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k-NEAREST NEIGHBOUR KERNEL DENSITY

ESTIMATION, THE CHOICE OF OPTIMAL k

Jan Orava

ABSTRACT. The k-nearest neighbour kernel density estimation method is a spe-
cial type of the kernel density estimation method with the local choice of the
bandwidth. An advantage of this estimator is that smoothing varies according to
the number of observations in a particular region. The crucial problem is how to
estimate the value of the parameter k. In the paper we discuss the problem of

choosing the parameter k in a way that minimizes the value of the asymptotic
mean integrated square error (AMISE). We define the class of the modified co-
sine densities that meet the requirements given by the AMISE. The results are
compared in a simulation study.

1. Introduction

The integral
∫
f(x) dx denotes the Riemann integral overR if it is not specified

otherwise.

Let X1, X2 . . . , Xn be independent, identically distributed random variables
with bounded continuous density f(x). The k-nearest neigbour density estimate
(in the rest of article we will call it KNN) proposed in [4] is given by

f̂KNN(x, k) =
1

nrn

n∑

i=1

K

(
x−Xi

rn

)
, (1)

where rn = rn(x) is a Euclidean distance between x and the kth nearest neigh-
bour of x among Xj ’s,

rn(x) = min
(
k, {|x−Xj |,where j = 1, . . . , n}

)
, (2)

where min(k,A) is the kth smallest member of the set A; K is a kernel function
which satisfies ∫

K(x) dx = 1,
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and k =
{
k(n)

}
is a sequence of positive integers with

k → ∞,
k

n
→ 0 as n → ∞.

The kernel function is usually chosen as a non-negative density function which
is symmetric about 0. This implies that the estimate of density using the global
kernel density estimation method defined in [7] will be the density itself. How-
ever, this is not valid for KNN method. The integral of KNN density estimate
is usually very close to 1, but it is not 1. The choice of kernel function does not
have a great influence on the final quality of the result. Kernel functions were
closely studied, e.g., in [7]. In this paper only Epanechnik kernel will be used

K(x) =

{
3
4
(x2 − 1) if x ∈ [−1, 1],

0 otherwise.
(3)

In the following theorems we will use notation

β2(g) =

∫
g2(x) dx, (4)

µ2(g) =

∫
x2g(x)(d)x. (5)

In the past, there has been extensive research on the properties of kernel
estimates. Several articles have been published on asymptotic properties, the
rate of convergence and consistency of the estimate (for example, see [1], [2], [3]
and [6]). The main object of this paper is to derive a practical method that could
be used for choosing the parameter k. The main idea is based on the paper [4],
where the asymptotic mean integrated square error is expressed. Minimizing this
error for a certain reference density will lead to the universal formula that can
be used for estimating the value of the parameter k.Theorem 1 (Mack and Rosenblatt). Let f be the bounded density function. The

kernel function K(x) is assumed to be bounded with
∫
|x|2|K(x)| dx < ∞,

∫
|x|K(x) dx = 0. (6)

Furthermore, let x be a point with f(x) > 0 and f be continuously differentiable

up to the second order in a neighbourhood of x. Then the asymptotic variance

and the asymptotic bias of the KNN estimate can be expressed as

V̂ar
(
f̂KNN(x)

)
=

2

k
β2(K)f

2(x) + o

(
1

k

)
. (7)

B̂ias
(
f̂KNN(x)

)
=

1

23

(
k

n

)2
µ2(K)

f ′′(x)

f2(x)
+ o

((
k

n

)2
+

1

k

)
. (8)
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P r o o f. See [4]. �

Since the asymptotic mean integrated square error (AMISE) is

AMISE(f̂) =

∫
V̂ar
(
f̂ (x)

)
+

∫
B̂ias

2
(f̂),

then using the notations (4) and (5) we get

AMISE(f̂KNN) =
2

k
β2(K)β2(f) +

1

64

(
k

n

)4
µ2
2(K)β2

(
f ′′

f2

)
. (9)

The value of k that minimizes AMISE(f̂KNN) can be expressed as

kAMISE = arg min
k=2,...,n

AMISE(f̂KNN)

= round


2n

4

5


 β2(K)β2(f)

µ2
2(K)β2

(
f ′′

f2

)




1

5


 . (10)

The value of kAMISE will be called k AMISE optimal. The proof can be done

easily by deriving AMISE(f̂KNN ) with respect to k and setting it equal to 0.

Since the expression for kAMISE depends on an unknown density function, it
cannot be used in practice. Our goal is to substitute the unknown density f with
a reference density that will allow us to estimate the value of kAMISE.

The value of the functional β2(f) can be easily computed for commonly used

densities, but the problem is to express the value of β2
(
f ′′

f2

)
. For commonly used

densities the value of this functional goes to zero, thus kAMISE goes to infinity.

We will attempt to develop a new type of density function that will give

us a non-zero value of β2
(
f ′′

f2

)
. The idea is to use the cosine density function

defined by

fcos(x) =

{
1
2
cos(x) if |x| < π

2
,

0 otherwise,
(11)

and cut out the edges of the function.

The question is how big a part of the edges should be cut out and how to
transform the new function into a density function. The solution of this problem
will be suggested in the next section of the article.

2. Class of modified cosine densities

The class of modified cosine densities is defined by
{
gl(x)

}
, l = 2, 3, . . . ,∞,

where

gl(x) =

{
1
2
D
σ
sin−1

(
π
2

l
l+1

)
cos
(
D
σ
x
)

if |x| < m,

0 otherwise,
(12)
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where

m =
π

2

l

l + 1

σ

D
,

parameters D and σ are positive integers. It can be easily showed that gl is
positive function with

∫
gl(x)dx = 1 for any positive l, D and σ, this implies

that gl(x) is a density function.Theorem 2. Let gl be a cosine modified density function defined in (12). If the
value of parameter D is

D =

(
π2

8

l2

(l + 1)2
− 1 +

π

2

l

l + 1
arctan

(
π

2

l

l + 1

))1

2

,

then the variance of gl(x) is given by Var(gl) = σ2.

P r o o f. The proof can be obtained by substituting D in expression gl(x) in

Var
(
gl(x)

)
=

m∫

−m

x2gl(x) dx.

�

Figure 1. Graphs of modified cosine densities with m = π/2 for different
values of the parameter l.

The modified cosine density can be taken as cosine density with cut edges.
The parameter l says how big a part was cut out. When l goes to infinity then gl
becomes identical to cosine kernel defined in 11.

The situation is illustrated in Figure 1. The flattest graph is the graph of g2,
the sharpest graph corresponds to g1000. We can see that the graph of g1000
resembles a cosine density, because only small part of the edges has been cut out.
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Now we can compute the values of functionals for the modified cosine density,
that we need for estimating kAMISE,

β2(gl) =
1

8

D

σ

πl + 2(l + 1) sin
(
π
2

l
l+1

)
cos
(
π
2

l
l+1

)

(l + 1)
(
1− cos2

(
π
2

l
l+1

)) , (13)

β2

(
g′′l
g2l

)
= 8

D

σ
sin3

(
π

2

l

l + 1

)
cos−1

(
π

2

l

l + 1

)
, (14)

β2(gl)

β2
( g′′

l

g2
l

) =
1

64

πl + (l + 1) sin
(
π l

l+1

)

l + 1

cos
(
π
2

l
l+1

)

sin5
(
π
2

l
l+1

) . (15)

We can see that the ratio (15) does not depend on the parameter D and even
more interestingly, it does not depend on the value of variance σ2. This means
that k AMISE optimal value of density from the modified cosine class does not
depend on the variance of unknown density.Theorem 3. Assume that all conditions of Theorem 1 are satisfied. Let K be

Epanechnik kernel defined in (3) and the density f be chosen from a modified

cosine densities class, then the estimation of k AMISE optimal value is given by

k̂AMISE = round
(
n

4

5C(l)
)
, (16)

where

C(l) =

(
15

2

πl + (l + 1) sin
(
π l

l+1

)

l + 1

cos
(
π
2

l
l+1

)

sin5
(
π
2

l
l+1

)
)1

5

. (17)

P r o o f. First of all we compute values of functionals

β2(K) and µ2(K)

for Epanechnik kernel

β2(K) =

1∫

−1

K2(x) dx =

1∫

−1

(
3

4

(
x2 − 1

))2
dx =

3

5
,

µ2(K) =

1∫

−1

x2K(x) dx =

1∫

−1

x2 3

4

(
x2 − 1

)
dx =

1

5
.
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Then by substituting (15) in (10) we get

k̂AMISE = n
4

5

(
1

2

πl + (l + 1) sin
(
π l

l+1

)

l + 1

cos
(
π
2

l
l+1

)

sin5
(
π
2

l
l+1

)
)1

5 (
β2(K)

µ2
2(K)

)1

5

= n
4

5

(
15

2

πl + (l + 1) sin
(
π l

l+1

)

l + 1

cos
(
π
2

l
l+1

)

sin5
(
π
2

l
l+1

)
)1

5

= round
(
n

4

5C(l)
)
.

�

Table 2 illustrates the behavior of functional C(l). We can see that C(l)
is a decreasing step function and that for increasing l the rate of decrease is
decreasing. It means a big increase of l causes only a small decrease of C(l).

Table 1. Values of functional C(l) for different l.

l 1 2 3 4 5 6 7

C(l) 2,38 1,87 1,67 1,56 1,48 1,43 1,38

l 8 9 10 102 103 104 105

C(l) 1,35 1,31 1,29 0,82 0,52 0,33 0,21

In Theorem 3 it was proved that estimation of k AMISE optimal depends
only on the size of a random sample n and on the parameter l. Thus we can use

k̂AMISE when estimating unknown density function. Since the value n is known,
l is the only value that has to be estimated. The parameter l represents a member
of the class of modified cosine densities.

2.1. Measuring the quality of result

The quality of estimated densities will be measured by integrated square error
(ISE)

ISE
(
f̂KNN(x, k)

)
=

∫ (
f̂KNN(x, k)− f(x)

)2
dx. (18)

For a better presentation we will use a natural logarithm of ISE in graphs. The
value k that minimizes ISE is given by

kopt = arg min
k=2,...,n

ISE
(
f̂KNN(x, k)

)
.

The parameter k-optimal will be called k-optimal value. ISE is minimized for
k = 2, . . . , n. If k = 1 then the denominator in (1) is equal to zero, for x = Xj

we get r1(Xj) = |Xj − Xi| = 0 as i = j. We do not take the value k = 1 into
account.
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Figure 2. Demonstration of dependence k̂AMISE on the parameter l (a)
size of the random sample is n = 200) and on the size of the random sample
n (b) the parametr l = 550).

Figure 3. Example of dependence of functional log10(ISEf̂KNN) on the
parameter k (part a), resp. on the parameter l (part b), for simulated data
from a distribution with the density function f6 defined in Section 3.

In Figure 3 we can see the example of functional log ISE for a random sample
of the size n = 100 from a distribution with the density function f6 (defined in
next Section 3).

The part a) illustrates dependence ISE on k. The red dashed line marks the
minimum of ISE. In our case the functional ISE is flat in the neighbourhood of
the minimum. If we manage to estimate k in this region, we get the result with
ISE that is close to the minimum value.

The part b) illustrates the dependence of ISE on l. The red dashed line marks
the minimum of functional ISE. We can see the functional is again flat in the
neighbourhood of the minimum, especially on the right side of the minimum,
but in this case it is much flatter than in the part a).
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It appears that if we transform the problem of estimating k into the problem
of estimating l, we can get better results making the same error when estimating
an unknown parameter. We need to realize this hypothesis is based only on the
observation of the functional ISE behavior. We will try to verify this hypothesis
in a simulation study in the next section of this article.

3. Simulation study

The simulation study is divided into two parts. In the first part we will com-
pare the quality of results of KNN estimate for different densities and for differ-
ent values of the parameter l. The main goal of the first part will be to propose
a concrete value of parameter l that will yield acceptable results for all tested
densities.

The second part of the simulation study will be dedicated to the comparison
of KNN method with two other kernel density methods.

In the simulation study we will use simulated data from six different distri-
butions with normal mixture densities:

1. standard normal f1 ∼ N(0, 1),

2. skewed data f2 ∼ 1
5
N(0, 1) + 1

5
N
(
1
4
, 4
9

)
+ 3

5
N
(
13
12
, 25
81

)
,

3. kurtotic unimodal f3 ∼ 2
3
N(0, 1) + 1

3
N
(
0, 1

100

)
,

4. asymetric bimodal f4 ∼ 4
5
N(0, 1) + 1

5
N(2, 1

25
),

5. symetric trimodal f5 ∼ 9
20
N
(
−7

4
, 1
)
+ 9

20
N
(
7
4
, 1
)
+ 1

10
N
(
0, 1

25

)
,

6. asymetric trimodal f5 ∼ 3
10
N
(
−2, 1

4

)
+ 3

10
N
(
7
4
, 1
5

)
+ 2

5
N(0, 2).

All densities are continuous with infinite support. Different unimodal, bimodal
and trimodal densities with high and low peaks were chosen.

3.1. Choice of optimal value of l

The Section 2 demonstrated that k AMISE optimal depends only on the
reference density function through the parameter l. Our hypothesis is that we
can choose one value of l that will be used while estimating all kinds of densities
and that can give us satisfactory results.

Random samples of size n = 50, . . . , 300 were simulated from the distributions
with densities f1, . . . , f6. The results of ISE were compared for l = 2, 3, . . . , n
for six different random samples, where each random sample belongs to different
distribution. Then the value of l was chosen that on average yielded the best
results for all densities. This step was repeated 1000 times.
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Figure 4. Graphs of densities used in the simulation study.

Figure 5. Box plots of values l, that minimized ISE for simulated data
with f1, . . . , f6 densities.

The box plot on the left in Figure 5 shows all 1000 estimated values of l that
minimized AMISE in the certain step of the simulation. The box plot on the
right is an enlarged box plot on the left side without extreme values.
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We propose to take a median of estimates of l as optimal value of l, so

lopt = 550, then k̂AMISE = round
(
0, 587 · n

4

5

)
. (19)

We will test this result in the second part of the simulation study.

3.2. Comparison of KNN estimate with other estimation methods

In this section we will compare the quality of results of KNN method using

kopt, KNN method using k̂AMISE, KNN method using k̂CVML chosen by cross
validation maximum likelihood method (for details see [5]) and the kernel density
method using the global smoothing parameter h estimated by the least squared
cross validation method (described in [7]).

Data were simulated from distributions with densities f1, . . . , f6; four different
sizes of random samples n = [50, 75, 100, 300] were chosen. The simulation was
repeated 1000 times.

Figure 6 shows the total overview of simulation results. Each box plot presents
results for simulated data from distribution with certain density fi and a ran-
dom sample size n. Four different methods mentioned above were compared. We
can see that only the ISE has decreasing tendencies for increasing n of all meth-
ods. When comparing KNN methods, the best results were achieved using kopt,

and not k̂AMISE. Surprisingly, the data driven method of the estimation k̂CVML

yielded worse results than the choice of k̂AMISE with fixed l in all cases.

As kopt cannot be used in practice, the k̂AMISE seems to be the best esti-
mated choice of the parameter k. Let us compare the quality of KNN method
with the classical kernel estimation method. The result varies for different den-
sities. Clearly, the classical kernel density estimation has better results for the
densities f1 and f2. These two densities are simple unimodal densities, so the
classical estimate method provides sufficient results. Estimating more variate
densities with high peaks f3 and f6 yields a converse result. The results for den-
sities f4 and f5 are quite similar and it is difficult to say which method yields
to better results in the sense of ISE.

On Figure 7 we can see an overview of all results for simulated data with all
six densities.

4. Conclusion

In this paper a method for estimating the value of k was proposed and tested
in a simulation study.

It is difficult to decide whether this method can be used in the practice or
not. We can only say that the KNN method has comparable ISE to the classical
method. There are big differences for various densities. In general, the KNN
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Figure 6. The box plots of log ISE(f̂i), for i = 1, . . . , 6. The notation
k ise represents the KNN estimation using kopt, k mcd represents KNN

estimation using k̂AMISE, k cvml represents KNN estimation using k̂CVML

and h cvls represents the classical kernel density estimate using h estimated
by the least square cross validation method. First four box plots correspond
to the same random sample of size n = 50, second four box plots correspond
to the same random sample of size n = 75, third four box plots correspond
to the samples of the size n = 100 and the last four have n = 300.

method gives better results for multimodal densities, densities with high peaks
etc. On the other hand, we can see that for simple densities these two KNN
methods give worse results. The simulation study also showed that for increasing
n the ISE of the estimate has decreasing tendencies for all compared methods.
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Figure 7. Total box plots of log ISE(f̂i), for i = 1, . . . , 6. Notation is the
same like in the Figure 6.

The conclusion is that for simulated densities the KNN method gave compa-

rable error. The advantage of estimating the value of k̂AMISE is that it is not
demanding in terms of a computing capacity. The KNN method uses a simple
expression that depends only on the size of a random sample.
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