VE RS\IT/{ TATRA
MOUNTaINS

Mathematical Publications

DOI: 10.2478/tmmp-2013-0036
Tatra Mt. Math. Publ. 57 (2013), 65-83

STEGANOGRAPHIC FILE SYSTEM
BASED ON JPEG FILES

MATUS JOKAY — MARTIN KOSDY

ABSTRACT. A steganographic system provides a hidden communication chan-
nel in background of a public channel. The existence of the hidden channel must
remain secret, i.e. the adversary cannot decide whether the public channel con-
tains any covert information or not. The public channel that is used in construc-
tion of a steganographic system can often be embedded in a static file (medium),
that is called a carrier (if the steganographic information is present). Most of the
current research focuses on a single medium. The most suitable types of media,
such as images or music files, contain a lot of redundancy. Small changes in the
redundant parts are not easily detected. However, new methods for the detection
of this information are developed along with the new algorithms for embedding
the hidden information. Our work describes a new steganographic system design,
where the hidden information is spread among many static images in a form
of a virtual steganographic filesystem. We note that the implementation of the
system must also take into account “steganographic side-channels”, i.e., some in-
formation channels that are present in the operating system (in our case Linux,
and Android) that leak information about the presence of the hidden channel.

1. Introduction

The steganography has advanced tremendously in the last decade. Currently,
there exist numerous sophisticated steganographic techniques of hiding the se-
cret data in the various kinds of cover media. [19] These methods can be also
used in a conjunction with the existing cryptographic tools to improve their
security [20].

In this paper we present the possibility of creating a virtual disk whose content
is stored within several cover files. We focus on the JPEG file steganography and

(© 2013 Mathematical Institute, Slovak Academy of Sciences.

2010 Mathematics Subject Classification: 68P30, 94B05, 94A08.

Keywords: steganography, file system, side-channels.

This material is based upon work supported under the grants VEGA 1/0173/13, VEGA
1/0529/13, APVV-0586-11 and NATOs Public Diplomacy Division in the framework of “Sci-
ence for Peace”, SPS Project 984520.

65

MATUS JOKAY — MARTIN KOSDY

the techniques ensuring that the hidden storage is uniformly diffused over the
entire set of the carrier files. This diffusion must be key-dependent so only the
legitimate user with knowledge of the key is able to extract the hidden storage
correctly. We present several methods of achieving this property and discuss their
advantages and disadvantages in connection with concrete implementations.

The structure of the article is as follows: firstly, in section 2l we provide a short
introduction to the steganography, which is followed by an overview of the ex-
isting steganographic techniques and the currently available stegosystems. In
section Bl we specify the requirements and the core features of the proposed sys-
tem. Later, in section @ we provide the design and the performance analysis
of our proposal. We also examine various system limitations and propose pos-
sible solutions. Finally, in section [6] we present the performance benchmarks of
the implemented system and conclude the overall contribution of our work.

2. Preliminaries

2.1. Modern steganography

A recent definition says that: “Steganography is the art of hiding the pres-
ence of communication by embedding secret messages into innocent, innocuous
looking cover documents, such as digital images, videos, sound files.” [§]

In other words, modern steganographic techniques are used to hide the content
of secret message in digital documents called cover files. Cover files containing
secret information are called carrier files.

In the past, steganography was often mistaken with cryptography and the first
stego techniques were considered as a part of cryptography. [I] The main differ-
ence between these two scientific disciplines is that cryptography aims to protect
secret message by its transformation in a way that can not be reversed without
the knowledge of the secret key. On the other hand the main goal of steganogra-
phy is to hide the secret message in cover medium that should not look suspicious
to the attacker.

According to [I1], steganographic systems can be divided into these groups:

1. Pure steganography,
2. Secret key steganography,
3. Public key steganography.

Security of the pure steganographic systems is based on two main assump-
tions. The first one states that the original cover medium cannot be publicly
known. If it was available to the attacker, the presence of the hidden message
in cover medium could be easily discovered. The second assumption states that
the embedding algorithm must also remain secret, since the embedding process

66

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

does not involve any kind of a secret key. This statement is in full contradiction
with the Kerckhoff’s principle.

It is always good to assume that the details of the stego algorithm are already
available to the attacker. Security of the system should rely on the secret key
which is known only to valid participants of the communication. In spite of the
fact that the steganographic system is compromised, when the presence of the
secret message is detected, the content of the hidden message should remain
secret until the correct key is used. In case of stegosystems, this property is
often achieved by the use of key-dependent permutations.

Similarly as in public key cryptography, public key steganography systems
were designed in order to avoid a problematic exchange of the secret key. Public
key is used in the process of embedding so anyone can hide some secret message
into the cover file, but only the legitimate receiver can extract the hidden message
using private key.

2.2. Existing steganographic systems

In this section we present a brief overview of existing steganographic utilities.
We are mainly focused on applications that utilize the image-based steganogra-
phy and tools that allow the use of multiple carrier files as a cover (or stego)
medium.

2.2.1. Systems working with a single cover file

There are dozens of stego tools allowing to hide a secret message in a single
carrier file. We are mainly interested in JPEG steganography, so here we present
a short list of tools that are, in our opinion, the most important from the his-
torical point of view.

JSteg: this is probably the first JPEG stego utility, it uses simple sequential
embedding [14].

OutGuess: uses PRNG to permute DCT coefficients and RC4 to encrypt
the hidden data [17].

Steghide: uses compression and encryption of embedded data. It also stores
checksums to verify the data integrity [15].

JP Hide & JP Seek: uses the Blowfish algorithm for least significant bit
randomization and encryption [16].

F5: implements matrix encoding to improve the efficiency of embedding and
employs permutative straddling to uniformly spread out the changes over
the whole steganogram [7].

67

MATUS JOKAY — MARTIN KOSDY

2.2.2. Systems working with multiple carrier files

A majority of currently available stego tools work only with a single cover file,
but there are also several tools that can handle multiple carriers. OpenPuff
[13] is a really interesting tool that supports various carrier formats (images,
audio/video files, SWF's, PDF's), is free and portable. It implements several layers
that handle encryption, scrambling, whitening and encoding of the hidden data.
The only disadvantage is that it does not provide a virtual disk functionality
and it allows to hide only one secret file. Of course, this issue can be overcome
by placing multiple secret files in a single archive file.

2.2.3. Steganographic filesystems

The first steganographic file system was proposed by Ross Anderson,
Roger Needham and Adi Shamir in [2]. The main purpose of this sys-
tem is to give the user a high level of protection against being compelled to
disclose its contents. In this system, a file can be delivered only to user who
knows its name and password. Moreover, an attacker can gain no information
about whether the file is present, even if he/she has a full access to the hard-
ware. This property is achieved by randomizing the entire partition and writing
the encrypted files to pseudo-random locations using a key derived from the file
name and directory password. Due to the fact that the encrypted files strongly
resemble the randomized sections of partition, there is no easy way to distin-
guish between unoccupied space and the actually encrypted file. One of the main
drawbacks of this approach is that the files can overwrite each other so they need
to be stored in multiple locations in order to minimize the probability of data
loss. This leads to poor read/write performance and reduced storage capacity.
Authors of [3] presented an implementation of steganographic file system for
Linux called StegFS. They extended the standard Linux file system (ext2fs)
with a plausible-deniability encryption function. The design of this hidden file
system was inspired by [2] but, as the authors claim, it is more practical and
efficient. Instead of using entire partition, they place the hidden files into unused
blocks of a partition that also contains normal files. They also use a separate

block allocation table in order to avoid collisions that lead to overwriting of the
hidden data.

3. Components of the proposed steganographic system

In this section we discuss various aspects of steganographic systems that need
to be considered. Then in next section we propose the design of a new stegano-
graphic system.

68

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

3.1. Pseudorandom permutations

The main purpose of a key-dependent permutation in our system is to achieve
that only the legitimate user with knowledge of the key can reveal the hidden
storage.

The permutation layer should also assure that the hidden data are not em-
bedded in carrier files sequentially in the order as they are stored in hidden
storage, but they should be uniformly distributed over the entire set of car-
rier files. This property should also help to defend the system against various
steganalytic techniques. [6]

Required properties of a permutation generator are:

1. Key dependency,
2. Fast computation,

3. Low memory footprint.

3.1.1. Affine cipher

The affine cipher is probably the simplest and the most efficient key-dependent
pseudo-random permutation. It works on exactly the same principle as the [in-
ear congruential generator (LCG), which is commonly used by most compilers
to implement the rand() function in their runtime libraries. Calculation of indi-
vidual elements is really fast and except the two coefficients it does not require
any additional memory.

According to [9], the individual elements of the permutation based on affine
cipher are calculated using following equation

p(x) =ax+b modm, ged(a,m)=1. (1)

Every change in coefficients a and b leads to a different permutation, so we can
think of these parameters as two parts of the key. The only thing we need to do
is to derive them from the master key. This can be done by splitting the binary
representation of the master key into two parts and calculating their congruent
values modulo m. To ensure that the function is bijective, a must be coprime
to m. The number of integers coprime to m in range < 1,m > is given by the
Euler’s totient function ¢(m). In order to maximize this number and also the key
space, we decided to choose m as a prime, so the number of possible values of a
is always equal to m — 1. In case that the input capacity is not prime, the closest
smaller prime is chosen to initialize this permutation. To achieve better diffusion
properties of this permutation it is also recommended to use only values within
the range < m/2,m — 1 > for both parameters.

The main drawback of this solution is quite small key space since there are
only (m — 1)m distinct values that can be used as a key and if we use only

69

MATUS JOKAY — MARTIN KOSDY

the values from the second half of the range, the number of possible keys will be
even smaller ((m — 1)m/4).

3.1.2. Feistel network

Feistel network provides an efficient solution for constructing an invertible pseu-
dorandom permutation from a pseudorandom function which does not need
to be invertible. In this work we are using cryptographically strong hash function
whose output values are precomputed and stored in memory in order to achieve
better performance. This approach is a bit slower than the affine cipher based
permutation, but it offers a significantly larger key space.

In this work we present two similar approaches on how to split a number into
two parts that are necessary for Feistel construction. [5] The first one, which is
depicted in Figure [Tl enciphers a number

x:aN+b€ZMN,(a€ZM,b€ZN). (2)

The second version, depicted in Figure [2] uses a slightly different representation
utilizing two different group operations in order to achieve better performance.
It enciphers a number in following form

x=a.2"4+b€ Zyan,(a € Zn,b € ZLan). (3)
z, z,
N a | + | b |
ky
e rh
| L]
k2
: K, :
B =
[][]

FIGURE 1. Numeric Feistel.

70

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

2" | a

[T,
|
o [oks b -

FIGURE 2. Mixed Feistel.

Both numeric division and multiplication by 2™ can be implemented using
single bitwise shift and the modular addition on the right side of Feistel network
can be replaced with operation xor which does not need to be followed by modulo
operation.

Neither these two constructions allow to use an arbitrary value as a size
of the permutation. Again, if the capacity of the storage can not be written
in a form which is specific for chosen construction, the closest smaller value
satisfying associated equation is chosen.

In order to achieve the smallest possible memory footprint and to minimize
the time needed for initialization of such a permutation, we decided to use
the balanced version of the Feistel network. As a result of this, the numeric
version is initialized with M = N = ,/c, where c is the required capacity.
The final capacity offered by this permutation is therefore equal to |/c]?,
in other words, it is the closest smaller (or equal) square to the required ca-
pacity. The approach used in the second presented Feistel construction utilizes
computation in different groups so in most cases it simply can not be balanced.
To achieve the smallest difference in sizes of these groups we decided to initialize
this permutation using following equations:

n=logy(c)/2, M= [c27"]

where c is the required capacity.
The final capacity cap offered by this permutation is therefore equal to

cap = 211082()/2] lc.2™ Uog2(c)/2jj . (4)

71

MATUS JOKAY — MARTIN KOSDY

In other words, it is the closest smaller (or equal) multiple of |log,(c)/2]th
power of 2.

According to [5], block cipher Feistell [M,N] : K x Zyn — Zyn has key
space

K = (foc(Zn,Zum)) (5)

where fnc(Zy, Zar) is the set of all functions from Zy to Zjs and r is the number
of rounds.

Applied to our system, where M = N = [y/c] and the round function
is a cryptographically strong hash function, the upper bound of the key

space is ([v/c]!)".
3.2. Virtual Disk

Almost every operating system provides a mechanism for adding support
for new hardware, that is often achieved by loadable kernel modules (LKM).
Windows and most current Unix-like systems support these modules, although
they may use different names for them. In Windows they are called kernel-mode
drivers, in OS X they are known as kernel extensions (kext).

This way we could implement a loadable kernel module that would offer a vir-
tual disk functionality. However, the presence of such a module may cause sus-
picion that there is also some hidden storage present in the files on hard drive.
Another disadvantage of this solution is that kernel modules can be loaded only
by users with root privileges. Proper implementation of these modules is also
a quite difficult task.

To avoid all these issues we examined alternative techniques of providing
virtual drive functionality, that are presented in following paragraphs.

In Unix-like systems, there is a possibility of creating a loop device, which is
a pseudo-device that makes a file accessible as a block device. In case that this
file contains an entire file system, it can be mounted as if it was a disk device.
It is often used for mounting CD or DVD images.

This way, we could extract the entire content of hidden storage to temporary
file and attach it as a loop device, but we wanted to avoid creating temporary
files on hard drive in order to achieve better performance and also to prevent
other possible side channel attacks.

There is also a possibility to create a virtual file system provided by FUSE,
which is an acronym for Filesystem in Userspace. It is a loadable kernel module
that lets non-privileged users create their own file systems. This is achieved
by running the file system implementation code in user space while the FUSE
module provides a bridge to the actual kernel interfaces [10].

This module allows us to create a virtual file system containing single disk
image file that can be later attached as a loop device. Content of this file is
provided by our application using FUSE callback methods, so it can be stored

72

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

in system memory. Moreover, it can be dynamically extracted from carrier files
during each read attempt and analogically embedded into carrier files on every
single write attempt. This technique is also used by TrueCrypt to create a virtual
encrypted volume so we decided to utilize the same approach.

3.3. Key generation

One of the main requirements for the permutation is key-dependency. Every
change of a bit in the key should lead to generation of a different permutation.

Another thing to consider is which parameters should be used for generation
of the master key. This key is later used to derive subkeys for specific permutation
generators.

Possible parameters that could be involved in master key generation:

e User-entered password,

e Names of carrier files in alphabetical order,

e Relative paths to carrier files in alphabetical order,

e Names of other files (not carrier files) in selected directory,

e Carrier-specific data (EXIF data in JPEG files, ID3 tags in mp3 files, ...),

e Capacity offered by individual carriers,

e Checksums or hash values of individual carriers computed without bits

which are used for data embedding.

Parameters that should not affect the master key generation:

e Absolute paths to carrier files,

e Time attributes of carrier files,

e Checksums or hash values of individual carriers.

If we used absolute paths to carrier files, it would be almost impossible
(or at least not practical) to mount the system from other location as that
which was used at the time of hidden storage creation.

In this context, the main reason why we decided not to use time attributes
as input for key generation is that it would cause similar issues when the user
wants to transfer his hidden storage to another location or send it to another
legitimate user.

There is no doubt that checksums or hash values of individual carrier files

should not be used in master key generation, just because it would make the
system unusable.

The list of parameters we decided to use in master key generation:
e User-entered password (optional parameter),
e Relative paths to carrier files in alphabetical order,

e Capacity offered by the individual carriers.

73

MATUS JOKAY — MARTIN KOSDY

In order to avoid the possible steganalytic attacks that may exploit some
statistical properties in a case that the same permutation was used within the
several carrier files with the same capacity, we decided to initialize every local
permutation with a different subkey. Since these subkeys are derived from the
master key, every parameter that affects the master key also affects the individual
subkeys.

In order to achieve required properties of the master key, we decided to use
hash function in the key derivation process. We have chosen the Keccak [4]
sponge function which is current winner of the last NIST hash function compe-
tition so it has been selected as a new standard known as SHA-3.

3.4. Side channels

Even if we used a visually and statistically undetectable steganographic
algorithm (currently there is no known algorithm for which the statistical
undetectability is proven), we should examine possible leaks of side channel
information that could help an adversary reveal the hidden storage.

3.4.1. Time attributes

In the UNIX-like environment, each file has three time stamps associated with it:
its access time (atime), its modification time (mtime), and its attribute modifi-
cation time (ctime). [12] Attributes mtime and atime can be modified by system
call touch or system function utime. The problem is only with the attribute ctime
which is changed by operating system when the inode of the file is modified.
This one cannot be modified by any system call without unmounting file system
or changing system time.

In case that the timestamps of individual carriers were modified during
embedding process, it would be really easy for an adversary to identify those files.

3.4.2. Memory buffers

Every buffer stored in memory containing some sensitive data should be
overwritten by random data before its deallocation. It does not matter whether
the buffer stores encrypted or unencrypted data, keys in raw form or the hashed
version of the password. All these kinds of information can be potentially
exploited by an attacker in case they are not properly destroyed when the ap-
plication exits.

74

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES
4. Design and performance analysis

In this section, we present two slightly different architectures. They share the
majority of the code located in individual layers, but those layers are stacked in
a different order. As a result of this, these two architectures vary in important
properties such as memory footprint, I/O vs. mount/unmount performance and
so on. The order of layers in the first version (Figure [3)) reflects the process of
adding new features during the work on this paper. The purpose of designing
second architecture (Figure []) was to achieve better performance and lower
memory footprint so we will call it optimized version.

". 6 1/0 OPERATIONS ==

Virtual Disk File

‘ ‘ Virtual Disk
‘ FUSE Driver
|
|

Big Permutation on Small Blocks ‘

Encoder ‘

‘ Carrier Files Manager ‘

‘ Small Permutation on Large Blocks ‘

ClBuffer 1 [7Buffer 2 ["UiBuffer N[
CarrierFile CarrierFile CarrierFile
Embedder 1 Embedder 2 Embedder N

MOUNT/UNMOUNT OPERATIONS

FicURE 3. The first version of steganographic system design.

In the diagrams we divided layers and blocks into two parts. The first part
contains layers and blocks involved in mounting and unmounting. Each of these
operations is executed only once, when the user wants to reveal his/her hidden
file system and when he/she wants to finish working with his/her hidden data.
The second part contains blocks and layers responsible for I/O operations, which
are executed during each read/write attempt.

As it is shown in Figure Bl this version keeps the main part of computation
on the I/O side. This solution has potentially negative effect on I/O perfor-
mance. On the other hand, it provides the way how the memory footprint and
mounting/unmounting times can be minimized.

While designing this version, we wanted to create a system that would be
able to handle gigabytes of data contained in the hidden storage. Such a system

75

MATUS JOKAY — MARTIN KOSDY

‘ \3 1/O OPERATIONS ‘ ==

[Longs Chevion Virtual Disk

l FUSE / Driver

‘.'.:'.{ Virtual Disk Buffer e
Permutation
Carrier File Manager
Encoder Encoder Encoder
Permutaion Permutaion Permutaion
CarrierFile CarrierFile CarrierFile
Embedder 1 Embedder 2 Embedder N
MOUNT/UNMOUNT OPERATIONS

FI1GURE 4. The optimized version of steganographic system design.

must be able to dynamically load and store data contained in carrier files during
I/O operations in order not to store whole storage in RAM. Dynamic caching
like this could work if the hidden data was written in carrier files sequentially
in natural order. But the another requirement for our system says that the data
should be permuted in order to achieve diffusion, which is the exact contradiction
of previous requirement. In case we used a good permutation to diffuse hidden
data between carrier files, almost every 1/O attempt would lead to reading and
writing every single carrier file. If the read and write operations need the JPEG
file to be decompressed and compressed again, this would lead to unacceptable
performance penalty.

On the other hand, in the real world situation, if the user wanted to create
a hidden storage with capacity in gigabytes, the overall size of the carriers re-
quired to store its content would be in hundreds of gigabytes. This scenario is
very unlikely to happen so in the most cases the capacity of RAM should be
sufficient to store entire hidden storage in memory.

Another advantage of this solution is in its versatility. Layers that handle
I/O operations (like encoder and permutation) can share the same interface so
they can be stacked in various combinations and read/write operations could
be represented as streams. The bad thing is that every added layer comes with
significant performance penalty.

After several optimizations of the first version we decided to make some
changes in the architecture, that will lead to better performance. As it is shown
in Figure @ we moved the whole computation part into the mount/unmount
phase.

76

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

We relocated the coding layer into individual carrier file embedders where we
also placed an another key-dependent permutation. Such modification makes the
architecture of the bottom three layers similar to existing single-file embedding
algorithms like F'5 [7].

It also makes it easier to implement another embedding algorithms that may
use completely different coding techniques or data diffusion methods since the
use of local permutation and encoder is optional.

In the next parts of this section we will describe individual parts of the system.
We will focus only on the optimized version of architecture in the next parts
of this work.

4.1. Carrier File Manager
Carrier files manager handles following tasks:

e Directory content enumeration,
e Creating and handling CarrierFile instances,
e Master key generation,

e Deriving subkeys for individual CarrierFile instances,

4.2. Carrier file

Steganographic embedding is specific for every single carrier file format so
we decided to place the embedding algorithm in objects that share the same
interface. In other words, Carrier file is an object responsible for embedding and
extracting data from single carrier file. Each supported file format has its own
derived Carrier file object, so it is easy to extend the application by supporting
various file formats and different stego embedding algorithms. In this work we
have implemented two objects for handling BMP and JPEG files. Both use the
permuted LSB method for embedding that is used in connection with Hamming
encoder. This solution allows to use different encoder for every single file loaded
in carrier files manager, but it is also possible to use single shared encoder.
Permutation object needs to be created for each Carrier file instance separately
due to the fact it has to be initialized with a particular subkey.

4.3. Encoder

This part of system allows to use coding of data during embedding process
in order to minimize the number of changes in carrier file. Encoder provides the
interface for coder initialization, accessing the block size information and for
encoding and decoding data during the process of embedding or extraction. The
only encoder implemented in this work is the Hamming encoder. [I8] This class
also affects the capacity of the medium, because the encoder works with blocks
of size which is specific for each code.

7

MATUS JOKAY — MARTIN KOSDY

4.4. Permutation

As it is shown in Figure [this architecture incorporates permutations at two
different places. There is one local permutation for each carrier file embedder
and one global permutation that permutes bytes of main storage buffer.

Global permutation operates on positions of bytes in main data buffer. This
module ensures that the bytes of hidden storage that are stored in a sequence
one after another will be stored in different carrier files.

The main purpose of permutations that belong to carrier file embedders
is to avoid extraction of data stored in individual carriers without knowledge
of the key. It should also help with defending individual carriers against
steganalysis.

The size of permutation depends on the algorithm used for its generation,
so it does not have to be the same number as the input capacity, but if they
are not equal, the size of permutation is always smaller than input capacity.
This is another module which affects the overall medium capacity.

4.5. Virtual disk driver

Virtual disk driver is used to create a buffer used to store the content
of the hidden storage in system memory. It is the last platform independent part
of the system. On the UNIX-like systems as Mac OS X or Linux, this class is
directly connected to FUSE I/O callbacks.

4.6. FUSE

FUSE is used to provide a virtual file system containing one single file - virtual
disk image. This file is later attached as a virtual disk, which can be partitioned
and formatted with any file system that is supported by operating system.

5. Performance testing

The benchmarking was performed on a MacBook Pro with 2.4 GHz Intel
Core 2 Duo processor. The machine was equipped with 8GB (1066 MHz DDR3)
RAM and 500GB SATA2 7200RPM hard drive with 16MB cache. All pictures
used in this test were captured by digital camera with the same quality settings
and resolution (2592 x 1936).

5.1. Permutations

We presented two different permutation generators. Both of them were im-
plemented in two slightly modified versions, so in fact, we had four different
implementations to compare. Permutation generation consist of two phases.

78

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

The first one, initialization, is performed only once and its performance is
depicted in the Figures[Bland[7l Another operation we are interested in is the cal-
culation of the individual permutation elements. During the extraction, this op-
eration is performed for each permutation element once, during the embedding
it needs to be performed twice. Its performance is depicted in the Figure
From the users’ point of view, the most important is the overall computation
time which involves both, the initialization and the generation of the whole
permutation. It is shown in the Figures [6] and [§ The slowest implementation
is a 64-bit version of the Affine cipher. Unfortunately, it was caused by the
non optimal compiler implementation of the modular multiplication algorithm.
Other implementations utilize only the computations with the constant time
complexity.

250

224
— 200 184
“w
£
@
£ 150
k-
[
2
100
]
=
£
£ 50
0.04 0.04
0
Mixed Feistel Numeric Feistel Affine Cipher 32 Affine Cipher b4

FI1GURE 5. Initialization time of the permutation with size 100M.

600 550

500
=
£
g 400
k-
§ 300
3
2 200
8 B3

100 55

[!
, R —
Mixed Feistel Mumeric Feistel Affine Cipher 32 Affine Cipher 64

FI1GURE 6. Calculation time of the single element of the permutation with
size 100M.

79

MATUS JOKAY — MARTIN KOSDY

5.2. Overall performance

The most time consuming operations in the process of (un)mounting are the
reading and writing the carrier files followed by their (de)compression in case
of JPEG files. As a result of this, the selection of the permutation does not
have a significant impact on the overall system performance. As it can be seen
in the Figure[d the overall loading/saving time increases linearly with the system
capacity. This benchmark was created using the Mixed Feistel permutation and
the Hamming code (7,4). Obviously, working with bitmaps takes a significantly
shorter amount of time due to the compression and decompression that needs
to be performed in the case that the JPEG files are used.

700
600
500
400
300

200
100 Affine Cipher

s Mixed Feistel

== Numeric Feistel

Initialization time [ms]

10k 100k 1M 10M 100M 1G6
Permutation size

FIGURE 7. Comparison of the permutation initialization time.

e Mixed Feistel
sl Numeric Feistel

Affine Cipher 32

Overall permutation
calculation time [s]

e Affine Cipher 64

ce8888E8ZE8E

10k 100k iMm 10M 100M 1G

Permutation size

FIGURE 8. Comparison of the overall permutation calculation time.

80

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

600
500
e -
'_: 400 JPG - Load
— - -
2 100 JPG - Save
E 200 BMP - Load
100 g BMP - Save
0
0 500 1000 1500 2000

Overall size of carriers on disk [MB]
FIGURE 9. Loading and saving of the hidden storage.

5.3. Capacity

As it is shown in Table[(.3] there is not much difference in a capacity offered by
our implementations of the JPEG and BMP embedders. Obviously, the selection
of the Hamming code used during embedding has a significant impact on the
resulting storage capacity. All capacities are in megabytes.

TABLE 1. Capacity of the system composed by cover files with the overall

size 1GB.

Hamming code | JPEG | BMP
(7,4) 47.3 46.6

(15, 11) 315 | 31
(31, 26) 19.7 19.4
(63, 57) 11.8 11.6
(127, 120) 6.9 6.8
(255, 247) 3.9 3.9

6. Conclusion

In this work we were dealing with the steganographic techniques for embed-
ding the secret data in the image files. The primary goal was to design and
implement the steganographic layer based on the JPEG files, that can be used
directly as the virtual disk or in a connection with existing disk encryption
solutions as a hidden storage medium. We carried out an analysis of existing

81

MATUS JOKAY — MARTIN KOSDY

solutions allowing to embed secret messages in JPEG files and existing stegano-
graphic file systems. We were also dealing with various techniques of spreading
hidden data within the multiple carrier files.

Thanks to the modular architecture of our system, it can be easily extended
with new embedding algorithms, coding techniques, permutation generators or
other new functionality. Using this approach we prepared the future investigation
of various techniques involved in the steganographic file system. Steganalysis
of the proposed system is also one of the possible further activities.

1

[2

3

[4

o E

=

9

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

82

REFERENCES

JOKAY, M.— MORAVCIK, T,: Image-based JPEG steganography, Tatra Mt. Math.
Publ. 45 (2010), 65-74.

ANDERSON, R.—NEEDHAM, R.—SHAMIR, A.: The steganographic file system, in:
Information Hiding, Second International Workshop, IH’ 98, Portland, Oregon, USA, April
15-17 (Aucsmith, D. ed.), LNCS Vol. 1525, Springer-Verlag, 1998, pp. 73-82.
MCDONALD, A. D.—KUHN, M. G.: StegFs: A steganographic file system for Linuz,
(A. Pfitzmann ed.), in: LNCS Vol. 1768, Springer-Verlag Berlin, 2000, pp. 463-477.
BERTONI, G—DAEMEN, J—PEETERS, M.—VAN ASSCHE, G.: The Keccak refer-
ence, NIST SHA-3, 2011 (submission).

TUNG HOANG, V.—ROGAWAY, P.: On generalized Feistel networks, in: Proceedings
of the 30-th annual conference on Advances in cryptology (CRYPTO’10), (Tal Rabin, ed.)
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 613—630.

BATEMAN, P.: Image Steganography and Steganalysis, Diploma thesis, Faculty of Engi-
neering and Physical Sciences, University of Surrey, Guildford, 2008.

WESTFELD, A.: F5—a Steganographic Algorithm: High Capacity Despite Better Ste-
ganalysis, in: 4-th International Workshop on Information Hiding, 2001.

NAG, A.—SINGH, J. P—KHAN, S.—GHOSH, S.—BISWAS, S.—SARKAR, D.—
SARKAR, P. P: A Weighted Location Based LSB Image Steganography Technique, in:
Advances in Computing and Communications, ACC 2011 Conference Communications in
Computer and Information Science, Vol. 191, Springer-Verlag, Berlin, 2011, pp. 620-627.
GROSEK, O.—VOJVODA, M.—ZAJAC, P.: Classical Ciphers, Faculty of Electrical En-
gineering and Information Technology, Slovak University of Technology, Bratislava, 2007.
CHANG, K.: Knowledge file system in: A Principled Approach to Personal Information
Management, 2010, IEEE International Conference on Data Mining Workshops, 2010.
KATZENBEISSER, S.: Information Hiding Techniques for Steganography and Digital
Watermarking, Artech House Publishers, London, 1999.

FREE SOFTWARE FOUNDATION, INC.: The GNU C Library Manual: File Times,
2013, http://www.gnu.org/software/libc/manual/html_node/File-Times.html.
OLIBONI, C.: OpenPuff, http://embeddedsw.net/OpenPuff_Steganography_Home.html|
PAUL, H—UPHAM, D.: JSteg, http://zooid.org/~paul/crypto/jstegl

HETZL, S.: StegHide, http://steghide.sourceforge.net,

LATHAM, A.: JP Hide & JP Seek, http://1inux01.gwdg.de/~alatham/stego.html|
PROVOS, N.: OutGuess, http://wuw.outguess.org,

http://www.gnu.org/software/libc/manual/html_node/File-Times.html
http://embeddedsw.net/OpenPuff_Steganography_ Home.html
http://zooid.org/~paul/crypto/jsteg
http://steghide.sourceforge.net
http://linux01.gwdg.de/~alatham/stego.html
http://www.outguess.org

STEGANOGRAPHIC FILE SYSTEM BASED ON JPEG FILES

[18] ZHANG, W.—ZHANG, X.—WANG, S.: Mazimizing steganographic embedding efficiency
by combining Hamming Codes and Wet Paper Codes, in: Information Hiding, 10th Inter-
national Workshop, 2008, pp. 60-71.

[19] CHANDRAMOULI, R—KHARAZZI, M.—MEMON, N.: Image steganography and ste-
ganalysis: Concepts and practice, in: International Workshop on Digital Watermarking,
2003, (T. Kalker et al. eds.) LNCS Vol. 2939, Springer-Verlag, Berlin, 2004, pp. 35-49.

[20] ZAJAC, P.: Remarks on the NFS complexity, Tatra Mt. Math. Publ. 41 (2008), 79-91.

Received September 6, 2013 Department of Applied Informatics and
Information Technology
Faculty of Electrical Engineering and
Information Technology
Slovak University of Technology
Ilkovicova 3
SK-812-19 Bratislava
SLOVAKIA

E-mail: matus.jokay@stuba.sk
xkosdy@stuba.sk

83

	1. Introduction
	2. Preliminaries
	2.1. Modern steganography
	2.2. Existing steganographic systems

	3. Components of the proposed steganographic system
	3.1. Pseudorandom permutations
	3.2. Virtual Disk
	3.3. Key generation
	3.4. Side channels

	4. Design and performance analysis
	4.1. Carrier File Manager
	4.2. Carrier file
	4.3. Encoder
	4.4. Permutation
	4.5. Virtual disk driver
	4.6. FUSE

	5. Performance testing
	5.1. Permutations
	5.2. Overall performance
	5.3. Capacity

	6. Conclusion
	REFERENCES

