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ROTATIONAL CRYPTANALYSIS OF GOST

WITH IDENTICAL S-BOXES

Pavol Zajac — Michal Ondroš

ABSTRACT. Rotational cryptanalysis was introduced by Khovratovich and Ni-
kolić as a tool to analyse ARX-type cipher designs. GOST 28147-89 is a former
Soviet Union cipher standard based on a Feistel construction with 32 rounds.
Each round function adds the round key modulo 232, transforms the result with
4-to-4 bit S-boxes, and rotates the output. We apply the rotational cryptanalysis

to a version of GOST using eight identical S-boxes, such as GOST-PS. We show
the existence of (practical) rotational distinguisher in related key model for full
GOST. Furthermore, there is a set of weak keys (rotationally symmetric keys)
that enables rotational attacks in single-key model as well. Finally, we show a
simple attack on the last round that uses the rotational distinguisher to reduce
the complexity of the full GOST to 208 bits.

1. Introduction

GOST 28147-89 is a former Soviet Union cipher standard [12]. It has
a 64-bit block, and 256-bit key. Due to its simple structure it is very suitable
for lightweight implementations. Until GOST was submitted to ISO for stan-
dardization in 2010, the published cryptanalytic results about GOST were very
sparse. However, after getting a stronger attention of professional cryptogra-
phers, many new results that show various weaknesses of the algorithm have
been published [1–4, 6]. The best attacks are still impractical, but they signifi-
cantly reduce the expected security level of the cipher.

In our recent analysis [13], we have focused on the resistance of GOST against
generic algebraic attacks. In this article we focus on the rotational cryptanalysis
of GOST. Rotational cryptanalysis is a tool introduced by K h o v r a t o v i c h
and N i c o l i ć in 2010 [7] to study ARX designs submitted to SHA-3 competi-
tion.
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Although GOST is not an ARX design, we can transform it to ARX construc-
tion by removing S-boxes. Moreover, if all eight S-boxes in GOST realize the
same permutation, GOST’s round function becomes almost rotationally invari-
ant (except the key addition). The results obtained from analyzing GOST with-
out S-boxes then apply also to the case with a single type of S-box for rotational
amounts that are multiples of 4.

We analyse the security of the selected variants of GOST in the related key
model. Our model requires that each of eight 32-bit subkeys of the key in two
instances form rotational pairs. The probability of obtaining a valid pair of
related keys in practice is very small, but the results can be exploited by attacks
on hash modes of GOST, when the attacker controls the key as well. Moreover,
the results also hold for a class of keys that are rotationally self-similar, i.e.,
these keys that remain the same after rotating its 32-bit parts (using the same
rotational amount). If a key from this class is used, it can be detected by the
attacker using the rotational distinguisher.

In the first part of the article we summarize the preliminaries: we present
in more details GOST, and rotational cryptanalysis, respectively. Our analysis
is covered in Section 3, which is split into three principal parts. In Subsec-
tion 3.1 we start with the analysis of a generic model without S-boxes, and with
independent subkeys. We focus on properties of Feistel networks which have
rotationally distinguishable round functions. In the following Subsection 3.2,
we present our main result. We derive the formula for rotational probability of
the scheme with reused subkeys. This probability is significantly higher than
in the case when encryptions are completely independent. Finally, in Subsec-
tion 3.3 we apply the results to GOST with eight S-boxes realizing the same
permutation. In the final section, we summarize the results, and present some
recommendations for GOST implementers.

2. Preliminaries

In this section we summarize the basic notions about rotational cryptanalysis,
and about the block cipher GOST, along with our notation used in the rest
of the article.

2.1. Rotational cryptanalysis

Let us consider an algorithm that processes bit vectors of fixed length n > 0.
Let r > 0 be an integer, and let a, b denote dually two n-bit unsigned integers,
as well as their n-bit vector representation (in base-2, big endian).
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ARX encryption scheme consists of only three types of operations:

1. Addition, ADD — addition of two arguments as integers without carry
(modulo 2n), denoted by a+ b;

2. Rotation, ROT — rotation of the (n-bit vector) argument by a specified
amount r, denoted by a ≪ r;

3. XOR — bitwise modulo 2 addition of the two bit-vector arguments,
denoted by a⊕ b;

Let hir(a) = �a/2n−r� denote the first (most significant) r bits of a, and
let lor(a) = a mod 2n−r denote the remaining bits of a. The rotation can be
expressed as

a ≪ r = lor(a)2
r + hir(a) ,

i.e., the upper and lower part of a are swapped. It is also possible to define
a complementary operation ≫, that is a rotation in the opposite direction
(towards the least significant bit). This operation is however unnecessary as
a ≫ r = a ≪ (n − r). If r is a fixed constant, we will call it a rotational
amount. In this case we will also simplify the notation by writing ←−a = a ≪ r.
A pair of vectors (a,←−a ) is called a rotational pair.

Rotational cryptanalysis was introduced by K h o v r a t o v i c h and N i c o l i ć
in 2010 [7], as a tool to analyse ARX schemes. Rotational cryptanalysis studies
the (rotational) response of the (ARX) encryption scheme to the rotation of
inputs. We suppose that the attacker encrypts rotational pairs of inputs (all
input n-bit vectors are rotated by the rotational amount), and then observes the
(statistical) properties of the corresponding pairs of outputs (considered as sets
of n-bit vectors).

The encryption scheme is secure only if the attacker cannot distinguish,
whether the outputs were produced by the encryption scheme, or by a ran-
dom permutation (or a random function, depending on the model). In the ideal
case, the outputs of two encryptions (with rotated inputs) must be independent,
and taken uniformly from a set of all possible vectors. For each output vector
there is a single rotated output vector (we remark that rotational amount r is
fixed). Therefore a pair of outputs, in ideal case, is a rotational pair with the
probability 2−n.

The rotational cryptanalysis is particularly useful against ARX schemes. The
main observation is that operations ROT and XOR preserve rotational pairs,
i.e., if all inputs of these operations are rotational pairs (input-wise), then also
the outputs form a rotational pair. The operation ADD preserves a rotational
pair with a relatively high probability (depending on the rotational amount) [7]

pr = Pr(
←−−−
x+ y =←−x +←−y ) = 1/4(1 + 2r−n + 2−r + 2−n) . (1)
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Therefore, if we analyze ARX schemes with a low number of additions,
we may find that the expected probability of rotational outputs is higher than
in the ideal case.

Another observation used in [7], and even more in [8], is that even if the
addition does not preserve the rotational pair, the rotational error (or difference)

(
←−−−
x+ y)⊕ (←−x +←−y )

has a relatively low Hamming weight (with high probability). Rotational errors
can also be caused by the addition (or xor-ing) of constants in the encryption
scheme. The full rotational analysis of the ARX scheme with constants tries to
compensate these rotational errors against each other. We remark that in our
analysis we do not study rotational errors. The actual attacks that take rotational
errors into account might be stronger than the attacks presented in this paper.

2.2. GOST

Block cipher GOST [5,12] is a Feistel cipher with 32 rounds. Its block size is
64 bits, and key-size is 256 bits. Let Li, Ri denote two 32-bit halves of the input
block of the ith round, i ≥ 1, and let Ki denote the 32-bit expanded key for the
ith round. The input of the next round is computed as

Li+1 = Ri,

Ri+1 = Li ⊕ (S(Ri �Ki) ≪ 11
)
,

where ⊕ denotes XOR (modulo 2 addition of individual bits), �1 denotes addi-
tion modulo 232, ≪ denotes the (left) bit rotation, and S denotes the applica-
tion of 8 parallel 4-to-4-bit S-boxes. The scheme of the encryption is depicted
in Figure 1.

The key expansion of GOST is very simple: 256-bit key is split into eight
32-bit wordsK0,. . . , K7. Subkeys for rounds 1−24 are simply Kr= K(r−1 mod 8),
where r denotes the round number. For the last 8 rounds, the parts of the key
are used in the reverse direction, i.e., Kr = K(32−r mod 8).

The GOST standard [12] does not prescribe a fixed set of S-boxes (although
some default sets were published in [10]). If we replace all S-boxes by identity,
we get an ARX scheme without constants, and with a relatively low number
of additions. We can thus directly apply the techniques of rotational crypt-
analysis to study the properties of this encryption scheme. We show, that the
probability to obtain rotational pairs of outputs cannot be directly computed
from the number of addition, but it is higher due to the effects of the GOST’s
weak key schedule.

1We use the � notation in this section only to maintain correspondence with Figure 1, otherwise

we will use just +.
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Figure 1. The scheme of the block cipher GOST.

In Section 3.3 we also study the case when all eight S-boxes realize the same
permutation. Although this is not (directly) an ARX scheme, the rotational
pairs on the input of the S-box layer are preserved, if the rotational amount is
a multiple of 4.

3. Rotational cryptanalysis of GOST with and without
S-boxes

Let us first consider a modification of GOST with omitted S-boxes (each
S-box is replaced by identity mapping). This is an ARX design, with the only
source of non-linearity provided by key-additions in round functions. The key
addition is also the only source of rotational errors.
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We work in a model with related keys. Rotational pairs are defined over
sets of 32-bit vectors that consist of two halves of the input block, two halves
of the output block, and 32-bit parts of the key, respectively. The attacker en-
crypts plaintext P = (PL|PR), with an unknown key K = (K0|K1| · · · |K7), 2

and obtains ciphertext C = (CL|CR). The attacker can then encrypt the ro-

tated plaintext
←−
P = (

←−
PL|←−PR), using a related (but still unknown) key

←−
K =

(
←−
K0|←−K1| · · · |←−K7), obtaining ciphertext C′ = (C′L|C′R). The cipher preserves the

input rotational pair if C′ =
←−
C , that is if C′L =

←−
CL, and C′R =

←−
CR.

For an ideal cipher with encryption function E, the cipher outputs are essen-

tially independent random values. Thus pr(E) = Pr(
←−−−−
EK(X) = E←−

K
(
←−
X ) = 2−n,

as there is a single n-bit value which is a rotation of Y = EK(X). Similarly, if the

output block is divided intom n-bit vectors, then Pr(
←−−−−
EK(X) = E←−

K
(
←−
X ) = 2−mn.

In this section we study the probability, that GOST preserves rotational pairs
(for a fixed rotational amount r), that is

pr(GOST ) = Pr
(←−−−−−−−−
GOSTK(P ) = GOST←−

K
(
←−
P )
)
,

under a uniformly random choice of K, and P . We show that this probability
is significantly higher than 2−64 (the ideal case), if all S-boxes of GOST realize
the same permutation.

3.1. Random subkeys

Let us consider encryption of a rotational pair (L|R), (
←−
L |←−R ) by a Feistel

scheme with independent round functions F . Let us denote the probability that
the round function preserves a rotational pair constant for each round by pr(F )
(if r is understood, we can omit it). We first consider that these probabilities are
independent of each other. This is a reasonable approximation, if we consider
that round function depends in a complex way on subkeys, and if these subkeys
are independently chosen from the set of all possible subkeys. This condition
holds if we consider the first eight rounds of GOST, and randomly chosen key,
or if we imagine a GOST-like cipher with a more complex key schedule. However,
in the real GOST this condition is violated due to a subkey reuse. We study the
real situation in more details in the next section (Section 3.2).

In the Feistel structure of GOST, all operations outside the round function
(XOR of the output of the round function, swap) preserve rotational pairs. This
leads to a generic property of a Feistel cipher, with round function F , that the
rotational probabilities depend only on the probability pr(F ). We do not provide
an exact theorem, but we can summarize this result in a form of the following
Proposition.

2We abuse the notation slightly by defining rotated version of a set of vectors, e.g.,

if X = (X1|X2), than
←−
X = (

←−
X1,
←−
X2).
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����������� 1	 Let F : (Zn
2 )

2 → Z
n
2 . Let pr(F ) denote a conditional probability

that output of F is rotational, if the input is rotational. That is,

pr(F ) = Pr(
←−−−
F (X) = F (

←−
X )).

Let us construct a Feistel cipher EK with N rounds and round function F
with input (L0, R0), and set of round keys K = (K0, K1, . . . , KN−1) as follows:

Li+1 = Ri,

Ri+1 = Li ⊕ F (Ri, Ki).

Let round keys Ki be considered stochastically independent random values.
Let

(L,R) = EK(L0, R0),
←−
K =

(←−
K0,
←−
K1, . . . ,

←−−−−−
K(N−1)), (L∗, R∗) = E←−

K
(
←−
L0,
←−
R0).

Let pr(F ) � 2−n. Then output of the Feistel cipher is rotational with proba-
bility approximately (pr(F ))N , i.e.,

pr(EK) = Prob
(
(L∗, R∗) = (

←−
L ,
←−
R )
) ≈ (pr(F )

)N
.

This also means, that if the output of the Feistel cipher is rotational, then each
output of F is rotational as well with very high probability.

As the Proposition 1 is not exact, we do not provide a proof, only a sketch.
Let us start with the first two rounds. The input of the cipher consists of two
rotational pairs in each half. In the first round, one half of the input is unchanged
(but swapped), the second half remains rotational with probability p = pr(F ).
XOR operation preserves the rotational pair, if it was preserved by F . Now
the inputs to the round function in the second round (i.e., R1 = L ⊕ F (R))
form a rotational pair only with the probability p. We suppose that the second
execution of F is independent of the first one (due to independently chosen
random subkey). Thus the output of the round function, as well as the new
right half of the state (R2), form rotational pairs with probability p2.

After the third application of a round function, F (R2)’s form a rotational pair
with the probability p3. We XOR it with L2 = R1, which form a rotational pair
only with the probability p. If F (R2), and L2 were independent, the rotational
probability for R3 would be p4. However, if R1’s do not form a rotational pair,
the probability that R2’s, and consequently F (R2)’s form rotational pairs, is
negligible (we suppose that p� 2−n). On the other hand, if R1 is rotational, the
conditional probability that F (R2) is rotational becomes p2. Thus the probability
that R3 is rotational is p3.

Similarly, for any pair Ri, R̄i, where Ri is a right-hand part of the state after i
round of encrypting (L|R), and R̄i is a right-hand part of the state after i round

of encrypting (
←−
L |←−R ), we can show that Pr(R̄i =

←−
Ri) ≈ pi. We stress, that this
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is not an exact value, as we ignore the situation, when rotational pair can arise
from a non-rotational pair. We can do this if pr(F ) � 2−n, which is a typical
situation in practice. On the other hand, the situation when pr(F ) is near 2−n,
is not suitable for rotational cryptanalysis.

Let us apply Proposition 1 to simplified GOST without S-boxes, and with a
random selection of all subkeys. In this case pr(F ) is exactly pr from
equation (1), as F consists only of a single addition, and a single rotation (which
preserves rotational pairs with probability 1). If r = n/2, we get pr(F ) ≈ 1/4,
and with 32 applications of F the reduced GOST cannot be reliably distin-
guished from the ideal cipher, using the rotational characteristics. On the other
hand, for any smaller rotational amount r, we get a rotational distinguisher.
For example, for r = 1, we get pr(F )

.
= 0.375, which means that for 32 rounds

we get
(
pr(F )

)32 .
= 2−45 � 2−64. In this case at least 46 rounds are required

to hide rotational properties of the simplified GOST.

3.2. Influence of the key schedule

Key schedule of the GOST is very simple: The 256-bit key is split into eight
32-bit subkeys (K0, K1, . . . , K7), which are applied in the same order three times
in the first 24 rounds, and then in the reverse order in the last 8 rounds. That
is, the whole expanded key is a sequence of 32-bit words

(
K0, K1, . . . , K7, K0, . . . , K7, K0, . . . , K7, K7, K6, . . . , K0

)
.

Unlike the case discussed in Section 3.1, the subkeys are not independent.
If we suppose that key is chosen randomly, we can consider each ofK0, K1, . . . , K7

independent random 32-bit vectors, but each of them is repeated four times
(up to four times, if the number of rounds is reduced). In this section we focus
on the probabilities of preserving (randomly, and independently chosen) rota-
tional inputs, under repeated addition of the same subkey.

More formally: Let K, and X1, X2, . . . , Xt, be random n bit vectors.

Let
←−
K = K ≪ r, and

←−
X i = Xi ≪ r, be their rotational counterparts. We want

to compute probability πt, that
←−−−−−
K +Xi =

←−
K +

←−
X i, for each i = 1, 2, . . . , t.

Let us denote the first r bits of the n-bit vectorX by hi(X) and the remaining

n− r bits by lo(X). Equality
←−−−−−
K +Xi =

←−
K +

←−
X i holds iff hi(K) + hi(Xi) < 2r,

and lo(K) + lo(Xi) < 2n−r. Otherwise, carry bits from the addition of hi(X),
and lo(X), respectively, are not preserved by the rotation. If K is fixed, the
probability that this equality holds for a random choice of Xi is

(
2r − hi(K)

) · (2n−r − lo(K)
) · 2−n.
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We suppose that Xi’s are chosen independently3. Thus the probability πt

given fixed K, and t values Xi can be computed as

πt(K) =
(
2r − hi(K)

)t · (2n−r − lo(K)
)t · 2−nt. (2)

Now we can also compute the probability for a random selection of K as

πt = 2−n
2n−1∑
K=0

πt(K),

or equivalently as

πt = 2−n(t+1)
2n−1∑
K=0

(
2r − hi(K)

)t · (2n−r − lo(K)
)t
. (3)

Using K = hi(K) · 2n−r + lo(K), we can rewrite this as

πt = 2−n(t+1)
2r−1∑

hi(K)=0

2n−r−1∑
lo(K)=0

[(
2r − hi(K)

)t · (2n−r − lo(K)
)t]

= 2−n(t+1)
2r−1∑

hi(K)=0

⎡
⎣(2r − hi(K)

)t · 2
n−r−1∑

lo(K)=0

(
2n−r − lo(K)

)t⎤⎦

= 2−n(t+1)

⎡
⎣ 2r−1∑
hi(K)=0

(
2r − hi(K)

)t⎤⎦ ·
⎡
⎣2n−r−1∑
lo(K)=0

(
2n−r − lo(K)

)t⎤⎦

= 2−n(t+1)

(
2r∑
x=1

xt

)
·
⎛
⎝2n−r∑

y=1

yt

⎞
⎠ .

After adapting the notation St(n) =
∑n

x=1 x
t, we finally get

πt = 2−n(t+1)St(2
r) · St(2

n−r). (4)

The exact formulas for individual sums St(n) with t = 1, 2, 3, 4 are summa-
rized in Table 1. Although the fully evaluated formulas are quite complicated,
for the purposes of the cryptanalysis we can simplify them by omitting all ex-
ponential terms lower than 2−r, or 2r−n. The approximate probabilities are
summarized in Table 1. In the case, when r < n/2, we can omit also the term
2r−n. Similarly, if r > n/2, we can omit terms with 2−r. We remark that both
the simplified, and the fully expanded formulas, do not depend on the direction
of the rotation (for any t), i.e., they are symmetric in r, and n− r, respectively.

3In GOST, the Xi’s which are added to the same subkey value, are not really independent.
On the other hand, they are separated by 8 rounds of Feistel network (expect for the specific

last round), and thus it is reasonable to treat them as if they were independent.
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Table 1. Sums St(n), and approximate values of πt, for t = 1, 2, 3, 4.

t St(n) πt (approx.)

1 (n2 + n)/2 1/4+ 1/4 · 2−r+ 1/4 · 2r−n
2 (2n3 + 3n2 + n)/6 1/9+ 1/6 · 2−r+ 1/6 · 2r−n
3 (n4 + 2n3 + n2)/4 1/16+ 1/8 · 2−r+ 1/8 · 2r−n
4 (6n5 + 15n4 + 10n3 − n)/30 1/25+1/10 · 2−r+1/10 · 2r−n

Let us extend the results to (simplified) GOST. According to Section 3.1, the
probability of GOST output being rotational is given as a product of rotational
probabilities for the round function F under the condition of the independence of
their execution. In the first 8 rounds, we consider the subkeys to be independent
32-bit random values, and we can approximate the rotational probabilities for the
8-round GOST by multiplying 8 rotational probabilities for the round function.

Let us consider the addition of the 9th round. Subkey K0 is repeated. If the
output of the 8-round GOST is rotational, with probability near to one also the
output of the first round function (using K0) is rotational. In our model, the
only obstacle to output F being rotational is the key addition, thus the we know

that
←−−−−−−
R0 +K0 =

←−
R0 +

←−
K0. We now ask whether again

←−−−−−−
R7 +K0 =

←−
R7 +

←−
K0.

Due to 7 rounds of encryption with independent subkeys, we can consider R7

to be random value independent from R0. Equivalently, we can ask what is the

probability, that both equations
←−−−−−−
R0 +K0 =

←−
R0+

←−
K0,
←−−−−−−
R7 +K0 =

←−
R7+

←−
K0, hold.

This is exactly π2 derived in the previous part of this section.

Let us have a closer look at 9-round GOST in our model. The rotational prob-

ability for full GOST is the same as the probability that each
←−−−−−
Ri +Ki =

←−
Ri+
←−
Ki,

for i = 0, 1, . . . , 7, as well as
←−−−−−−
R7 +K0 =

←−
R7+

←−
K0, hold. Under the condition that

Ki’s are independent random values we can estimate this probability as π7
1 · π2.

That is, seven subkeys are added once, and one subkey is added twice, and each
time the addition of rotated inputs must produce rotated outputs.

We can analyse the other cases in a similar way. The results are summarized
in Table 2. We remark that these results are approximations based on the spe-
cific assumptions used (independence of inputs, ignoring the probability that
a rotational pair can be produced from a non-rotational input, approximation
of St(n) formulas). However, as shown in later sections, the experimental data
provide a supporting evidence that the approximate results can be good enough
in practice.

10



ROTATIONAL CRYPTANALYSIS OF GOST WITH IDENTICAL S-BOXES

Table 2. Rotational probabilities for N-round simplified GOST (without
S-boxes).

N Formula for π
− log2 π

r = 1 r = 4 r = 16

1 π1 1.4 1.9 2.0

2 π2
1 2.8 3.8 4.0

...
8 π8

1 11.3 15.3 16.0

9 π7
1π2 12.3 16.4 17.2

10 π6
1π

2
2 13.2 17.6 18.3...

16 π8
2 18.9 24.3 25.4

17 π7
2π3 19.5 25.1 26.2

18 π6
2π

2
3 20.2 25.9 27.0...

24 π8
3 24 30.6 32.0

25 π7
3π4 24.5 31.2 32.6

26 π6
3π

2
4 24.9 31.8 33.3...

32 π3π
7
4 27.3 34.9 36.5

32 π8
4 27.8 35.5 37.2

Table 2, and Figure 2, summarize the results for selected rotational amounts.
Considering the estimated results, we can see that GOST’s key schedule have
the most adverse effect on the rotational characteristics of (a simplified) GOST,
as even for the worst rotational amount r = n/2, we get a strong distinguisher
of a simplified GOST.

Figure 3 compares experimental results with theoretical estimates, both in the
model with independent subkeys, and with GOST’s key schedule. The experi-
mental data were computed from a dataset obtained using 109 random plaintexts
and keys. The differences in the tail part of the chart are on the order of mag-
nitude of the statistical error (for r = 16 there is not enough data to get any
rotational pair for more rounds than 22).

3.3. Repeated S-box

The specification of GOST does not prescribe any particular set of S-boxes [5].
There are eight 4×4 S-boxes that need to be specified as an additional parameter
(e.g., [10]). To simplify the implementation, we might consider to use only a

11
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Figure 2.

Base-2 logarithm of theoretical rotational probability
for r = 1, 2, 3, 4, 8, and 16, as a function of the number of rounds.

single S-box eight times, instead of eight different S-boxes. This was already
exploited in the design of lightweight version GOST-PS [11], where all S-boxes
are taken from cipher PRESENT. In this section, we show that this selection
unfortunately leads to rotational attacks.

Let us consider rotational pairs of inputs to GOST’s round function F with

r = 4, i.e., let ←−x = x ≪ 4, as well as
←−
k = k ≪ 4. If the rotational pair of

inputs is preserved by the key addition, the same S-boxes are applied to each

4-bit substring of either x+ k, and ←−x +
←−
k . Thus

Pr
(←−−−
F (x) = F (←−x )

)
= Pr(

←−−−
x+ k =←−x +

←−
k ).

Similar observation can be made for any rotation size that is a multiple of 4.
Note however, that this does not hold when S-boxes are different, as individual

S-boxes transform different parts of (x+ k), and (←−x +
←−
k ), respectively.

If we only consider probability of rotational pairs, we get the same results as in
the case where no S-boxes are used. However, the S-boxes increase the diffusion,
so if the key addition breaks the rotational pair, their difference spreads faster,
and we expect that the distribution of rotational errors, i.e., wH(y⊕←−y ), is nearer
the expected distribution from ideal cipher.

Figure 4 compares experimental results with, and without S-boxes, respec-
tively, with theoretical estimates. The experimental data were computed from a
dataset obtained using 109 random plaintexts and keys. The differences in the
tail part of the chart are on the order of magnitude of the statistical error.

12



ROTATIONAL CRYPTANALYSIS OF GOST WITH IDENTICAL S-BOXES

Figure 3.

Base-2 logarithm of rotational probability for r = 1 (on the top),
and r = 16 (at the bottom), as a function of the number of rounds.

3.4. A note on weak keys

Instead of a related key model, we can consider a situation, where K =
←−
K ,

i.e., when the key is chosen in such a way that each subkey is rotationally
symmetric. All results from the related key model hold also for this special
class of keys. Rotationally symmetric keys can thus be considered as weak keys
for the GOST with a single S-box.

13
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Figure 4. Base-2 logarithm of rotational probability (for r = 4, theo-
retical, and experimental with and without S-boxes) as a function of the
number of rounds.

The size of the set of weak keys depends on the rotational amount. The num-
ber of rotationally symmetric n-bit vectors is

Nr = #{X = x · 2n−r + y;x(2n−r − 1) = y(2r − 1), 0 ≤ x < 2r, 0 ≤ y < 2n−r}.
If r ≤ n − r, for any choice of x (out of 2r possible), we get a rotationally

symmetric X only if x2n−r−1
2r−1 is a whole number. Let d = gcd(2n−r − 1, 2r − 1).

Then by a simple algebra we get that Nr = d+ 1. If r|(n − r), we can show by
using cyclotomic polynomials that (2r− 1)|(2n−r − 1), and in this case Nr = 2r.
In the case of GOST, the largest possible set of weak keys is obtained for r = 16
with the cardinality N8

r = 2128. A probability that we randomly select a weak
key is thus negligible (lower than 2−128).

If the keys are not selected randomly, a care should be also be taken to
avoid weak keys. In this article we have assumed that rotational probability
is computed over a random selection of keys over the set of all possible keys.
However, if we restrict the selection of keys, the rotational probabilities may
change. For example, if K = 0, then there does not occur any carry during the
key additions. In this case all rotational pairs are preserved, i.e.,

Pr
(←−−−−−−−−−
GOST0(L|R) = GOST0(

←−
L |←−R )

)
= 1.

If we know only some bits of the key, the precise rotational probabilities
can be recomputed to reflect this knowledge. To demonstrate, let us consider a
situation, when rotational amount is r = 1 (and no S-boxes are used).

14
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Let us suppose that we know the most significant bit of Ki. The rotational
probability over randomly selected key with MSB(Ki) = 1, is only half of the
rotational probability for keys with MSB(Ki) = 0. This can be computed using
similar techniques as in Section 3.2, but it is easy to see that MSB(Ki) = 1
means more additions with carry from the most significant bit.

3.5. Key recovery attacks

Although our article focuses on distinguishing attacks, they can be easily
expanded to key-recovery scenarios.

Let us suppose that either the cipher is keyed by the weak rotationally sym-
metric key, or the attacker can operate in the related key scenario. Furthermore
suppose that attacker finds the first suitable pair of rotated plaintext that en-
crypts to rotated ciphertext (the key is not fixed in the first phase). The proba-
bility to obtain such a pair (under a random selection of keys) is given in Table 2,
so the expected number of tests is reciprocal of this probability.

Let us consider that (N−1)-rounds of GOST preserve rotational inputs. Now,
due to the nature of the Feistel network, also the left part of the ciphertext
(for N -round GOST) stays rotated. In fact, we do not need the final right part
of the ciphertext to be rotated, so the probability to obtain valid P-C pairs for
our attack comes from (N − 1)-round distinguishing probability.

Our experiments [9] show that once the attacker has obtained the first suitable
rotated pair, he can find more suitable pairs for the same weak key/rotated key-
pair more easily. This is due to the fact, that if the key is fixed, the scenario for
repeated subkeys discussed in Section 3.2 applies.

Let us denote the left part of ciphertext L, and the right part R, respectively.

We also denote the rotated left part of the paired ciphertext
←−
L , and the corre-

sponding right part of the paired ciphertext R′ (in general, it is not a rotated

version of R). Attacker guesses the last subkey K
(N−1)
i = i (32-bit expansion

of i = 0, 1, . . . , 232 − 1), and computes the outputs of round function

gi = F
(
L,K

(N−1)
i

)
and g′i = F

(←−
L ,
←−
K

(N−1)
i

)
.

Values (gi, g
′
i) in general do not form a rotational pair. However, due to the

nature of Feistel scheme (as analysed in Section 3.1, values (gi ⊕ R, g′i ⊕ R′)
form a rotational pair for a correct key guess. So if g′i ⊕R′ �= (gi ⊕R) ≪ r, we

know that guess K
(N−1)
i is incorrect, and we can remove the key from a set of

potential keys.

Due to low diffusion in GOST, there are still many guesses that lead to a valid
rotated g′i⊕R′. Our practical experiments (see Figure 5) show that attacker can
learn approximately 6 bits of the key with data complexity 26. But if we increase
the number of P-C pairs above 26 (in the experiments we used up to 211 pairs),
the number of recovered key-bits does not increase.

15
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Figure 5. Base-2 logarithm of the number of remaining keys for key
recovery attack as a function of the number of P-C pairs.

For each remaining key guesses, we can remove the last round of the encryp-
tion, and continue the attack recursively with fewer rounds (we do not have to
remember all candidates if we use depth-first search). If we suppose that the sub-
keys are independent random values, we can expect to recover a similar amount
of key-bits when guessing values for each of the eight subkeys. Recovering 6-bits
out of each 32 amounts to testing 2(32−6)·8 = 2208 key hypotheses overall.

Let us summarize the attack. The attack is CPA with related keys. It requires
that the set of identical S-boxes is used. Attacker encrypts D known pairs of

plaintexts P with key K, and corresponding
←−
P with the related key

←−
K .

The number of plaintext pairs depends on the number of rounds, and r,
see Table 2. For a full GOST, D = k · 234.9 for r = 4, and D = k · 236.5
for r = 16. Constant k depends on the number of required P-C pairs to be
used as a filter for key candidates. Out of D P-C pairs, we expect (more than)
k P-C pairs to have rotationally symmetric right part usable in the attack.
The ciphertexts for these P-C pairs are stored, and can be considered a part
of memory complexity (2 · k 64-bit vectors). Experimentally, having k = 26

correct P-C pairs, we can filter out 6 bits out of every 32-bit subkey. The time
to evaluate each candidate is approximately c = 2 · k · 2−5 GOST encryptions
(two one-round GOST encryptions for each of the k correct ciphertext pairs).
Thus, using parameters r = 16, k = 26, we get the data complexity 242.5 (chosen
P-C pairs), memory complexity 27 (ciphertexts), and the time complexity 2210

(GOST encryptions).

16



ROTATIONAL CRYPTANALYSIS OF GOST WITH IDENTICAL S-BOXES

The situation is better for the attacker in the scenario with rotationally sym-
metric keys. The prerequisite of the single-key attack is again the set of identical
S-boxes. Moreover, we suppose that a weak key with rotationally symmetric
subkeys is used. The weak key density is at most 2−128 (see Section 3.4) for
rotational amount r = 16, and lower for other rotational amounts.

If the key is rotationally symmetric, the key has a reduced entropy. For exam-
ple, if r = 16, the rotationally symmetric key can only consists of 32-bit subkeys
in the form (k0k1 . . . k15k0k1 . . . k15). Thus, the attacker only needs to find 128-
bits, instead of 256. For other r’s the number of unknown bits is even lower,
but so is the weak key density. Similarly to the related-key attack, for r = 16,
k = 26, we get the same data complexity 242.5 (chosen P-C pairs), and memory
complexity 27 (ciphertexts). If we can filter out full 6 bits out of each subkey, the
time complexity is reduced to checking 2(16−6)·8 = 280 key hypotheses, which is
equivalent to 282 GOST encryptions.

Although these attacks are not practical, they significantly reduce the ex-
pected strength of the cipher. Furthermore, we have only explored the basic
attacks that do not take into account the distribution of rotational errors. The
model with rotational errors can possibly lead to new classes of weak keys (where
rotational errors cancel each other due to slow diffusion of GOST), and possibly
faster key recovery attacks.

4. Conclusions

There are many published attacks on GOST [1–4, 6], and many of these at-
tacks exploit the weak key scheduling of GOST. In this paper we show that the
repeated subkeys have also a significant adverse effect on the GOST’s rotational
properties. Our main results concern GOST without S-boxes. Although it is not
realistic to expect that the user does not choose a set of strong S-boxes, some
implementations may allow the adversary to manipulate the S-box selection, or
to trick the user into using identity mapping instead of a set of valid non-linear
S-boxes. We also note that a similar approach (removing GOST’s S-boxes) was
used to analyse of GOST’s fixpoints in [14].

The cryptographic attacks described in this paper (restricted to rotational
amounts that are multiples of 4) apply also to the case with S-boxes, specifically
when all eight S-boxes in GOST are defined by a single permutation. We remark
that this is not explicitly prohibited in the RFC’s concerning GOST [5, 10].
Using a single table for all S-boxes is a tempting choice for lightweight imple-
mentations to conserve resources, as demonstrated by GOST-PS design [11].
However, in this case GOST is distinguishable from a random cipher using rota-
tional distinguishers with related keys with the expected probability of an output
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rotational pair as high as 2−35.5 (for r = 4, under a random key selection). More-
over, the dependence of rotational properties on the key selection produces a set
of weak keys. Rotationally symmetric keys can be identified by the attacker even
in the single key attack model (CPA).

Our analysis does not cover the distribution of rotational errors. The pre-
liminary experimental results [9] show that the distribution of rotational errors
might be exploited as a distinguisher as well (but we do not provide a mathemat-
ical model in this case). This may lead to stronger attacks of rotational type on
GOST in the future. It is thus strongly recommended for each implementation
of GOST either to use a fixed asymmetric set of S-boxes, or to check its S-box
parameters explicitly for exploitable rotational symmetries.
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