as needed, building adder blok withexatly required size. Moreover, with respet to available resoures of used logigate array, more adders an be synthesized and used in parallel.3.1. Critial path in RabbitWhat is fundamental for hardware algorithm speed is the longest path foreletri signal to travel through logi gates from the input pin of logi array93



JOZEF TOMECEKto the output pin. Eah logi gate or blok of logi gates has some ombina-tional delay. The highest ombinational delay on the ritial path through logielements between two synhronous registers orresponds to the worst-ase routeof eletri signal when propagating signal through ombinational logi and givesminimal period of one algorithm iteration. Maximum frequeny of whole designis then given by inverting this minimal period. Redution of ombinational delaysin design leads to signi�ant algorithm aeleration. In ase of Rabbit, outputpseudo-random sequene is extrated from state variable values (5). Going bakto state variable value update during next-state funtion it is visible, that eahstate variable value is given by ombination of output from three g-funtions (3).In the rule for g-funtions (4), atual internal state variable value is added to up-dated ounter value, so ritial path goes up to new ounter value alulation (1),whih is performed at the beginning of eah iteration. From (3) it follows, thatall eight g-funtion values are needed in eah iteration for state variable update.Looking into (1) it is lear, that c7,i+1 = c7,i + a7 + φ6,i+1 mod 232 is omputedlast, beause it is waiting for φ6,i+1, whih is omputed by (2), thus dependingon arry from previous ounter value alulation and vie versa.Counting from the �rst ounter, on the ritial path of Rabbit is eight 32-bitadders, one 32-bit squaring blok and two 32-bit XORs (one in g-funtion and onein output transformation). Shifts and rotations have no ost in hardware otherthan routing the wires. Critial path of Rabbit is oarse-dashed on Figure 2.
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HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITby itself, we an save some omputation time by replaing 32-bit squaring withequivalent formula of three 16-bit multipliations, two 32-bit additions and twoshifts.Let w = (xj,i + cj,i+1) mod 232. We an split 32-bit word w to two 16-bitwords w = wh||wl, then
w2 = w2

l + 216 ∗ 2 ∗ wl ∗ wh + 232 ∗ w2
h. (6)Corresponding to basi multipliation of two distint deadi numbers, beforeadding up intermediate results, those must be proprietary shifted (w2

h is shiftedby 32-bits and wh∗wl is shifted by 16+1-bit, both numbers are shifted to the left).Multipliation with n− th power of two is the same as left shift by n positions inhardware, thus replaing resoure demanding 32-bit multipliation with more,but narrower operations seems reasonable. Moreover, in squaring we an saveone multipliation, sine wh ∗ wl = wl ∗ wh. That's why wh ∗ wl is shifted by16 + one bit to the left. Similarly, when squaring a 16-bit number v, it an besplit into two bytes v = vh||vl and squared with formula v2 = v2l + 28 ∗ 2 ∗
vl ∗ vh + 216 ∗ vh utilizing only 8-bit multipliation units. Squaring operationperformed on 32-bit number partitioned into one-byte words then takes tenmultipliations (three multipliations per 16-bit squaring, resting four for innerprodut multipliation), two 32-bit and four 16-bit additions and six shifts.3.3. Sequential and parallel tasksExploiting great �exibility of FPGA devies, optimal implementation of Rab-bit stream ipher algorithm an be designed, ompared to sequentially exeutedsoftware implementation. Adopting methods from parallelizing software algo-rithms [17℄, hardware implementation of Rabbit stream ipher algorithm was de-omposed to sequentially and parallely exeuted tasks. Traing the ritial pathof algorithm by following data dependeny seems most suitable for hardwarealgorithm deomposition, see Figure 3. Seret key bits are parallely expandedinto state variables and ounters, ounters are parallely updated with initializa-tion vetor and reinitialized during key setup and initialization proess. Eightparallel implementations of ounter update funtions with arry predition wereimplemented. Carry predition omes from fat that ounter update funtion issimple two input 32-bit adder with arry input and arry output. If sum of twoinput 32-bit numbers is greater than or equal to 232, arry bit is propagated tonext ounter update funtion, no matter if there is arry from previous ounter.Sine partiular ounters are hained through arry bits, arry predition anspeed-up ounter update and thus g-funtion alulation. Also, eight parallel g-funtions are implemented. When output from g-funtions is ombined into statevariable values in next-state funtion, pseudo-random sequene is extrated inparallel from state variables. 95
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x0,i+1 Figure 3. Parallel and sequential bloks in Rabbit.3.4. E�ient resoure utilizationThe goal of deomposition an algorithm into sequential and parallel bloks isto reah optimal balane between keeping parallel bloks busy with omputation,while holding surrounding ontrol logi small and e�ient. If the granularity ofparallel bloks is very �ne, omplexity of �nite state mahines monitoring andontrolling them grows, thus slows algorithm exeution. So hardware algorithmsoften fae the same hallenge as universal miroproessors (CPUs) in e�ientresoure utilization. Rabbit algorithm an be logially divided into three stageswhih run almost independently, but have synhronized data input and output.Counter system forms �rst logi blok, beause ounter values depend only onseret key bits, exept ounter re-initialization. So after key setup stage is om-pleted, during iterations of next-state funtion, new ounter values are omputedindependently in ounter system blok. Output from ounter blok is registeredand readiness of new data is signaled to partiular g-funtion. In the seondlogi blok, g-funtion values are omputed. Within g-funtion, output valuefrom ounter blok is ombined with urrent internal state variable value andresult is squared, shifted and the sum of original and shifted version of innerprodut is omputed. When g-funtion values are ready, new state variable val-ues are generated from appropriate g-funtion output values in the third stage.Whole loop is ontrolled by �nite state mahine, whih is monitoring data �owand shedules work-�ow for partiular stages.96



HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT3.5. Horizontal foldingWhen optimizing hardware algorithm, designers are foused on three basitargets: speed, area and power onsumption. Algorithm an be aelerated withparallely exeuted omputations, but it needs more ombinational and ontrollogi and sometimes more energy. On the other hand, parallel operations an beomputed in sequene of many iterations, reduing onsumed logi, but inreas-ing time to omplete omputation. As is visible from (3), state variables areomputed by ombination of onseutive g-funtions. In our resoure-e�ientimplementation of Rabbit stream ipher, there is only one g-funtion blok im-plemented and shared between eight state variables with registered output, soeah g-funtion is omputed one, but used in three state variable alulations.Similarly, ounter update blok is shared between all eight ounters. Sharinglogi bloks is alled horizontal folding [15℄ and needs slightly updated ontrollogi to register and synhronize output values from shared bloks. This ap-proah is also salable, where one ounter blok and next-state funtion blokan be shared between two, four or all eight data sets.3.6. Vertial foldingE�ient implementation of multipliation in Rabbit g-funtion was desribedin subsetion 3.2. The reason for rumbling wide operands in multipliation intomore, but narrower 16-bit or 8-bit multipliations is, that some FPGAs have em-bedded bloks of �xed logi for frequently omputed operations. Multipliationunit synthesized in programmable logi is far slower than hardwired multipli-ation unit of �xed width. Although the speed, size and omplexity of FPGAdevies is growing, even latest Xilinx Virtex 7 FPGAs have only 25 x 18-bit em-bedded multipliers [21℄. Con�gurable (9×9, 18×18, 24×24, or 36×36) multipliersare more ommon [1℄, but native support of wider (24× 24-bit and more) multi-pliers is rare and available mostly in FPGA devies speialized for digital signalproessing [2℄. Usually, enryption/deryption engine is embedded into omplexdevie and FPGA resoures are shared. Likely, embedded FPGA resoures arefully utilized by other systems and funtions, so ryptographi algorithms tendto have minimal available resoures. In Rabbit, salability of e�ient squaringand other funtional bloks is important, beause it delivers versatility and �ex-ibility to the algorithm implementation. In vertial folding, data-path width andlogi blok interfaes are narrowed to proess shorter operands at the expense oflonger proessing time. In ase of vertially folded [15℄ 16-bit and 8-bit Rabbitimplementations, all routing wires and funtional bloks inluding ounter up-date, next-state funtion, squaring in g-funtion and output transformation areimplemented with 16-bit and 8-bit widths respetively. Again, additional ontrollogi is required for bu�ering, partitioning, registering and synhronizing data.97



JOZEF TOMECEKFor example in 16-bit version of the next-state funtion, rotation by 16-bits tothe left is performed by reordering output from g-funtion.4. ResultsDistint hardware implementations of Rabbit stream ipher algorithm weredesigned. In the �rst diret implementation, squaring is implemented using em-bedded multipliers with no optimization and ritial path of algorithm was op-timized by parallel implementation of ounter update bloks, g-funtions, next--state funtions and output transformation. In the seond implementation (ES),squaring in g-funtion is replaed with optimal formula 3.2. The third optimiza-tion omes with partitioned and pipelined (PP) Rabbit design, where the seondimplementation is divided into logial bloks, whih operate independently withdata synhronized between them. The next is area optimized, horizontally folded(HF8) implementation, where eight parallel bloks are merged to one sharedpipeline. In vertially folded implementation, partitioned and pipelined design(with parallel bloks) is optimized by datapath and blok width redution to 16(VF16) and eight (VF8) bits. The last two area optimizations are ombined intohorizontally and vertially folded arhiteture with one shared pipeline narrowedto eight bits wide blok and datapaths (HF8VF8).Hardware implementations were designed [20℄ on Xilinx FPGA Virtex 5(XC5VLX50T) enompassed with 7,200 slies, 28,800 registers and 48 25×18-bitmultipliers in DSP slies. In FPGA design �ow, everything starts with hardwaredesription language (HDL) ode input. Programmati ode is analyzed, veri�edfor formal orretness and synthesized by software design environment. Duringsynthesis of veri�ed HDL ode, so-alled post-synthesis netlist of used logi el-ements and their interonnetions is generated. The next step in FPGA design�ow is ��tting�, when post-synthesis database of logi elements and their inter-onnetions is mapped to available resoures of the target devie, with respet todesigner-de�ned (or default) onstraints. When plae and route step is �nished,post-�t netlist is analyzed for timing onstraints before target FPGA devie ison�gured and programmed. Results summarized in Table 4 were evaluated af-ter the plae and route step of the design �ow, beause frequeny estimationof the designed algorithm is based on ritial path in post-�t netlist, whihleads to worst-ase frequeny of designed algorithm physially programmed intoFPGA devie. Fair omparison of hardware implemented algorithms is om-pliated, beause many subjetive and objetive fators, suh as funtionality,target hardware platform, design optimization, or stage of the design �ow [12℄must be taken into aount.98



HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBITTable 1. Rabbit hardware implementation omparison.Rabbit Design Frequeny Throughput Logi slies DSP Bloks(MHz) (Gbps) (%) (%)Diret 53.658 6.86 654 (9.08) 32 (66)ES 62.996 8.06 788 (10.94) 24 (50)PP 76.677 9.81 827 (11.48) 24 (50)HF8 47.259 6.04 357 (4.95) 4 (8.33)VF16 44.454 5.69 229 (3.18) 2 (4.17)VF8 42.349 5.42 211 (2.93) 1 (2.08)Estimated [9℄ 17.80 24 (50)Our best performing implementation is parallelized and pipelined versionof Rabbit, running on frequeny of 76.677 MHz, proessing 9.81 Gb per seond,while utilizing 24 multipliers in dediated DSP bloks. The di�erene betweenestimated and obtained throughput probably follows from di�erent pipeline or-ganization of ompared designs. The pipeline of our design is divided into threestages (ounter updates, g-funtion omputations and state variable updates)and this pipeline realization looks not ideally e�ient, when omparing om-plexity of omputations involved in pipeline stages. On the other hand, themore stages are in the pipeline, the more ontrol logi must be implemented toorganize data in it. We have no information about FPGA implementation (andpipeline organization) of stream ipher Rabbit used for performane evaluation,other than availability of more than 24 dediated multipliers with 2.4 ns latenywas assumed and two-pipeline design was implemented for performane estima-tion [9℄. Target FPGA devie of implementation for performane estimation wasalso not spei�ed. Future work will be foused on more e�ient pipeline orga-nization of the Rabbit hardware algorithm. Horizontally and vertially foldedimplementations are bit slower, but they utilize less logi bloks and less ded-iated multipliers. It is visible, that narrowing datapath and funtional bloksize slightly slows algorithm exeution, but redution of resoure utilization israpid. Versatility of algorithm implementation is important for designs realizedin resoure-onstrained devies. The smallest implementation of stream ipherRabbit runs on frequeny of 42.349 MHz, overs 211 slies and utilizes only onemultiplier in DSP blok. Throughput of this implementation is 5.42 Gbps. Imple-mentations of other eStream hardware pro�le andidates on the same or similarFPGA devies are not evaluated. Performane of eStream phase 3 iphers Triv-ium [11℄, Grain [14℄, Salsa20 [8℄ and Mikey-128 [7℄ on Xilinx Spartan 3 FPGAdevie, optimized for maximum throughput to area ratio was evaluated in [13℄.The highest throughput had highly-parallelized Trivium implementation (12.16Gbps on 388 CLB slies), followed by Grain (2.48 Gbps on 356 CLBs), Salsa2099
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