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LINEAR COMBINATIONS OF THE CLASSIC

CANTOR SET

Marta Paw�lowicz

ABSTRACT. The sets of the form C + mC, where m ∈ (0, 1) and C is the
classic Cantor ternary set, are described.

1. Introduction

G e o r g C a n t o r showed the construction of a perfect nowhere dense set [1].
We will denote this set by C and call it the classic Cantor set. Each linear
combination of the classic Cantor set C can be basically described as a suit-
able iteration of the set modified by enlarging each interval component (details
of construction of C can be found on page 49).

The problem is not taken out of nowhere although the beginnings of algebraic
summation of perfect sets in the real line were rather incidental. It started in 1917
when a Polish mathematican H u g o S t e i n h a u s published his discovery of
C +C = [0, 2] in [14]. Unfortunately he published his result not only during the
First World War, not only in an obscure mathematical journal, but also he wrote
his paper in Polish, altogether making it practically inaccessible to most of the
matematical community. Even the Central Library the Polish Mathematical So-
ciety in Warsaw does not posses a copy of the original S t e i n h a u s’ s paper
today due to losses suffered during the Second World War. No wonder that the
equality C +C = [0, 2] was rediscovered by R a n d o l p h in 1940 and this time
published in a well-established journal [11], [12]. The next development came in
1951 when W. R. U t z proved in [15] that C +mC is an interval if and only if
|m| ∈ [ 13 , 3].

The revival of investigation on algebraic sums of perfect sets started in 1987
with the famous Palis conjecture [10]. Motivated by his research on dynamical
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systems he asked whether the sum of two regular Cantor sets must be either
a set containing an interval or a set of Lebesgue measure zero. Here by a Cantor
set we mean any bounded nowhere dense perfect set in the real line. Thus the
classic Cantor ternary set is a Cantor set, but there are plenty of other Cantor
sets.

Important examples of Cantor sets are the Cantor sets Ea for a ∈ (0, 1
2 ),

which are the sets of all subsums of the geometric series
∞∑

n=1
an,

Ea :=

{
x ∈ � : ∃A ⊂ � x =

∑
n∈A

an

}
.

In particular the classic Cantor set C is the set 2E 1
3
exactly. In general the set

of subsums of any absolutely convergent series is a bounded perfect set [3], [4],
[5], [6]. However, it does not have to be nowhere dense. A fundamental sufficient
condition for the set of subsums of a monotone decreasing series of positive
numbers to be a Cantor set is

an >
∞∑

k=n+1

ak

for all sufficiently large indices n. It was formulated by S. K a k e y a about
one hundred years ago [5] (like S t e i n h a u s, he published his papier during
the First World War, he published it in a freshly founded Japanese mathemat-
ical journal, but he wrote his notes in English, not in Japanese, fortunately).
His conjecture, that the condition is also necessary was demonstrated false by an
example stated without details in 1980 by S h a p i r o and W e i n s t e i n in [16].
Finding a characterization of absolutely convergent series that have a Cantor set
as their sets of subsums remains an open and very challenging problem.

The Palis conjecture was given a negative answer by R. S a n n am i in [13].
However, pairs of Cantor sets C1, C2 such that C1 +C2 has a positive Lebesgue
measure and contains an interval are very rare and M o r e i r a and Y o c c o z
proved in [7] that in a generic sense, if the sum of the Hausdorff dimensions of C1

and C2 is larger than 1, then C1+C2 contains intervals. On the other hand, it is
known that if the sum of the Hausdorff dimensions of C1 and C2 is less than 1,
then C1 + C2 has Lebesgue measure zero.

Topological classification of sets of subsums of absolutely convergent series
was found by J. N ymm a n and R. G u t h r i e in [2]. A gap in the first proof
of the result was closed by J. N ymm a n and R. S a e n z in [9].

J. N ym a n used the classification theorem to investigate linear combinations
of Cantor sets of the form Ea + xEa, where x ∈ [0, 1] (see [8]). He obtained
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many nice but incomplete results. His findings wait for continuation still, but
this research will not be easy by any means. Nymann’s results on topological
classification of linear combinations of the set Ea were a part of my master
thesis at Szczecin University and it was in the process of writing the thesis when
I noticed that Utz’s method of proof from [15] can be extended to give a complete
description of all linear combinations of the classical Cantor sets.

2. Preparations

We want to find a the topological classification of simple linear combinations
of the Cantor set C, that is, we want to describe (up to homeomorphism) sets
aC + bC, where a, b ∈ �.

The problem of topological classification aC + bC, where a, b ∈ �, can be
reduced to the study C+mC, wherem ∈ [0, 1] (bearing in mind that −C = C−1)
because:

• if ab > 0, |a| > |b|,
then aC + bC = a(C + b

aC), where b
a ∈ [0, 1],

• if ab < 0, |a| > |b|, a < 0, b > 0,
then aC + bC = a(C − b

|a|C) = a(C + b
|a|C − b

|a|) = a(C + b
|a|C) + b,

where b
|a| ∈ [0, 1],

• if ab < 0, |a| > |b|, a > 0, b < 0,

then aC + bC = a(C + b
aC) = a(C − |b|

a C) = a(C + |b|
a C − |b|

a ) =

a(C + |b|
a C) + |b|, where |b|

a ∈ [0, 1].

Thus knowledge of the structure of the set C + mC, where m ∈ [0, 1] is
sufficient for understanding the topological structure of the set α(C +mC) + β,
where α, β ∈ �, because both dilation and translation are homeomorphisms.

Most likely, the reader knows the standard construction of the classic Cantor
set but I am going to sketch it briefly in the order to introduce some specialized
notation necessary to describe the proof of the main result of this note.

Let C0 be the interval [0, 1], C1 the set obtained from C0 by throwing away
the open middle third, that is the interval (13 ,

2
3 ). In general, let Ck+1 denote the

set obtained from Ck by removing the middle third (open set) of each interval
component of Ck. We will call a set Ck the kth iteration of the Cantor set.
Then the kth iteration Ck consists of 2k pairwise disjoint closed subintervals.
We can denote them by the letter P with an index s being a k-letter word
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from the alphabet {0, 2}. We will use the symbol Jk to denote the family of all
component intervals of Ck. Thus

Jk = {Ps}s∈Sk
,

where

Sk =
{
a1a2 . . . ak : ai ∈ {0, 2}}.

Figure 1.

Then we have

Ck =
⊔

P∈Jk

[minP,maxP ], (1)

where
⊔

is the symbol for a disjoint union and the classic Cantor set C is defined by

C =

∞⋂
k=0

Ck.

Pi1i2...ik =
[
l
(n)
k , r

(n)
k

]
,

where n = n1n2 . . . nk,
ij
2 = nj is entered in dyadic form. Here

l
(n)
k =

a
(n)
k

3k
, r

(n)
k =

a
(n)
k + 1

3k
and a

(n)
k (2)

are given by the recursive formula

a
(1)
0 = 0, a

(n)
k+1 = a

(n)
k , a

(2k+n)
k+1 = a

(n)
k + 2 · 3k, n = 1, 2, . . . , 2k

that can be proved by induction. Thus

Ck =

2k⊔
n=1

[
l
(n)
k , r

(n)
k

]
. (3)

50
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The classic Cantor set C can be also described as the set of all subsums of the

series
∞∑
n=1

an, where an = 2
3n , so as the set 2E 1

3
, where

E 1
3
=

{ ∞∑
n=1

εn · 1

3n
: εn ∈ {0, 1}

}
.

Intervals removed in kth iteration, which were not removed in any sth it-
eration with s < k, will be called kth order gaps. We enumerate these gaps

from left to right and denote by G
(n)
k , where k ∈ N while n = 1, . . . , 2k−1.

The length of each gap of the kth order is 1
3k
.

If n = n1n2 . . . nk is dyadic expansion of n and ij = 2nj , j = 1, 2, . . . , k, then

G
(n)
k =

(
i1
3
+

i2
32

+ · · ·+ ik−1

3k−1
+

1

3k
,
i1
3
+

i2
32

+ · · ·+ ik−1

3k−1
+

2

3k

)
.

Now observe that
2k−1⊔
n=1

G
(n)
k = Ck−1 \ Ck.

The number of gaps of the kth order is the same as a number of intervals
in (k − 1)th iteration.

Additionally, using previous notation, we can write

G
(n)
k =

(
r
(2n−1)
k , l

(2n)
k

)
, where n = 1, . . . , 2k−1.

By Gk we denote the union of all gaps created in kth iteration, so

Gk =

2k−1⊔
n=1

G
(n)
k ,

and we arrive at yet another description of the Cantor set

C = [0, 1] \
∞⋃
k=1

Gk.

Now we turn our attention to the Cartesian product C × C.

Sets in the form G
(n)
k × [0, 1], where G

(n)
k is a gap of the kth order, we will

call vertical crevices of the kth order, while sets in the form [0, 1] × G
(n)
k , where

G
(n)
k is gap of the kth order, we will call horizontal crevices of the kth order,

where k ∈ N and n = 1, . . . , 2k−1.
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From elementary properties of the Cartesian product, we get that

C × C =

∞⋂
k=0

(Ck × Ck).

3. Results

The equality in the following theorem is worth comparing with (3).

������� 1�

C +mC =

2k⊔
n=1

[
l
(n)
k , r

(n)
k +m

]
, for all m ∈ (0, 1),

where k is such that m ∈ [ 1
3k+1 ,

1
3k
), k ∈ �0, where l

(n)
k i r

(n)
k are the left and

right endpoints of nth component of the kth iteration Ck defined in (2).

The theorem has a very nice geometric interpretation. In particular, if
m ∈ (0, 1

3 ), we first find the smallest positive integer k such that m is smaller
than the length of the shortest gap of the kth iteration Ck. Next, we enlarge each
component interval Ps, s ∈ Sk, of Ck by moving its right endpoint by m to the
right. The disjoint union of the resulting 2k closed intervals is the set C +mC.

Using notation of the equation (1) the above theorem can be formulated as
follows

C +mC =
⊔

P∈Jk

[minP,maxP +m] for all m ∈ (0, 1),

where k is such that m ∈ [ 1
3k+1 ,

1
3k
), k ∈ �0.

We do not consider the case m = 1 in the theorem, but the case was already
described by Steinhaus in his article [14]. That is why we will take care only
of m ∈ (0, 1) in further considerations.

The proof of Theorem 1 is based on the following observations

�	
������� 1� Given z ∈ �, we define a straight line

Pm,z := {(x, y) ∈ �2 : y = −mx+ z},
Then z ∈ C +mC if and only if Pm,z ∩ (C × C) �= ∅. Thus we can reduce the
problem of describing the set C +mC to finding the z’s for which the line Pm,z

intersects the Cartesian square C × C. Because Pm,z ∩ (C × C) �= ∅ implies
z ∈ [0, 1 +m], we will focus only on z ∈ [0, 1 +m] in further considerations.
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�	
������� 2�

Pm,z ∩ (C × C) �= ∅ ⇐⇒ ∀k ∈ �0 Pm,z ∩ (Ck × Ck) �= ∅.
Geometrically it says that if the line Pm,z has a common point with C×C, then
it has a common point with product of iterations Ck × Ck for every k.

P r o o f. Necessity follows from the obvious inclusions C × C ⊂ Ck × Ck for all
indices k. In order to proof sufficiency, take a point

ck = (xk, yk) ∈ Pm,z ∩ (Ck × Ck) for each k.

Then (ck) is a sequence of points of [0, 1] × [0, 1] and it has a subsequence
converging to a point c ∈ [0, 1] × [0, 1] by the Bolzano-Weierstrass theorem.
Since Pm,z ∩ ([0, 1]× [0, 1]) is a closed set, we have c ∈ Pm,z. On the other hand,
the inclusions Ci×Ci ⊂ Ck×Ck for i ≥ k, imply that for any k almost all terms
of the subsequence belong to Ck × Ck. The set Ck × Ck is closed as well and
hence c ∈ Ck × Ck for every k. Thus

c ∈
⋂
k

(Ck × Ck) = C × C

which completes the proof. �

�	
������� 3�

Pm,z ∩ (C × C) = ∅ if and only if ∃k(Pm,z) ∈ �0 ∀i ≤ k(Pm,z),

Pm,z ∩ (Ci × Ci) �= ∅ and Pm,z ∩
(
Ck(Pm,z)+1 × Ck(Pm,z)+1

)
= ∅.

The index k(Pm,z) is uniquely determined for every line Pm,z disjoint
with C × C by Observation 3. This is the number of the last iteration
Ck(Pm,z) × Ck(Pm,z) of the set C × C having a common point with Pm,z.
Then iterations Ci × Ci for i > k(Pm,z) are disjoint from line the Pm,z .

�	
������� 4� If Pm,z ∩ (C × C) = ∅, then Pm,z lies in a horizontal crevice
of the order k + 1.

P r o o f. For simplicity we write k instead of k(Pm,z).
The phrase a line L goes through (or: lies in) a vertical crevice means that there

are j ∈ � and n ∈ {1, . . . , 2j−1}, such that Pm,z∩([0, 1]× [0, 1]) ⊂ (G
(n)
j × [0, 1]).

It is easy to observe that no line Pm,z with m ∈ (0, 1) and z ∈ [0, 1 +m] can go
through any vertical crevice of any order because m is too small.
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Similary, by the phrase a line L goes through (or: lies in) a horizontal crevice
we understand that there are j ∈ � and n ∈ {1, . . . , 2j−1}, such that

Pm,z ∩
(
[0, 1]× [0, 1]

) ⊂ (
[0, 1]×G

(n)
j

)
.

For the purposes of the proof we will use the notation described on page 50.

With this notation, each component interval of the jth iteration defines
uniquely all intervals from previous iterations which contain this interval and

Pi1i2...ij ⊂ Pi1i2...ij−1 ⊂ · · · ⊂ Pi1 ⊂ P, where it ∈ {0, 2}, t ∈ �.

If the line Pm,z does not have a common point with C × C, then there exists
k ∈ �0 by Observation 3, such that

Pm,z ∩ (Ck × Ck) �= ∅ and Pm,z ∩ (Ck+1 × Ck+1) = ∅,
that is, there is a component square S of Ck × Ck containing a portion of the
line and such that all four squares of Ck+1 × Ck+1 contained in the square of
Ck × Ck are disjoint from Pm,z.

Figure 2.

Let Pi1i2...ik be the projection of the square S on the x-axis and let n be the
index of the gap of order k +1 contained in the projection of S onto the y-axis.

We want to observe that the only possibility that the line with the slope
−m ∈ (−1, 0) passes through a component square of Ck × Ck and does not
intersect any of the squares belonging to Ck+1 × Ck+1 is that which lies in

Pi1i2...ik ×G
(n)
k+1.
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Figure 3. Areas 1, 2, 3, and 4 are open sets.

Indeed, if the line passes through the area number 1, it must have a slope
of absolute value less than 1, however, if the line goes through the square 2,
the slope must be of absolute value greater than 1, so there is no straight line
passing through areas 1 and 2 simultaneously. Similarly, we exclude the case
of a line passing through the squares 3 and 4. Since we consider lines with
negative slope and of absolute value less than one only, line passing through 2
and 3 are not taken into consideration. Hence the only option is a straight line
is passing through squares 1 and 4.

Let Pm,z(Pi1i2...ik) denote the projection onto y-axis of the segment of line
Pm,z lying above the interval Pi1i2...ik , that is

Pm,z(Pi1i2...ik) = {−mx+ z : x ∈ Pi1i2...ik}.

If

Pm,z ∩ (Ck+1 × Ck+1) = ∅ and Pm,z ∩ (Ck × Ck) �= ∅,

then

Pm,z(Pi1i2...ik) ⊂ G
(n)
k+1, which implies that m <

1

3
.

We now turn our attention to the segment of Pm,z lying above the larger interval
Pi1i2...ik−1

.
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Figure 4.

Because the points A,B,C are collinear (see the Figure 5), the line Pm,z

satisfies the condition Pm,z(Pi1,i2,...,ik) ⊂ G
(n)
k+1 and by assumption

Pm,z ∩ (Ck+1 × Ck+1) = ∅,

this line cannot go beyond the area Pi1i2...ik−1
× G

(n)
k due to the slope it must

have - we know that the line passes through the areas 1 or 4 (marked in the
Figure 5) and that m < 1

3 . If the line goes through the areas 2 or 3 it should

have slope m > 1
3 (bearing in mind that the points A,B,C are collinear), so the

only possibility is that the line Pm,z goes simultaneously through the areas 1
and 4, which implies the condition: m < 1

9 . So we have the situation depicted in
Figure 5.

Figure 5.
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Continuing the reasoning, if

Pm,z(Pi1,i2,...,ik−1
) ⊂ G

(n)
k+1, then Pm,z(Pi1,i2,...,ik−2

) ⊂ G
(n)
k+1

due to the slope the line must have - we know already that the line passes
through the area 1’ or 4’ (denoted in the Figure 6) and that m < 1

9 , if the line

goes through areas 2 ’or 3’ it should have m > 1
9 (note that the points A′, B′, C′

are also collinear), so the only possibility is that the line Pm,z simultaneously
passes through areas 1 ’and 4’, which implies the condition m < 1

27 . So we
have (see Fig. 6).

Figure 6.

and repeating the argument k-times we obtain

Pm,z(P ) ⊂ G
(n)
k+1 and m ≤ 1

3k+1
,

i.e., the line Pm,z lies in a horizontal slot ([0, 1] × G
(n)
k+1), which completes the

proof. �

The next observations follows from the definition of a horizontal crevice easily.

�	
������� 5� If the line Pm,z lies in a horizontal crevice of the ith order,
then

m <
1

3i
.

The above observation combined with Observation 4 yields

�	
������� 6� If the line Pm,z is disjoint from C × C, then

m <
1

3k(Pm,z)+1
.

Remark� Consider a line Pm,z, where m ∈ [ 13 , 1] and z ∈ [0, 1 + m].
If Pm,z ∩ (C × C) = ∅, then since k(Pm,z) ≥ 0, we obtain by the Observation 6

m <
1

3k(Pm,z)+1
≤ 1

3
,

a contradiction.
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Hence the line intersects C×C for any z ∈ [0, 1+m]. Thus C+mC = [0, 1+m]
for m ≥ 1

3 and we can now deduce the Utz’s theorem [15] easily, because

C + αC = α
(
C +

1

α
C
)

for α ∈ [1, 3].

�	
������� 7� If m ≥ 1
3i+1 and Pm,z ∩ (C × C) = ∅, then

k(Pm,z) ≤ i− 1.

�	
������� 8�

Pm,z ∩ [0, 1]2 ⊂
[
[0, 1] ×

(
r
(i)
k , l

(i+1)
k

)]
⇐⇒ z ∈

(
r
(i)
k +m, l

(i+1)
k

)
.

So the line Pm,z goes through a crevice[
[0, 1] ×

(
r
(i)
k , l

(i+1)
k

)]
if and only if z ∈

(
r
(i)
k +m, l

(i+1)
k

)
.

P r o o f o f T h e o r e m 1.
Takingm ∈ [ 1

3k+1 ,
1
3k
) and k ∈ �. The casem ∈ [ 13 , 1) has already been discussed

in the remark following Observation 6, so we get:

{z ∈ [0, 1 +m] : Pm,z ∩ (C × C) = ∅}=
Obs. 3
=

⋃
j∈�0

{z ∈ [0, 1 +m] : Pm,z ∩ (C × C) = ∅ and k(Pm,z) = j} =

Obs. 7
=

k−1⋃
j=0

{z ∈ [0, 1 +m] : Pm,z ∩ (C × C) = ∅ and k(Pm,z) = j} =

Obs. 4
=

k−1⋃
j=0

{z ∈ [0, 1 +m] : Pm,z

lies in a horizontal crevice of the(j + 1)th order} =

Obs. 8
=

2k−1⋃
i=1

(
r
(i)
k +m, l

(i+1)
k

)
.

Thus, for the complement of the set we have the equality

{z ∈ [0, 1 +m];Pm,z ∩ (C × C) �= ∅} =

2k⋃
i=1

[
l
(i)
k , r

(i)
k +m

]
.

We have obtained the thesis of Theorem 1 (see Observation 1). �
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The choice of k described in Theorem 1 is not the only possible option.
Actually, any iteration Cs, where s ≥ k can be used. The only difference is
that in result increased intervals will not be disjoint.

��������� 1�

C +mC =

2k⊔
i=1

[
l
(i)
k , r

(i)
k +m

]
=

2s⋃
i=1

[
l(i)s , r(i)s +m

]
, for all m ∈ (0, 1),

where k is such that m ∈ [ 1
3k+1 ,

1
3k ) and ∀s ≥ k, where k, s ∈ �0 .

��������� 2� If m ∈ [ 1
3k+1 ,

1
3k
), then the set C + mC contains as many

intervals as kth iteration, i.e., 2k.

��������� 3�

C +mC =
⋃
x∈C

[x, x +m], for all m ∈ (0, 1).

The theorem together with the proof presented here can be easily extended
to linear combinations of the form Ea + xEa for a ∈ [ 13 ,

1
2 ) and x ∈ (0, 1).
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