VER s\n/{ TAIRA

MOUNTaiNS

Mathematical Publications

DOI: 10.2478/v10127-011-0039-8
Tatra Mt. Math. Publ. 50 (2011), 87-101

HARDWARE OPTIMIZATIONS OF STREAM
CIPHER RABBIT

JOZEF TOMECEK

ABSTRACT. Stream ciphers form part of cryptographic primitives focused on
privacy. Synchronous, symmetric and software-oriented stream cipher Rabbit is
member of final portfolio of European Union’s eStream project. Although it was
designed to perform well in software, employed operations seem to compute effi-
ciently in hardware. 128-bit security, with no known security weaknesses is claimed
by Rabbit’s designers. Since hardware performance of Rabbit was only estimated
in the proposal of algorithm, comparison of direct and optimized FPGA im-
plementations of Rabbit stream cipher is presented, identifying algorithm bot-
tlenecks, discussing optimization techniques applied to algorithm computations,
along with key area/time trade-offs.

1. Introduction

The goal of modern cryptography is to deliver security to binary data convey-
ing information. Information is considered secured, when certain cryptographic
objectives are fulfilled. As stated in [16], all cryptographic objectives are divided
into four main groups—confidentiality (privacy), data integrity, authentication
and non-repudiation. Mechanism that defends data utilizing mostly mathemat-
ical problems is called cryptographic primitive.

Software oriented stream cipher Rabbit was chosen as a representative of
privacy delivering cryptographic objectives. The difference between block cipher
and stream cipher relies in encryption transformation [I9]. While encryption
transformation in block ciphers operates on large blocks of data and remains
unchanged, encryption transformation in stream ciphers dynamically evolves
with each processed bit.

The goal of the stream cipher is to transform short (hundreds of bits) se-
cret key into long sequence of bits that looks like randomly generated. Most of

© 2011 Mathematical Institute, Slovak Academy of Sciences.

2010 Mathematics Subject Classification: 94A60.
Keywords: Rabbit, stream cipher, FPGA, optimization, eStream.
Supported by the Grant VEGA 2/0206/10.

87

JOZEF TOMECEK

the stream ciphers consist of key-dependent random-like sequence generator and
output transformation block. The heart of the cipher is random-like sequence
generator characterized by the state of all internal system variables and updated
by next-state function. At the beginning of the encryption process internal state
variables are initialized with initialization vector (IV). Random-like sequence of
bits is extracted from internal state variables regarding output transformation
function. Most popular stream cipher architectures are based on linear feedback
shift registers (LFSRs) with various output transformations based on irregu-
lar clocking of these registers, non-linear combination of values, in particular
registers, or non-linear filtering of output values.

Rabbit stream cipher is an iterative cipher with innovative counter-assisted
architecture. Moreover, the next-state function in Rabbit is highly non-linear.
This algorithm was deeply cryptanalyzed [10], [I8], but so far no weaknesses were
found in it. It utilizes simple bitwise operations, modular addition and squaring
modulo 232. Performance of software implementation of Rabbit was evaluated
by its designers, but the hardware performance was only estimated. Traditional
CPUs execute bitwise operations and other specific computations inefficiently,
according to their universality and architecture. Also, certain amount of CPU
performance is consumed by computation maintenance overhead. So, compu-
tations realized on CPUs are generally slower than hardware realizations, no
matter how many cores are integrated on the chip and how fast they can run.

On the other hand, FPGAs are slower in terms of frequency, but they are very
flexible due to their granularity and very efficient due to concentration of their
resources to specific function with smaller maintenance overhead depending on
optimization complexity. Designers of hardware algorithms exploit all of these
features to overcome CPU computing performance. Implementing an algorithm
to perform efficiently in hardware is not an easy job. Compared to software pro-
gramming in high level language such as C/C++, hardware algorithm designer
has to invest approximately ten times more in effort than software designer.

Since hardware performance of Rabbit was only estimated, direct hardware
implementation of this stream cipher was developed. Critical parts of the al-
gorithm were optimized using various techniques to accelerate the computation
and whole design was simulated, verified and programmed into FPGA.

In the next section, the stream cipher Rabbit is described in detail, identify-
ing computationally most intensive parts. The second section ends with a few
words about Rabbit’s security. Efficiency improving techniques commonly used
in hardware implementations and applied to Rabbit algorithm are outlined in
the third section. The last section summarizes performance benchmarks of var-
ious optimized implementations of Rabbit and comparison with other hardware
implementations of stream ciphers is given.

88

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

2. Rabbit stream cipher

Rabbit algorithm consists of the three most important stages. They are key
setup, next-state function and output transformation. The algorithm takes
128-bit secret parameter as input and 64-bit initialization vector optionally. All
bits of secret key are expanded into internal state variables and counters during
key initialization stage. After each iteration of next-state function, 128-bit output
sequence is extracted from internal state variables regarding output transforma-
tion. Internal state of the cipher consists of 513-bits divided into eight 32-bit
state variables and eight 32-bit counters. The one remaining bit stores infor-
mation about carry from the previous iteration. At the beginning of generating
random-like sequence of bits this carry bit is set to 0. Optionally, counter values
are initialized with initialization vector after key setup stage.

2.1. Key setup stage

During key setup stage, particular bits of 128-bits long input secret parameter
are combined into eight 32-bit internal state variables z;, j € {0,1,...,7} and
eight 32-bit counters ¢, j € {0,1,...,7}. Input sequence K270l of 128-bits
defining secret key is divided into eight sub-sequences of 16 consecutive bits kg =
K150 g — gBL16] g — K127-112] Valyes of internal state variables are
given by expanding secret key bits

o (i1 mod 8)l|k; for j even,
" k(j+5 mod S)Hk(j+4 mod 8) for j odd,

where || means concatenation of bit strings, k; represents jth 16-bit sub-sequence
from secret key K and identifier x; o denotes value of jth internal state variable
before the first iteration.

Similarly, content of all eight 32-bit counters is initialized by

) RG+amod s)|lk(j4+5 moas) for j even,
" k[1&(j+1 mod 8) for j odd.

Again, || means concatenation of bit strings, k; represents jth 16-bit sub-sequence
from secret key K and identifier ¢; o denotes value of jth counter before the first
iteration.

After the key setup stage, the system is iterated four times according to next-
-state function. Mixing of bits in internal state variables and counters performed
during these four iterations dims direct dependencies between secret key bits and
values in internal state variables and counters. After four iterations of next-state
function, counter values are modified by XOR-ing appropriate state variable
value given by:

Cj,a = Cja D T(j+4 mod 8),4;

89

JOZEF TOMECEK

@ denotes bitwise addition modulo 2 (or XOR), ¢; 4 denotes value of jth counter
after the fourth iteration and x; 4 represents value of jth internal state variable
after the fourth iteration.

2.2. Next-state function

In the next-state function, all eight 32-bit state variables and all eight 32-bit
counters are updated. Preceding update of state variables, new counter values

are calculated by: 39
cO,i+1 = CO,i —+ ap —+ ¢>7,i mOd 2 s

Cl,i+1 = C1,i + a1 + ¢o,i+1 mod 232,
C2,i+1 = Co,i + a2 + ¢1,i+1 mod 232,
3,41 = €3, + a3 + P2 ;41 mod 232, (1)
Cait1 = Cai + a4 + P341 mod 232,
C5,i+1 = C5,i + a5 + Pai4+1 mod 232,
C6,i+1 = Co,i + ap + P5,i+1 mod 232,
€741 = €1 + a7 + ¢p i1 mod 232,
In the above equations, ¢; ;41 denotes new (i + 1) value of jth counter carry

bit, which is computed from actual counter value (c;;), a constant a; and carry
from previous counter value calculation by

1 if Co,; + aop + ¢7,i > 232 and j =0,

bjit1 =<1 ifcji+aj+¢j—1,41>2%% and j > 0, (2)
0 others,

where constants a; are defined as follows

0x4D34D34D for j =0,3,6,
a; = § 0xD34D34D3 for j =1,4,7,
0x34D34D34 for j = 2,5.

Please note that 0z denotes number in hexadecimal format. When counter up-
date stage is completed, new state variable values are calculated by:

+ (97, K 16) + (g6, < 16),
g1+ (90 < 8) + g7,
Toit1 = G2+ (91,6 K 16) + (g0, < 16),
93+ (92, < 8) + g1,
+ (g3,i <€ 16) + (go,i << 16),
+ ()
+ ()
+ ()

Zo,i+1 = 90,i

T1,i4+1

T3i4+1

3
T4i41 = YG4,i ()
Tsiv1 = 95,0+ (94, K 8) + 93,4,
Teit1 = Go,i + (95,1 <K 16) + (g4, K 16),

Triv1 = 97,0+ (96, <K 8) + gs,4s

90

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

where g; ; represents actual value of jth g-function, g;; <& m denotes bitwise
rotation of binary sequence representing current value of jth g-function by m bits
to the left and x; ;1 denotes new value of jth state variable. In state variable
update equations all additions are modulo 232 Each state variable is updated by
combination of output from three different g-functions. g-functions deliver high
nonlinearity to state variable values and thus whole system. Values of g-functions
are computed by rule

gji = ((xj,i + Cj7i+1>2 & ((.rj’i + Cj7i+1)2 > 32)) mod 232. (4)

Since each g-function value depends on one internal state variable value z;;
and appropriate counter value c¢;;y1, total number of g-function values is 8,
indexed by j € {0,1,...,7}. Updated value of jth counter is denoted by ¢; 41,
z;,; denotes current value of jth internal state variable, (...)> means squaring
operation and (...) > m denotes shift of binary sequence by m bits to the right.
Shifted sequence is filled with m 0s from the left. Again, both additions in all
eight g-function computations are modulo 232.

Output value from jth g-function is produced by combination of current jth
internal state variable value x;; and updated value of jth counter ¢; ;1. Binary
representations of these two values are both 32-bits long. Sum of two 32-bit
numbers produces at most 33-bit number, thus only the last 32-bits of the sum
are taken. Resulting sum of internal state variable value and counter value is then
squared, producing 64-bits long number. Squared sum is shifted by 32 positions
to the right afterwards and shifted sequence is filled with sequence of 32 zeros
from the left. Shifted version of squared sum is added to the original squared
sum, producing 64-bit number. Only the last 32-bits are taken as output value
from g-function.

2.3. Initialization vector

By using initialization vector and requesting 232 different IVs, an attacker
does not gain an advantage over using the same IV [9]. After key expansion into
internal state variables and counters, four iterations of the system, and counter
re-mixing with internal state variables in key setup stage, counters in the internal
state are modified with initialization vector bits according to:

Co4=Coa® Iv[31..0}’ cla=c14® (IV[63“48]||IV[31"16]),
Coq = Co4 oy IV[63"32], C3.4=C34 o (_[‘/'[47..32”|IV'[15..O})7
Caa=Cs4® Iv[31..0}’ Cs4=C54D (IV[63“48]||IV[31"16]),
Coa = Co.4D IV[63"32], Cra=cCr4® (Iv[47..32]||Iv[15..0})’
where @ denotes XOR, c; 4 represents 32-bit value stored in counter j after four

iterations of next-state function, IVl represents bits from u to v of initializa-
tion vector and || operation is concatenation of bit strings. When counter values

91

JOZEF TOMECEK

are updated with initialization vector bits, whole system is iterated four times
for security reasons [9]. Overall system function can be visualized as on Figure 1.

Ficure 1. Graphical illustration of Rabbit.

2.4. Output transformation

Beginning with the 5" iteration when no IV is used, or 9*" iteration when IV
is used, output random-like sequence of 128-bits is extracted from internal state
variables after the iteration is performed. The extraction rule is defined as:

[15..0) _ [15..0] [31..16] [31..16] _ [31..16] [15..0]
Si =xy, DT5;,) 8 =Ty Dr3,; 7,
[47..32] _ [15..0] [31..16] [63..48] _ [31..16] [15..0]
S; =Ty, DTy, 5 =Ty Drs,; (5)
[79..64] _ [15..0] [31..16] [95..80] _ [31..16] [15..0]
Si =z, DTy, 5 =Ty, Dxy,; T,
[111..96] _ [15..0] [31..16] [127..112] _ [31..16] [15..0]
S =Tg; D3, y 55 = Tg,4 DTy s

where @ denotes XOR, x%"v] denotes bits from u to v of jth internal state
variable in current (ith) iteration and s/ represents bits from u to v of output
random-like sequence s in actual (ith) iteration. Encryption of the message is
simple bitwise XOR of message bits m; with output sequence bits s;, so encrypted

92

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

message bits are produced by ¢; = m; @ s;. Decryption follows by reapplying
output sequence bits to the cipher-text bits as m; = ¢; ® s;.

2.5. Security of Rabbit

Security of potentially vulnerable blocks of Rabbit stream cipher were deeply
analyzed in [3], [5], [6] and [4]. 128-bit security is claimed for Rabbit. It means,
that reasonable attack has to be more efficient than 2'2® trial encryptions [9].
Guess-and-Verify attack to Rabbit g-function has complexity equivalent to
192-bits [9]. Also in Guess-and-Determine attack, attacker must guess more
than 128-bits before determining process can start. Known algebraic attacks
to stream cipher designs mostly exploit vulnerabilities in linear properties of
next-state functions in stream ciphers. Since Rabbit updates its internal state
in non-linear fashion it is considered, that algebraic attacks are not applicable
to Rabbit [9].

3. Hardware implementation of Rabbit

Rabbit was originally designed as software-oriented algorithm, thus perfor-
mance was tested on many processors from 32-bit 1.7 GHz Pentium 4 processor
to simple 8-bit micro-controllers. It can be seen, that set of operations required
by key setup function including initialization process, next-state function and
output transformation includes XOR-ing, rotations, shifts, modular addition and
modular multiplication. From hardware point of view, XOR-ing, shifting and bit
rotation are quite simple operations. On the lowest hardware level, where FPGA
devices belong, generally we have no preprogrammed complex functions, even
there are no instructions for particular operations. Thus, hardware implementa-
tion of any algorithm is more complex than software implementation on any level
of abstraction. When programming FPGAs, programmer deals with logic gates,
look-up tables, registers and wiring connections between them. On the other side
lies flexibility of hardware implementation. The simplest example is adding of
two numbers. On 32-bit CPU it is no matter if those two operands are 5-, 12- or
30-bits long. Since 32-bit CPU has only 32-bit wide arithmetic-logic unit, it is
harnessed for any of above operations. Hardware designer can implement adder
block with as many chained one-bit adders as needed, building adder block with
exactly required size. Moreover, with respect to available resources of used logic
gate array, more adders can be synthesized and used in parallel.

3.1. Critical path in Rabbit

What is fundamental for hardware algorithm speed is the longest path for
electric signal to travel through logic gates from the input pin of logic array

93

JOZEF TOMECEK

to the output pin. Each logic gate or block of logic gates has some combina-
tional delay. The highest combinational delay on the critical path through logic
elements between two synchronous registers corresponds to the worst-case route
of electric signal when propagating signal through combinational logic and gives
minimal period of one algorithm iteration. Maximum frequency of whole design
is then given by inverting this minimal period. Reduction of combinational delays
in design leads to significant algorithm acceleration. In case of Rabbit, output
pseudo-random sequence is extracted from state variable values (B]). Going back
to state variable value update during next-state function it is visible, that each
state variable value is given by combination of output from three g-functions (3.
In the rule for g-functions (), actual internal state variable value is added to up-
dated counter value, so critical path goes up to new counter value calculation (),
which is performed at the beginning of each iteration. From (3)) it follows, that
all eight g-function values are needed in each iteration for state variable update.
Looking into (D)) it is clear, that ¢z ;41 = ¢7; + a7 + ¢¢,i+1 mod 232 is computed
last, because it is waiting for ¢¢ ;41, which is computed by (2), thus depending
on carry from previous counter value calculation and vice versa.

Counting from the first counter, on the critical path of Rabbit is eight 32-bit
adders, one 32-bit squaring block and two 32-bit XORs (one in g-function and one
in output transformation). Shifts and rotations have no cost in hardware other
than routing the wires. Critical path of Rabbit is coarse-dashed on Figure 2.

_‘P?,i

--pf0g -+ B -+ pCo jap---- pCg a1t - pCy jutp--=- g jqr---- piCg j1t----- i>C7,i+1—|
X5 Xg, X7
Jy v J, v J, v
s, Os,i 97,
X7 j+1
Ava
Output transformation

Ficure 2. Critical path in Rabbit.

3.2. Optimal squaring in g-function

As noted in [9], computationally most complicated operation is squaring of
32-bit number in g-function. Since squaring is in other words multiplying number

94

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

by itself, we can save some computation time by replacing 32-bit squaring with
equivalent formula of three 16-bit multiplications, two 32-bit additions and two
shifts.

Let w = (zj; + ¢j,i+1) mod 232 We can split 32-bit word w to two 16-bit
words w = wy||w;, then

w? = w? + 210 % 2% wy x wy, + 232 ¥ w?. (6)
Corresponding to basic multiplication of two distinct decadic numbers, before
adding up intermediate results, those must be proprietary shifted (w7 is shifted
by 32-bits and wy,*wy is shifted by 16+1-bit, both numbers are shifted to the left).
Multiplication with n —th power of two is the same as left shift by n positions in
hardware, thus replacing resource demanding 32-bit multiplication with more,
but narrower operations seems reasonable. Moreover, in squaring we can save
one multiplication, since wy * w; = w; * wy. That’s why wy, * w; is shifted by
16 + one bit to the left. Similarly, when squaring a 16-bit number v, it can be
split into two bytes v = vy||v; and squared with formula v? = v? 4 28 % 2 %
v * vy, + 26 % vy, utilizing only 8-bit multiplication units. Squaring operation
performed on 32-bit number partitioned into one-byte words then takes ten
multiplications (three multiplications per 16-bit squaring, resting four for inner
product multiplication), two 32-bit and four 16-bit additions and six shifts.

3.3. Sequential and parallel tasks

Exploiting great flexibility of FPGA devices, optimal implementation of Rab-
bit stream cipher algorithm can be designed, compared to sequentially executed
software implementation. Adopting methods from parallelizing software algo-
rithms [I7], hardware implementation of Rabbit stream cipher algorithm was de-
composed to sequentially and parallely executed tasks. Tracing the critical path
of algorithm by following data dependency seems most suitable for hardware
algorithm decomposition, see Figure 3. Secret key bits are parallely expanded
into state variables and counters, counters are parallely updated with initializa-
tion vector and reinitialized during key setup and initialization process. Eight
parallel implementations of counter update functions with carry prediction were
implemented. Carry prediction comes from fact that counter update function is
simple two input 32-bit adder with carry input and carry output. If sum of two
input 32-bit numbers is greater than or equal to 232 carry bit is propagated to
next counter update function, no matter if there is carry from previous counter.
Since particular counters are chained through carry bits, carry prediction can
speed-up counter update and thus g-function calculation. Also, eight parallel g-
functions are implemented. When output from g-functions is combined into state
variable values in next-state function, pseudo-random sequence is extracted in
parallel from state variables.

95

JOZEF TOMECEK

lXO,iH lx1,i+1 lxz,m lx3,i+1 lx4,i+1 lXS,M lxe,m X7 1
3Z

Output transformation

Ficure 3. Parallel and sequential blocks in Rabbit.

3.4. Efficient resource utilization

The goal of decomposition an algorithm into sequential and parallel blocks is
to reach optimal balance between keeping parallel blocks busy with computation,
while holding surrounding control logic small and efficient. If the granularity of
parallel blocks is very fine, complexity of finite state machines monitoring and
controlling them grows, thus slows algorithm execution. So hardware algorithms
often face the same challenge as universal microprocessors (CPUs) in efficient
resource utilization. Rabbit algorithm can be logically divided into three stages
which run almost independently, but have synchronized data input and output.
Counter system forms first logic block, because counter values depend only on
secret key bits, except counter re-initialization. So after key setup stage is com-
pleted, during iterations of next-state function, new counter values are computed
independently in counter system block. Output from counter block is registered
and readiness of new data is signaled to particular g-function. In the second
logic block, g-function values are computed. Within g-function, output value
from counter block is combined with current internal state variable value and
result is squared, shifted and the sum of original and shifted version of inner
product is computed. When g-function values are ready, new state variable val-
ues are generated from appropriate g-function output values in the third stage.
Whole loop is controlled by finite state machine, which is monitoring data flow
and schedules work-flow for particular stages.

96

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

3.5. Horizontal folding

When optimizing hardware algorithm, designers are focused on three basic
targets: speed, area and power consumption. Algorithm can be accelerated with
parallely executed computations, but it needs more combinational and control
logic and sometimes more energy. On the other hand, parallel operations can be
computed in sequence of many iterations, reducing consumed logic, but increas-
ing time to complete computation. As is visible from (B]), state variables are
computed by combination of consecutive g-functions. In our resource-efficient
implementation of Rabbit stream cipher, there is only one g-function block im-
plemented and shared between eight state variables with registered output, so
each g-function is computed once, but used in three state variable calculations.
Similarly, counter update block is shared between all eight counters. Sharing
logic blocks is called horizontal folding [15] and needs slightly updated control
logic to register and synchronize output values from shared blocks. This ap-
proach is also scalable, where one counter block and next-state function block
can be shared between two, four or all eight data sets.

3.6. Vertical folding

Efficient implementation of multiplication in Rabbit g-function was described
in subsection The reason for crumbling wide operands in multiplication into
more, but narrower 16-bit or 8-bit multiplications is, that some FPGAs have em-
bedded blocks of fixed logic for frequently computed operations. Multiplication
unit synthesized in programmable logic is far slower than hardwired multipli-
cation unit of fixed width. Although the speed, size and complexity of FPGA
devices is growing, even latest Xilinx Virtex 7 FPGAs have only 25 x 18-bit em-
bedded multipliers [21]. Configurable (9x9, 18 x 18,24 x 24, or 36 x 36) multipliers
are more common [I], but native support of wider (24 x 24-bit and more) multi-
pliers is rare and available mostly in FPGA devices specialized for digital signal
processing [2]. Usually, encryption/decryption engine is embedded into complex
device and FPGA resources are shared. Likely, embedded FPGA resources are
fully utilized by other systems and functions, so cryptographic algorithms tend
to have minimal available resources. In Rabbit, scalability of efficient squaring
and other functional blocks is important, because it delivers versatility and flex-
ibility to the algorithm implementation. In vertical folding, data-path width and
logic block interfaces are narrowed to process shorter operands at the expense of
longer processing time. In case of vertically folded [I5] 16-bit and 8-bit Rabbit
implementations, all routing wires and functional blocks including counter up-
date, next-state function, squaring in g-function and output transformation are
implemented with 16-bit and 8-bit widths respectively. Again, additional control
logic is required for buffering, partitioning, registering and synchronizing data.

97

JOZEF TOMECEK

For example in 16-bit version of the next-state function, rotation by 16-bits to
the left is performed by reordering output from g-function.

4. Results

Distinct hardware implementations of Rabbit stream cipher algorithm were
designed. In the first direct implementation, squaring is implemented using em-
bedded multipliers with no optimization and critical path of algorithm was op-
timized by parallel implementation of counter update blocks, g-functions, next-
-state functions and output transformation. In the second implementation (ES),
squaring in g-function is replaced with optimal formula[3:2] The third optimiza-
tion comes with partitioned and pipelined (PP) Rabbit design, where the second
implementation is divided into logical blocks, which operate independently with
data synchronized between them. The next is area optimized, horizontally folded
(HF8) implementation, where eight parallel blocks are merged to one shared
pipeline. In vertically folded implementation, partitioned and pipelined design
(with parallel blocks) is optimized by datapath and block width reduction to 16
(VF16) and eight (VF8) bits. The last two area optimizations are combined into
horizontally and vertically folded architecture with one shared pipeline narrowed
to eight bits wide block and datapaths (HF8VES).

Hardware implementations were designed [20] on Xilinx FPGA Virtex 5
(XC5VLX50T) encompassed with 7,200 slices, 28,800 registers and 48 25 x 18-bit
multipliers in DSP slices. In FPGA design flow, everything starts with hardware
description language (HDL) code input. Programmatic code is analyzed, verified
for formal correctness and synthesized by software design environment. During
synthesis of verified HDL code, so-called post-synthesis netlist of used logic el-
ements and their interconnections is generated. The next step in FPGA design
flow is “fitting”, when post-synthesis database of logic elements and their inter-
connections is mapped to available resources of the target device, with respect to
designer-defined (or default) constraints. When place and route step is finished,
post-fit netlist is analyzed for timing constraints before target FPGA device is
configured and programmed. Results summarized in Table @] were evaluated af-
ter the place and route step of the design flow, because frequency estimation
of the designed algorithm is based on critical path in post-fit netlist, which
leads to worst-case frequency of designed algorithm physically programmed into
FPGA device. Fair comparison of hardware implemented algorithms is com-
plicated, because many subjective and objective factors, such as functionality,
target hardware platform, design optimization, or stage of the design flow [12]
must be taken into account.

98

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

TABLE 1. Rabbit hardware implementation comparison.

. . Frequency | Throughput | Logic slices | DSP Blocks
Rabbit Design (MHz) (Gbps) (%) (%)
Direct 53.658 6.86 654 (9.08) 32 (66)
ES 62.996 8.06 788 (10.94) 24 (50)
PP 76.677 9.81 827 (11.48) 24 (50)
HF8 47.259 6.04 357 (4.95) 4 (8.33)
VF16 44.454 5.69 229 (3.18) 2 (4.17)
VF8 42.349 5.42 211 (2.93) 1 (2.08)
Estimated [9] 17.80 24 (50)

Our best performing implementation is parallelized and pipelined version
of Rabbit, running on frequency of 76.677 MHz, processing 9.81 Gb per second,
while utilizing 24 multipliers in dedicated DSP blocks. The difference between
estimated and obtained throughput probably follows from different pipeline or-
ganization of compared designs. The pipeline of our design is divided into three
stages (counter updates, g-function computations and state variable updates)
and this pipeline realization looks not ideally efficient, when comparing com-
plexity of computations involved in pipeline stages. On the other hand, the
more stages are in the pipeline, the more control logic must be implemented to
organize data in it. We have no information about FPGA implementation (and
pipeline organization) of stream cipher Rabbit used for performance evaluation,
other than availability of more than 24 dedicated multipliers with 2.4 ns latency
was assumed and two-pipeline design was implemented for performance estima-
tion [9]. Target FPGA device of implementation for performance estimation was
also not specified. Future work will be focused on more efficient pipeline orga-
nization of the Rabbit hardware algorithm. Horizontally and vertically folded
implementations are bit slower, but they utilize less logic blocks and less ded-
icated multipliers. It is visible, that narrowing datapath and functional block
size slightly slows algorithm execution, but reduction of resource utilization is
rapid. Versatility of algorithm implementation is important for designs realized
in resource-constrained devices. The smallest implementation of stream cipher
Rabbit runs on frequency of 42.349 MHz, covers 211 slices and utilizes only one
multiplier in DSP block. Throughput of this implementation is 5.42 Gbps. Imple-
mentations of other eStream hardware profile candidates on the same or similar
FPGA devices are not evaluated. Performance of eStream phase 3 ciphers Triv-
ium [11], Grain [I4], Salsa20 [8] and Mickey-128 [7] on Xilinx Spartan 3 FPGA
device, optimized for maximum throughput to area ratio was evaluated in [I3].
The highest throughput had highly-parallelized Trivium implementation (12.16
Gbps on 388 CLB slices), followed by Grain (2.48 Gbps on 356 CLBs), Salsa20

99

JOZEF TOMECEK

(1.20 Gbps per 1615 CLBs) and Mickey-128 with maximum throughput of
0.16 Gbps, implemented on 261 CLB slices.

1]
(2]

3

(4

[5

[6

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

100

REFERENCES

ALTERA: Stratiz IV device family overview, 2011, http://www.altera.com/literature/
hb/stratix-iv/stx4_siv51001.pdf.

ALTERA: Stratiz V device family overview, 2011, http://www.altera.com/literature/
hb/stratix-v/stx5_51001.pdf.

CRYPTICO A/S: Algebraic analysis of Rabbit, 2003, http://www.cryptico.com (White
paper)

CRYPTICO A/S: Analysis of the key setup function in Rabbit, 2003,

http: //www.cryptico.com (White paper).

CRYPTICO A/S: Differential properties of the g-function, 2003,

http: //www.cryptico.com (White paper).

CRYPTICO A/S: Security analysis of the IV-setup for Rabbit, 2003,
http://www.cryptico.com (White paper).

BABBAGE, S.—DODD, M.: The stream cipher MICKEY-128 (version 1), eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/016, 2005,
http://wuw.ecrypt.eu.org/stream.

BERNSTEIN,D.: Salsa20, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/025,
2005, http://www.ecrypt.eu.org/stream.

BOESGAARD, M.—VESTERAGER, M.—CHRISTENSEN, T.—ZENNER, E.:
The stream cipher Rabbit, eSTREAM, 2006.

BOESGAARD, M.—VESTERAGER, M.—PEDERSEN, T.—CHRISTIANSEN, J.—
—SCAVENIUS, O.: Rabbit: A new high-performance stream cipher, in: Proc. Fast Software
Encryption—FSE ’03, 10th International Workshop (T. Johansson, ed.), Lund, Sweden,
2003, Lect. Notes in Comput. Sci., Vol. 2887, Springer-Verlag, Berlin, 2003, pp. 307-329.
DE CANNIERE, C.—PRENEEL, B.: Trivium—A stream cipher construction inspired
by block cipher design principles, eSTREAM, ECRYPT Stream Cipher Project, Report
2005,/030, 2005, http://www.ecrypt.eu.org/stream.

GAJ, K.—KAPS, J.—AMIRINENI, V.—ROGAWSKI, M.—HOMSIRIKAMOL, E.-
-BREWSTER, B. Y.: ATHENa—Automated tool for hardware evaluation: Toward fair
and comprehensive benchmarking of cryptographic hardware using FPGAs, in: Proc. Field
Programmable Logic and Applications—FPL ’10, Internat. Conf., Milano, Italy, 2010
(F. Ferrandi et al., eds.), IEEE Comput. Soc., 2010, pp. 414-421.

GAJ, K—SOUTHERN, G—BACHIMANCHI, R.: Comparison of hardware performance
of selected phase II eSTREAM candidates, eSSTREAM, ECRYPT Stream Cipher Project,
Report 2007/026, 2007, http://www.ecrypt.eu.org/stream.

HELL, M.—JOHANSSON, T.—MEIER, W.: Grain—A stream cipher for constrained
environments, eSTREAM, ECRYPT Stream Cipher Project, Report 2005/010, 2005,
http://wuw.ecrypt.eu.org/stream.

HOMSIRIKAMOL, E.—ROGAWSKI, M.—GAJ, K.: Comparing hardware performance
of round 3 SHA-3 candidates using multiple hardware architectures in Xilinz and Altera
FPGAs, in: Proc. ECRYPT II Hash Workshop, Tallinn, Estonia, 2011.

MENEZES, A. J.—OORSCHOT, P. C. VAN—VANSTONE, S. A.: The Handbook of
Applied Cryptography. CRC Press, Singapore, 1996.

RAUBER, T.—RUNGER, G.: Parallel Programming. Springer-Verlag, Berlin, 2007.

http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51001.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_51001.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

HARDWARE OPTIMIZATIONS OF STREAM CIPHER RABBIT

[18] SCAVENIUS, O.—BOESGAARD, M.—VESTERAGER, M.—CHRISTIANSEN, J.—
—-RIJMEN, V.: Periodic properties of counter assisted stream cipher, in: CT-RSA ’04,
Lecture Notes in Comput. Sci., Vol. 2964, Springer-Verlag, Berlin, 2004, pp. 39-53.

[19] SIMMONS, J. G. (ED.): Contemporary Cryptology. IEEE Press, Piscataway, New Jersey,
1992.

[20] XILINX: Virtez 5 family overview, http://www.xilinx.com/support/documentation/
data_sheets/ds100.pdf, 2009.

[21] XILINX: Xilinz 7 series overview, http://www.xilinx.com/support/documentation/
data_sheets/ds180_7series_overview.pdf, 2011.

Received September 22, 2011 Mathematical Institute
Slovak Academy of Sciences
Stefdnikova 49
SK-814 78 Bratislava
SLOVAKIA

E-mail: tomecek@mat.savba.sk

101

http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7series_overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7series_overview.pdf

	1. Introduction
	2. Rabbit stream cipher
	2.1. Key setup stage
	2.2. Next-state function
	2.3. Initialization vector
	2.4. Output transformation
	2.5. Security of Rabbit

	3. Hardware implementation of Rabbit
	3.1. Critical path in Rabbit
	3.2. Optimal squaring in g-function
	3.3. Sequential and parallel tasks
	3.4. Efficient resource utilization
	3.5. Horizontal folding
	3.6. Vertical folding

	4. Results
	REFERENCES

