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DETERMINISTIC MODELS AND IDENTIFICATION

OF THEIR PARAMETERS

Václav Pink

ABSTRACT. This article deals with a possibility to identify parameters of a se-
lected growth model of two populations coupled by a predator-prey interaction

from a set of observed data. It starts with a brief description of the Gause-type
model and of a property (interior equilibrium stability) important from a point of
view of an application. Subsequently, data for four forms of the trophic function
are simulated and then, a noise was added to the simulated data such that the
coefficients of variation equal to 0.2, 0.3 and 0.4. For each data set, the param-
eters are estimated using a procedure implemented in the R-language package

and the coordinates of equilibrium are computed. Then we can evaluate the ef-
fect of changing variation to the values of parameters and (un)stability of the
equilibrium.

1. Introduction

The aim of this paper is to check whether parameters of a particular ordinary
differential equations system that models some real process can be identified
from a limited set of observed data.

The problem of parameters identification has appeared as long as real phe-
nomena have been described by mathematical models, see, e.g., [11] and refer-
ences therein, or [6] for special case of population models. A disadvantage of
methods described in the literature consists in the fact that they require a set
of observed data large and accurate enough. But such a data set is not avail-
able in many practical situations. An immediate motivation for the presented
investigation comes out from a model of mites community in Moravian vine-
yards, [5]—population densities of a pest mite and of its natural enemy were
checked 11-times during vegetation season and the collected data were fitted
to a predator-prey model by an ad hoc method. The obtained results served as
arguments to assertion that the mites community possesses an asymptotically
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stable steady state and that a respective density of the pest lies under an injury
level for grapes. This conclusion has been verified by several introductions of
the predatory mite for grapevine protection. But a true consequent does not
imply the correct assumptions or inference. Hence, the possibility of parameters
identification from field data was reexamined in the paper [10] and the obtained
results show that the identification of single parameters is not very reliable but
the whole set of estimated parameters more or less correctly determines the
location of the system equilibrium.

This paper searches answers to the questions:

1. How precise the observations should be to identified parameters be correct,
i.e., how large relative deviation from theoretical values gives estimation
of parameters with deviation small enough?

2. Do the parameters identified from data allow to establish stability of the
system steady state?

The method consists in a simulation of data by adding some random deviation
(a noise) to a numerical solution of a differential equation model with definite
parameters and in a subsequent estimation of parameters from the generated
data. The parameters are identified by recent methods provided by the software
package R-language, cf. [12].

The subsequent section presents the predator-prey model forming a basis of
the consideration and its elementary qualitative properties. The model is the
standard Gause-type one introduced in the monograph [4] and dealt in all books
on mathematical biology, e.g., in [2], [7]. The property important from the point
of view of the application is just the asymptotic stability of interior equilibrium,
not the existence or uniqueness of a limit cycle.

The simulation of data and identification of parameters are described in the
third section. The obtained results are summarized in the fourth section. A brief
discussion of them and an indication of an intended future research conclude the
paper.

2. Model

Models of a predator-prey interaction form one of classical parts of mathemat-
ical biology, see, e.g., [2], [7]. We will use a model of prey population exhibiting
intra-specific competition, i.e., a population in an environment with limited re-
sources. In particular, we consider a population with logistic growth provided
no predators are present. Predators are supposed to be specialized to the con-
sidered prey species, i.e., predatory population goes to exponential extinction if
no prey is available. The predators destroy the prey population with a rate de-
pending on the size (density) of the prey population and they convert the killed

1Gause, Georgyi Frantsevitch (December 27, 1910–May 4, 1986), Russian microbiologist.
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a)

b)

Figure 1. Solution (left) and trajectory (right) of the system (1) with the

parameters r = 5, K = 300, d = 4, S = 15, κ = 0.7, initial values x(0) = 9,
y(0) = 2, and the trophic function ϕ = ϕ1 given by the relation (2) with
a = 0.01 and k = 1 (Fig. a) or k = 2 (Fig. b).

prey into their growth rate with some efficiency. That is, we use the Gause-type
predator-prey ODE model in the form

x′= rx
(

1−
x

K

)

− Sϕ(x)y,

y′= −dy + κSϕ(x)y.
(1)

Here, x = x(t) and y = y(t) denote a time dependent size (or density) of the prey
and predator populations, respectively, the parameters r, K, and d denote the
prey growth rate, carrying capacity for the prey population, and the predator
death rate, respectively. The real function ϕ is called trophic function; ϕ(x)

3
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a)

b)

Figure 2. Solution (left) and trajectory (right) of the system (1) with the
parameters r = 5, K = 300, d = 4, S = 15, κ = 0.7, initial values x(0) = 9,

y(0) = 2, and the trophic function ϕ = ϕ2 given by the relation (2) with
a = 0.01 and k = 1 (Fig. a) or k = 2 (Fig. b).

expresses a relative satiety of predator provided the size of prey population equals
to x. We assume that the function ϕ is strictly increasing with the properties

ϕ(0) = 0 and lim
x→∞

ϕ(x) = 1,

i.e., if no prey is available the predators starve, if prey population is large,
predators are totally satisfied. The parameter S represents the level of satiety
of predator (the maximal possible size of prey population destroyed by predator
population of unit size in a unit time), hence Sϕ(x) represents a size of prey
population destroyed by a predator population of unit size in unit time. Finally,

4



DETERMINISTIC MODELS AND IDENTIFICATION OF THEIR PARAMETERS

κ denotes the efficiency of conversion destroyed prey into the predator growth
rate. All of the parameters are positive.

For brevity, let us introduce the notation

q(x) = r
(

1−
x

K

)

.

The function q denotes the size (density) dependent growth rate of the prey
population. We remind one property of the system (1) which is important from
the point of view of the mentioned application: If d < κS then there exists an
isolated steady state

(x∗, y∗) =

(

ϕ−1

(

d

κS

)

,
κx∗q(x∗)

d

)

.

Moreover, if C∗

S
:= Sy∗ϕ′(x∗) + q(x∗) − x∗q′(x∗) > 0, then (x∗, y∗) is locally

asymptotically stable equilibrium.

We consider the trophic function ϕ in the form

ϕ(x) = ϕ1(x) =
axk

axk + 1
or ϕ(x) = ϕ2(x) = 1− e−ax

k

, (2)

where a is a positive parameter and k ∈ {1, 2}. The values k = 1 and k = 2
express the trophic function of the Holling type II and of the Holling type III,
respectively. (The case k = 1 is used for invertebrates, the case k = 2 is used in
environments where there are refuges for prey and/or predator has other food
resources).

Numerical solutions of the system (1) with the trophic function defined by
one of the relations (2) can be found by the procedure lsoda of the program
R-language. The algorithm automatically selects either Adams method (order
1–12 for “non-stiff systems”) or backward differentiation formulas (order 1–5 for
“stiff systems”), for details see [8]. The results are plotted on Figures 1 and 2,
the parameters were chosen such that the system possess asymptotically stable
equilibrium.

3. Simulations

First, the set of equidistant nodal points t = (t0 = 0, t1 = 0.054, . . . , t74 = 4)
for independent variable (time) was chosen. The number 74 of nodal points is
inspired by the mentioned application—it represents a maximal possible number
of observations of mites community during a vegetation season of grapevine. For
each of the nodal point, the corresponding values x(ti) and y(ti) were computed
using numerical solution of the system (1) with one of the trophic functions (2);
the parameters and the initial conditions were set to the values:

r = 5, K = 300, S = 15, a = 0.01, κ = 0.7, d = 4, x(0) = x0 = 9, y(0) = y0 = 2.
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Table 1. Characteristics of estimated parameters of the system (1) with
the trophic function (2), ϕ = ϕ1, k = 1.

Coef. of Var. Parameter Min Max Mean Median Orig. Value

0.2 r 4.9054 5.5741 5.06388 5.01511 5

K 283.7399 320.5527 304.9821 306.0766 300

S 13.02903 16.3974 14.6521 14.6686 15

a 0.009579 0.01241 0.01031 0.01024 0.01

κ 0.6026 0.7770 0.7083 0.7088 0.7

d 3.8685 4.2780 4.01945 4.01461 4

x∗ 58.6329 72.9569 63.5903 63.4767 61.5384

y∗ 39.4608 49.8418 44.1085 43.8443 42.8008

C∗

S
4.5780 5.6015 5.2834 5.3214 5.4090

0.3 r 4.4935 5.8356 5.1448 5.1163 5

K 273.5880 383.019 311.9426 306.7179 300

S 12.4718 19.2276 14.7922 14.3179 15

a 0.007819 0.0131 0.01025 0.0101 0.01

κ 0.5226 0.8398 0.7114 0.7288 0.7

d 3.3036 4.2815 4.04583 4.1057 4

x∗ 51.6688 79.6829 64.3225 64.0296 61.5384

y∗ 32.9512 52.4011 44.1766 44.9932 42.8008

C∗

S
4.1302 6.06564 5.2486 5.3196 5.4090

0.4 r 4.4454 5.7311 5.1515 5.1355 5

K 280.6219 368.2327 328.7662 326.8635 300

S 12.6715 18.7131 14.9691 14.6178 15

a 0.004752 0.01348 0.009779 0.009935 0.01

κ 0.5176 0.8381 0.7116 0.7164 0.7

d 3.4876 4.8488 4.0307 3.9476 4

x∗ 35.6058 84.7693 62.8715 62.7672 61.5384

y∗ 33.3950 51.3651 43.4612 44.1285 42.8008

C∗

S
4.02395 7.2262 5.3936 5.3935 5.4090

The vector t represents observation times and the values x(ti) and y(ti) represent
expected sizes of prey and predator populations, respectively. But observed sizes
of population use to be affected by errors caused by inaccuracies in measurement,
and/or by the fact that the real population sizes vary randomly around theo-
retical values, which are described by the deterministic model. We assume that
the random variations are multiplicative and positive, since the population sizes
need to be positive; the assumption is discussed in details in [6]. More precisely,
we generate the values:

Xi = x(ti) · εi, Yi = y(ti) · ηi, i = 0, 1, . . . , 74,
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Table 2. Characteristics of estimated parameters of the system (1) with
the trophic function (2), ϕ = ϕ1, k = 2.

Coef. of Var. Parameter Min Max Mean Median Orig. Value

0.2 r 4.7685 5.2005 5.01376 5.02558 5

K 84.1849 999.2072 651.4418 813.8820 300

S 11.5285 18.4706 15.1851 15.4108 15

a 0.007918 0.01261 0.009776 0.009588 0.01

κ 0.5713 0.9039 0.7048 0.6923 0.7

d 3.6914 4.3556 4.02887 4.01409 4

x∗ 7.3344 8.4744 7.8251 7.8113 7.8446

y∗ 5.5374 8.5447 6.6661 6.5042 6.6846

C∗

S
10.00529 11.1826 10.7963 10.8478 10.76711

0.3 r 4.7255 5.5051 4.9951 5.0009 5

K 89.1605 999.9414 588.9833 549.5614 300

S 12.7545 17.2549 15.3502 15.2993 15

a 0.007366 0.01101 0.008946 0.008907 0.01

κ 0.5948 0.8537 0.7056 0.7040 0.7

d 3.6887 4.4385 4.005995 3.9922 4

x∗ 7.2991 8.2948 7.6983 7.6894 7.8446

y∗ 5.8480 7.7572 6.6016 6.5742 6.6845

C∗

S
10.3520 11.2067 10.8692 10.9066 10.7671

0.4 r 4.4618 5.5870 5.03669 5.01698 5

K 122.9133 999.7313 622.7539 763.145 300

S 12.7716 19.5232 15.5764 15.6520 15

a 0.006288 0.0115 0.008626 0.008826 0.01

κ 0.5757 0.8564 0.7019 0.6896 0.7

d 3.7573 4.1581 3.9866 3.9942 4

x∗ 7.0858 8.0877 7.6432 7.6878 7.8446

y∗ 5.3008 7.9398 6.5540 6.4349 6.6845

C∗

S
10.5265 11.3413 10.9092 10.8880 10.7671

where εi, ηi are realizations of random variables with lognormal distribution
and the mean value equal to 1. The variability of biological processes usually
equals to 20% (for details see, e.g., [1]) but it was higher in the mentioned mites
community. Hence, the coefficient of variation of the random deviations ε, η from
the set {0.2, 0.3, 0.4} come into usage in simulations.

The generated data set Xi, Yi, i = 1, 2, . . . , 74 serve as input for estimation
of parameters of the model (1). We have utilized the subroutine fitOdeModel

that is contained in the library simecol of program R-language. The procedure
computes parameter values that minimize the sum of squared differences be-
tween simulated data and data obtained by numerical solution of the differential
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Table 3. Characteristics of estimated parameters of the system (1) with
the trophic function (2), ϕ = ϕ2, k = 1.

Coef. of Var. Parameter Min Max Mean Median Orig. Value

0.2 r 4.6606 5.6638 5.02882 4.9986 5

K 272.9173 319.0244 299.3653 297.9745 300

S 12.8386 16.3948 14.5279 14.3067 15

a 0.00850 0.01225 0.01025 0.01019 0.01

κ 0.6233 0.8199 0.7259 0.7403 0.7

d 3.7207 4.2841 4.05623 4.06192 4

x∗ 43.5797 55.5036 48.9388 48.5068 47.9573

y∗ 32.1913 41.3325 36.5895 36.9921 35.2545

C∗

S
6.02301 7.0246 6.6022 6.6354 6.6750

0.3 r 4.5358 5.7533 5.07464 5.07339 5

K 275.2709 342.5684 315.8076 314.1207 300

S 12.8822 18.08814 15.3884 15.3288 15

a 0.007209 0.01413 0.009593 0.009596 0.01

κ 0.5702 0.8724 0.6993 0.6909 0.7

d 3.2270 4.7425 4.007732 3.9656 4

x∗ 37.9148 63.3217 47.4871 47.6209 47.9573

y∗ 29.2035 41.3320 34.7551 34.5605 35.2545

C∗

S
5.5339 7.4522 6.7291 6.7110 6.6750

0.4 r 4.1351 5.8190 5.01904 5.1159 5

K 281.3685 364.2503 322.4318 323.1469 300

S 12.09450 18.8539 14.9866 14.6891 15

a 0.006111 0.01138 0.009299 0.009957 0.01

κ 0.5833 0.9466 0.7406 0.7150 0.7

d 3.1852 4.8987 4.0490 4.02660 4

x∗ 32.4917 56.2687 46.5027 48.7507 47.9573

y∗ 27.8114 43.8549 35.7251 36.002010 35.2545

C∗

S
6.05870 7.7723 6.8131 6.6329 6.6750

equations. It contains several optimization methods; we have chosen the Nelder-
-Mead algorithm for the presented computations. The procedure fitOdeModel

is described in the report [9].

4. Results

Twenty data sets were independently generated by the technique described
in the previous section for each of the trophic functions ϕi, for each of the
values k = i, i = 1, 2 and for each of the variation coefficient values from
the set {0.2, 0.3, 0.4}. The parameters of the system (1) were estimated using
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Table 4. Characteristics of estimated parameters of the system (1) with
the trophic function (2), ϕ = ϕ2, k = 2.

Coef. of Var. Parameter Min Max Mean Median Orig. Value

0.2 r 4.9085 5.3743 5.03162 4.9954 5

K 59.9781 996.8408 536.0290 433.2503 300

S 13.3435 15.7721 14.6935 14.6941 15

a 0.008475 0.0120 0.009964 0.009860 0.01

κ 0.6754 0.8238 0.7244 0.7190 0.7

d 3.8631 4.5596 4.07960 4.04027 4

x∗ 6.4469 7.5550 6.9649 6.9645 6.9251

y∗ 5.7038 6.4327 6.03872 6.03350 5.9196

C∗

S
11.9209 12.5377 12.3048 12.3332 12.38233

0.3 r 2.7641 5.8616 5.1312 5.1714 5

K 64.4184 999.6789 745.4924 979.0528 300

S 13.3865 25.5353 16.6916 16.3931 15

a 0.004461 0.01131 0.008605 0.008602 0.01

κ 0.5771 0.8282 0.6856 0.6866 0.7

d 1.4987 4.5587 3.9844 4.08773 4

x∗ 3.6939 7.3532 6.6274 6.8422 6.9251

y∗ 4.2316 7.3433 5.6437 5.4995 5.9196

C∗

S
11.7194 14.1465 12.5383 12.4699 12.3823

0.4 r 0.7209 8.8331 5.4147 5.2630 5

K 219.3157 999.1424 804.2772 988.9057 300

S 2.09622 24.6375 17.3078 16.3516 15

a 0.005263 0.06712 0.01141 0.008943 0.01

κ 0.3952 0.9636 0.6613 0.6752 0.7

d 1.1449 5.0301 3.8762 3.9758 4

x∗ 4.5933 7.8663 6.5773 6.6754 6.9251

y∗ 3.7064 6.3016 5.1478 5.4117 5.9196

C∗

S
11.8585 13.7483 12.6261 12.5825 12.3823

the procedure fitOdeModel and the coordinates x∗, y∗ of the steady state to-
gether with the criterion of stability C∗

S
were computed for each of the data sets.

The values for the minimizing iterations were subjected to the restrictions:

0.1 < r < 15, 5 < K < 1000, 0 < S < 30, 0 < a < 10, 0 < κ < 1, 0 < d < 15.

Basic statistical characteristics of the estimates are summarized in the Tables 1–4.

The mean values and the medians of the parameters r, d, S, κ, a and of the
coordinates x∗, y∗ are sufficiently close to the true values. This optimistic obser-
vation is questioned by excessively out-lied extreme values of them. Moreover,
the estimated carrying capacity K is unacceptable high for both of the trophic
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functions with k = 2. Hence, an answer to the first question from the introduc-
tion should be that the relative deviations from expected values of populations
sizes for a reliable identification of parameters need to be smaller than the bio-
logically realistic ones. However, the parameters of the system (1) (with possible
exception of the carrying capacity K) may be estimated from field data provided
the community evolves according to the model.

Note also, that the range of estimated values increases with increasing coef-
ficient of variation in majority of cases. But such an anticipated property is not
true for all of the cases, for example, the range of estimated parameter d for the
model with ϕ = ϕ1, k = 2 for coefficient of variation equals to 0.4 is less than
the one for coefficient of variation equals to 0.2.

The value of the criterion C∗

S
is positive for all of the simulated data. There-

fore, our investigation allows the positive answer to the second question formu-
lated in the introduction.

5. Conclusions and directions for a future research

The provided work verifies that the R-language procedure fitOdeModel is
an appropriate tool for identifying parameters of the ODE model of a natural
process. In the particular case of the Gause-type predator-prey model (1), the
prey intrinsic growth rate r, the predator death rate d, the satiety level S of
predator, and the efficiency κ of processing destroyed prey by predator can be
estimated from field data under realistic mild assumptions. A problem arises
with identification of the prey carrying capacity K—it is not identified correctly
for the model with exponential trophic function ϕ2. This phenomenon may be
caused by the fact that the solution of the ODE system tends quickly to the
equilibrium value (cf. Figures 1 and 2) whose prey coordinate is far from the
carrying capacity. Hence a comparison of parameter identification for systems
with stable equilibrium point and with unstable steady state represents one line
for a subsequent research.

The location and the stability of the interior equilibrium is identified correctly
by the presented method. The question whether instability of steady state can be
also recognized correctly remains open and it will be dealt in a future simulation
study.

The presented results—identification of parameters from observed data—were
obtained under the assumption that the underlying deterministic process of
a natural phenomenon is known. But this need not be the actual case. Hence,
investigation whether the proposed methods of a model identification are able
to distinguish between two or more possible models of an observed ecological
community poses a challenge for a future work.
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CZ–611-37 Brno
CZECH REPUBLIC

E-mail : pink@mail.muni.cz

11

http://cran.uvigo.es/web/packages/simecol/vignettes/simecol-howtos.pdf
http://www.R-project.org

	1. Introduction
	2. Model
	3. Simulations
	4. Results
	5. Conclusions and directions for a future research
	REFERENCES

