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SIMULTANEOUS DIOPHANTINE APPROXIMATION

IN R2 × C×Qp

Ella Kovalevskaya

ABSTRACT. An analogue of the convergence part of Khintchine’s theorem
(1924) for simultaneous approximation of integral polynomials at the points

(x1, x2, z, w) ∈ R2 × C× Qp

is proved. It is a solution of the more general problem than Sprindz̆uk’s problem
(1980) in the ring of adeles. We use a new form of the essential and nonessential
domain methods in metric theory of Diophantine approximation.

1. Introduction

From the beginning of a current century a new direction in the metric theory
of Diophantine approximation is developed [1]– [7]. This is simultaneous approx-
imation of zero by values of integral polynomials P, degP ≤ n, with respect
to different valuations.

Primary a problem of simultaneous approximation in Rk × Cl ×∏
p∈S Qp,

where k ≥ 0, l ≥ 0 are integers and S is a finite set of prime numbers, n ≥
k+2l, was formulated by V. S p r i n d ž u k (1980). According to contemporary
therminology it is Diophantine approximation in the ring of adeles.

Let P = P (t) = ant
n + · · · + a1t + a0 ∈ Z[t], an �= 0, H = H(P ) =

max(|an|, . . . , |a0|). Let p ≥ 2 be a prime number, Qp be the field of p-adic
numbers, | · |p be the p-adic valuation. Suppose that O = R2×C×Qp. We define
a measure μ in O as a product of the Lebesque measure μ1 in R2, the Lebesque
measure μ2 in C and the Haar measure μp in Qp, that is, μ = μ1μ2μp. Let
Ψ: N → R+, Ψ be a monotonically decreasing function, Λ = (λ1, λ2, λ3, λ4),
V = (v1, v2, v3, v4), where λi ≥ 0 and vi ≥ 0 are vectors in R4. We consider the
system of inequalities
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|P (x1)| < H−v1Ψ(H)λ1 , |P (x2)| < H−v2Ψ(H)λ2 ,

|P (z)| < H−v3Ψ(H)λ3 , |P (ω)|p < H−v4Ψ(H)λ4 , (1)

where (x1, x2, z, ω) ∈ O and v1 + v2 + 2v3 + v4 = n− 4, λ1 + λ2 + 2λ3 + λ4 = 1.
Let Mn(V,Ψ,Λ) be a set of the points (x1, x2, z, ω) ∈ O for which the system (1)
has infinitely many solutions in polynomials P ∈ Z[t], degP = n. We prove

�������� If n ≥ 4 and
∑∞

H=1Ψ(H) < ∞ then μ
(
Mn(V,Ψ,Λ)

)
= 0.

Notice that for proving of the theorem we apply the essential and nones-
sential domains method of Sprindžuk developed and improved by V. B e r n i k,
M. D o d s o n, V. B e r e s n e v i c h, D. D i c k i n s o n and S. V e l a n i and the
other representatives of the Number Theory schools in the Byelorussian Academy
of Sciences (Minsk, Belarus) and the York University (York, UK) (1980–2013).

2. Sketch of proof

Our investigation is based on the method [8], the argumentations from [2]–[4],
[7]–[10] and their development.

Let T = I1 × I2 × K × Dp ⊂ O, where I1, I2 are the intervals in R, K is
a circle in C and Dp is a disc in Qp. According to a metric character of the
theorem we shall prove it for the points in T. We shall call T a parallelepiped.
Fix δ > 0 and exclude from T a set of the points (x1, x2, z, ω) which satisfy
|xi| < δ (i = 1, 2), |Imz| < δ and |ω|p < δ. Thus, from now on we shall assume
that the points (x1, x2, z, ω) ∈ T satisfy |xi| ≥ δ (i = 1, 2), |Imz| ≥ δ and
|ω|p ≥ δ. It will be without loss of generality if δ is an arbitrary small number.

Introduce a class of polynomials Pn(Q) =
{
P ∈ Z[t] : H(P ) ≤ Q

}
, where

Q > Q0 > 0. The importantmoment of the proof is a reduction to irreducible and
leading polynomials P ∈ Pn(Q), i.e., H(P ) < c(n)|an|, c(n) ≥ 1 and |an|p > p−n

(as [8, Ch. 1, §§5, 8 and Ch. 2, §2] or [3]). We denote a set of such polynomials
P as Pn.

Let Pn(H) denote a set of polynomials P ∈ Pn satisfying (1) for which
H(P ) = H where H is a fix number, 0 < Q0 < H ≤ Q. The set Pn(H) is
divided into ε-classes Pn(H,q1,q2, r, s) according to the values of a differences
between their roots (§3, formulas (2), (3) and the text above and below these
formulas). Next, we prove the theorem for each ε-class. For this, we introduce
the notion of (i1, i2, i3, i4)-linear polynomial, where ij ∈ {0, 1} (j = 1, 2, 3, 4).
For example, (0, 0, 0, 0)-linear polynomial, (1, 1, 1, 1)-linear one, (0, 1, 1, 0)-linear
one and so on). We have 16 cases of linearity. This notion is necessary to obtain
the lower bounds of the derivatives |P ′(xi)| (i = 1, 2), |P ′(z)| and |P ′(ω)|p
for P ∈ Pn(H). Lemma 2 §3 gives the upper bounds of them. Fix a admissible
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vector (i1, i2, i3, i4) and denote by P
(i1,i2,i3,i4)
n the class of (i1, i2, i3, i4)-linear

polynomials P ∈ Pn(H,q1,q2, r, s).

Now, we take a fix P ∈ P
(i1,i2,i3,i4)
n and consider a system of the small paralle-

lepipeds Πj(P ) ⊂ T, (j = 1, 2, . . .) at which P satisfies (1). These parallelepipeds
Πj(P ) ⊂ T are divided into two classes: the essential and the inessential (ana-
logously to [8, §§10, 11]). The parallelepiped Πj(P ) is called essential if for all

polynomials Pj �= P, Pj ∈ P
(i1,i2,i3,i4)
n , we have μ

(
Πj(P )

⋂
Πj(Pj)

)
< 1

2μΠj(P ).

If there exists Pj ∈ P
(i1,i2,i3,i4)
n , Pj �=P, such that μ

(
Πj(P )

⋂
Πj(Pj)

)≥ 1
2μΠj(P )

then the parallelepiped Πj(P ) is called inessential.

Next, using Lemmas 1–4 §3 and the classic metric Borel–Cantelli theorem
[8, Ch. 1, §3, Lemma 12] we show that the measure of the set of points lying
in infinitely many the essential parallelepipeds Πj(P ) equals zero, and that the
measure of the set of points lying in infinitely many the inessential parallelepi-
peds Πj(P ) also equals zero.

3. Lemmas on polynomials

Let P ∈ Pn(H) have roots α1, α1, . . . , αn in C and roots γ1, γ2, . . . , γn in Q∗
p,

whereQ∗
p is the smallest field containingQp and all algebraic numbers. According

to Lemma 1 [8, Ch. 1, §2] and Lemma 4 [8, Ch. 2, §2] we have |αj| 	 1, |γj |p 	 1
(j = 1, . . . , n). Let α1, . . . , αk be the real roots of P and β1, . . . , β(n−k)/2 be the
complex roots of it. Since P is irreducible then all of its roots are different.
Choose two real roots αj1 ∈ I1, αj2 ∈ I2, a complex root β1 = αj3 ∈ K, and
a p-adic root γ1 ∈ Dp. Remember that the parallelepiped T = I1 × I2 ×K ×Dp

was introduced at the beginning of §2. Define the sets

Si(αji) =

{
u ∈ U : |u− αji | = min

1≤k≤n
|u− αk|

}
, i = 1, 2, 3,

where u represents x1 or x2 or z, and αji is a real or a complex root of P, and
U is I1 ⊂ R or I2 ⊂ R, or K ⊂ C as required, and

Sp(γs) =

{
ω ∈ Dp ⊂ Qp : |ω − γs|p = min

1≤k≤n
|ω − γk|p

}
.

We shall consider these sets for a fixed vector (j1, j2, j3, s) and for simplicity
we shall assume that j1 = 1, j2 = 2, αj3 = β1 and s = 1. Reorder the other
roots of P in the following way:

(1) |α1 − α2| ≤ |α1 − α3| ≤ · · · ≤ |α1 − αk|,
(2) |α2 − α1| ≤ |α2 − α3| ≤ · · · ≤ |α2 − αk|,
(3) |β1 − β2| ≤ · · · ≤ |β1 − β(n−k)/2|, and
(4) |γ1 − γ2|p ≤ · · · ≤ |γ1 − γn|p.
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Also, for the polynomial P ∈Pn(H) define numbers ρij∈ R by |αi1−αij|=H−ρij,
2 ≤ j ≤ n, ρin ≤ ρi2 ≤ · · · ≤ ρi2 (i = 1, 2, 3, 4), where α11 = α1, α21 = α2,
α31 = β1 and α41 = γ1. Since the roots |αj |, |βj |, |γj |p are bounded (see the
beginning §2), then there exists ε1 > 1 such that ρij ≥ −ε1/2 for i = 1, 2, 3, 4
and j = 2, 3, . . . , n. Choose ε > 0 such that ε1 = ε/T1 for some sufficiently
large T1 > T0 > 0. Let T = [n/ε1] + 1. Define the integers (k1j, k2j , lj,mj) =
(t1j , t2j, t3j , t4j) (j = 2, 3, . . . , n) by the relations

(tij − 1)/T ≤ ρij < tij/T, ti2 ≥ ti3 ≥ · · · ≥ tin ≥ 0, i = 1, 2, 3, 4. (2)

Finally, define the numbers q1i, q2i, ri and si (i = 1, 2, . . . , n− 1) by

q1i = T−1
n∑

t=i+1

k1t, q2i = T−1
n∑

t=i+1

k2t, ri = T−1
n∑

t=i+1

lt, si = T−1
n∑

t=i+1

mt. (3)

Each polynomial P ∈ Pn(H) is now associated with four vectors q1=(q11, q12, . . .
. . . , q1(n−1)), q2 = (q21, q22, . . . , q2(n−1)), r = (r1, r2, . . . , rn−1), s = (s1, s2, . . .
. . . , sn−1). The number of these vectors is finite and depends only on n, ρ and T
(see [8, Ch. 1, Lemma 24 and Ch. 2, Lemma 12]). Let Pn(H,q1,q2, r, s) denote
the set of polynomials P ∈ Pn(H) having the same four vectors (q1,q2, r, s).
Thus, we divide the set Pn(H) on ε-classes Pn(H,q1,q2, r, s).

From now on it will be assumed without loss generality that x1 ∈ S1(α1) ⊂ I1,
x2 ∈ S2(α2) ⊂ I2, z ∈ S3(β1) ⊂ K and ω ∈ Sp(γ1) ⊂ Dp. At many points of our
proof the values of the polynomials P ∈ Pn(H,q1,q2, r, s) will be estimated by
means of a Taylor series. To obtain an upper bounds on the terms in the Taylor
series and the other purposes the following two lemmas will be used.

����	 1� If P ∈ Pn(H) then

|ũ− α̃| ≤ 2n|Pn(ũ)||P ′
n(α̃)|−1, |ω − γ1|p ≤ |Pn(ω)|p|P ′

n(γ1|−1
p ,{

|ũ− α̃| ≤ min2≤j≤n

(
2n−j (|Pn(ũ)||P ′

n(α̃|−1
∏j

k=2 |α̃− αk|)1/j,
|ω − γ1|p ≤ min2≤j≤n (|Pn(ω)|p|P ′

n(γ1|−1
p

∏j
k=2 |γ1 − γk|p)1/j

where ũ represents x1 or x2 or z and α̃ is α1, α2 or β1 as required.

P r o o f. See [2] and [10, pp. 36, 131]. �

����	 2� Let P ∈ Pn(H, q1, q2, r, s). Then

|P (l)(αi1)| < c(n)H1−qil+(n−l)ε1 (i = 1, 2), |P (l)(β1)| < c(n)H1−rl+(n−l)ε1 ,

|P (l)(γ1)|p < c(n)H−sl+(n−l)ε1 (1 ≤ l ≤ n− 1),

where the constant c(n) > 0 depends only on n.

P r o o f. The first, second and third inequalities are proved in [2] or [10, pp.
36–37]. The fourth inequality is proved in [7, Lemma 2]. �
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At several points of the proof there are various cases for P ∈ Pn(H,q1,q2, r, s)
to consider. Usually the existence of one case is disproved by finding a contra-
diction to the final inequality in the next lemma.

����	 3� Let P1, P2 ∈ Z[t] of degree at most n with no common roots and
max

(
H(P1), H(P2)

) ≤ H (H > H0). Let δ > 0 and ηi > 0 (i = 1, 2, 3, 4). Let

Ji ⊂ R be the intervals, μiJi = H−ηi (i = 1, 2), K ⊂ C be a circle, diamK =
H−η3 and D ⊂ Qp be a disk, μp|D|p = H−η4. If there exist τi > −1 (i = 1, 2, 3)
and τ4 > 0 such that for all (x1, x2, z, ω) ∈ J1 × J2 ×K ×D we have

max
(|P1(xi)|, |P2(xi)|

)
< H−τi (i = 1, 2),

max
(|P1(z)|, |P2(z)|

)
< H−τ3 , max

(|P1(ω)|p, |P2(ω)|p
)
< H−τ4 ,

then

τ1 + τ2 + 2τ3 + τ4 + 4 + 2max(τ1 + 1− η1, 0) + 2max(τ2 + 1− η2, 0)

+ 4max(τ3 + 1− η3, 0) + 2max(τ4 + 1− η4, 0) < 2n+ δ.

P r o o f. It is analogous to [4]. Distinctions consist only in the sets of X =
(X1, X2, X3, X4) and in the metrics of the corresponding spaces. Namely, in [4]
we have X = (x1, z, ω) ∈ R × C ×Qp, in our case we have X = (x1, x2, z, ω) ∈
R2 × C×Qp.

The sense of the lemma is the following: if the values of two polynomials are
small at a given J1 × J2 ×K ×D, then the parameters τi and ηi are connected
by the final inequality of lemma. �

����	 4� Let P ∈ Z[t], degP = n ≥ 4 and v > 0. Let G(v) be the set of points
(x1, x2, z, ω) ∈ R2 × C × Qp for which the inequality |P (x1)| · |P (x2)| · |P (z)| ·
|P (ω)|p < H−v, H = H(P ), has infinitely many solutions P. Then μG(v) = 0
for v > n− 3.

P r o o f. See [9]. �

4. Proof of Theorem

Remember that we consider the points (x1, x2, z, ω) ∈ T and P ∈ Pn(H,q1,
q2, r, s). We prove the theorem for n ≥ 5. The case n = 4 follows from Lemma 1
and the Borel–Cantelli theorem.


���
����
� Let ij ∈ {0, 1} (j = 1, 2, 3, 4). A polynomial P ∈ Pn(H,q1,q2, r, s)
is called (i1, i2, i3, i4)-linear if:
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(1) for (i1, i2, i3, i4) = (0, 0, 0, 0) the system of inequalities

ri1 + si2/T < vi + 1 (i = 1, 2, 3, 4), (4)

holds, where (r11, r21, r31, r41)=(q11, q21, r1, s1) defined in (2), (3);

(2) for (i1, i2, i3, i4) = (1, 1, 1, 1) the inequality sings in (4) are reversed;

(3) for (0, 1, 1, 1) the first inequality in (4) has the sign < and the other inequa-
lities have sings ≥; and so on. There exist 16 kinds of linear polynomials.

Denote byP
(i1,i2,i3,i4)
n the class of (i1, i2, i3, i4)-linear polynomials P ∈ Pn(H,

q1,q2, r, s). If (x1, x2, z, ω) ∈ Mn(V,Ψ,Λ) (see §1), then there exist infinitely
many polynomials satisfying at least one of these 16 kinds of linearity. Let

M
(i1,i2,i3,i4)
n (V,Ψ,Λ) denote the set of (x1, x2, z, ω) ∈ T for which the system of

inequalities (1) holds for infinitely many polynomials P ∈ P
(i1,i2,i3,i4)
n . It should

be clear that Mn(V,Ψ,Λ) =
⋃

ij∈{0,1}, (j=1,2,3,4)M
(i1,i2,i3,i4)
n (V,Ψ,Λ).

Two constants

d1 = q11 + q21 + 2r1 + s1 and d2 = (k12 + k22 + 2l2 +m2)/T (5)

which are connected with (2), (3), will be used further in our proof. The proof
consists of a series of propositions with different linearity conditions and different
ranges of d1 + d2 considered separately.

Besides, we have |P ′(αi1)| = H|αi1−αi2| · · · |αi1−αin| = H1−rij (i = 1, 2, 3),
where (r1j , r2j , r3j) = (q11, q21, r3) and |P ′(γi)|p = H−s1. These relations follow
directly from (3).

����������
 1� Let P ∈ P
(0,0,0,0,)
n . Then μM

(0,0,0,0)
n (V,Ψ,Λ) = 0.

P r o o f. According to (4) and (5) we have d1 + d2 < n + 1. The proof includes
four cases:

(1) n+ ε ≤ d1 + d2 < n+ 1;

(2) 5− ε ≤ d1 + d2 < n+ ε;

(3) ε ≤ d1 + d2 < 5− ε;

(4) d1 + d2 < ε.

We use scheme of the proofs of propositions 1, 2, 3 4 of [3], correspondingly
but there exist some distinctions. The distinctions appear in the sets of X =
(X1, X2, X3, X4) of the corresponding spaces. Namely, in [3] we have X =
(x1, z, ω) ∈ R× C ×Qp, in our case we have X = (x1, x2, z, ω) ∈ R2 × C ×Qp.
Note that in

(1) we use Lemmas 1–3 §3; in
(2) we use Lemmas 1–4 §3 and make a reduction to polynomials of the third

degree (in [3] the reduced polynomials have the second degree); in

84



SIMULTANEOUS DIOPHANTINE APPROXIMATION IN R2 × C× Qp

(3) we use Lemmas 1–4 §3 and make a reduction to polynomials of the forth
degree (in [3] the ones have the third degree); in

(4) we use Lemmas 1–3 §3 and make a reduction to polynomials of the third
degree (in [3] the ones have the second degree).

�

����������
 2� Let P ∈ P
(1,1,1,1)
n . Then μM

(1,1,1,1)
n (V,Ψ,Λ) = 0.

P r o o f. According to (4) and (5) we have d1+d2 ≥ n+1. The proof is similarly
to Proposition 5 [3]. �

Propositions 1, 2 are basic in proving of theorem. The other cases of linea-
rity are the combinations of previous two cases on the corresponding coordinates.
Namely, the cases (1, 0, 0, 0)-, (0, 1, 0, 0)-, (0, 0, 1, 0)-, (0, 0, 0, 1)-linearity are con-
sidered in the same manner since they are the permutations of the coordinates.
Thus, only the (1, 0, 0, 0)-linearity case will be investigated. It is proved analo-
gues to Proposition 6 [3], where for the second coordinate i2 (i2 = 0) we add the
inequality q21 + k22/T < 1 + v2 + λ2.

The cases (1, 1, 0, 0)-, (1, 0, 1, 0)-, (1, 0, 0, 1)-, (0, 1, 1, 0)-, (0, 0, 1, 1)-, (0, 1, 0, 1)-
linearity are considered in the same manner since they are the permutations of
the coordinates. Thus, only the (1, 0, 0, 1)-linearity case will be investigated. It is
proved analogues to Proposition 7 [3], where for the second coordinate i2 (i2 = 0)
we add the inequality q21 + k22/T < 1 + v2 + λ2.

The cases (1, 1, 1, 0)-, (1, 1, 0, 1)-, (1, 0, 1, 1)-, (0, 1, 1, 1)-linearity are conside-
red in the same manner since they are also the permutations of the coordinates.
Thus, only the (1, 1, 1, 0)-linearity case will be investigated. It is a combination
of Propositions 6, 7 [3], where for the second coordinate i2 (i2 = 1) we add the
inequality q21 + k22/T ≥ 1+ v2 + λ2, and for the third coordinate i3 (i3 = 1) we
take r1 + l2/T ≥ 1 + v3 + λ3.

The theorem is proved. Note that the similar method was used earlier in [7].
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