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ABSTRACT. It is known that the development of quantum computers will break

the cryptographic schemes that are in use today. Since Shor’s algorithm is able
to solve the factoring and discrete logarithm problems, all cryptographic systems
based on these two problems will get broken in the presence of large-scale quantum
computers. Lattice-based schemes, however, are considered secure against attacks
with these new machines. In this paper we present an overview of lattice-based
cryptosystems, showing the most recent and the most promising candidates for

encryption and signatures based on lattice problems. We explain the advantages
and disadvantages of the cryptographic schemes. We also adjoin details about
zero knowledge identification. With this work we try to give insight to one of the
most promising candidates of future cryptography, for the time when potential
quantum computers exist. We also point out drawbacks of these systems, which
discloses directions for future work in lattice-based cryptography.

1. Introduction

Lattice-based cryptography gained a lot of interest in the past few years. It is
a very vivid field of research with numerous publications at the top conferences
in the cryptographic community. Multiple workshops and schools are organized
in this area. New cryptographic schemes based on lattices are invented and,
as a highlight, the first fully homomorphic encryption scheme has been developed
based on the hardness of lattice problems.

As of today, the security of cryptosystems that are used in the wild is based
on well-known number theoretic problems, namely the factorization problem and
the problem of computing discrete logarithms. Algorithms for solving these two
problems have been studied for decades. The fastest classical algorithms have
runtime that is sub-exponential in the main security parameter. On quantum
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computers, however, Shor’s algorithm is able to solve both problems in polyno-
mial runtime. Therefore, the construction of powerful quantum computers will
threaten modern cryptography.

In contrast, the security of lattice-based cryptosystems is based on problems
that, so far, cannot be attacked with quantum computers. Even on classical
computers there is no algorithm for solving these problems which runs faster
than exponential in the main security parameter. Lattice-based cryptography
belongs to the field of post-quantum cryptography, which furthermore consists
of cryptosystems based on problems in coding theory, cryptosystems based on
multivariate quadratic equation systems and signature schemes based on hash
functions.

Compared to the other candidates of the post-quantum era, lattice-based
cryptography has one important advantage: The security of lattice schemes can
be reduced to worst-case problems, whereas in other areas of cryptography secu-
rity is based on average-case problems only. This property distinguishes lattice-
based cryptography not only from the other post-quantum areas, but from all
used candidates in cryptographic practice.

There are some more advantages of lattice-based cryptography. Most of the
schemes in this area only require very few and easy operations in order to com-
pute signatures or ciphertexts. The operations in use are products of matrices
with vectors, sums of vectors, or multiplication of polynomials. These operations
are faster than, for example, exponentiation, that is used in current classical sys-
tems like RSA or ElGamal.

The first lattice-based schemes date back to the mid 90s. The first secure
scheme equipped with a hardness proof based on lattice problems was the hash
function by A j t a i [Ajt96]. Its security was based on the Short Integer Solu-
tion problem (SIS). H o f f s t e i n, P i p h e r and S i l v e r m a n proposed NTRU
encryption and signature scheme [HPS96]. G o l d r e i c h, G o l d w a s s e r and
H a l e v i proposed the GGH encryption scheme [GGH97]. Of those early schemes
only NTRU encryption and Ajtai’s hash function remain secure. In subsequent
years, Ajtai’s original work was improved [GGH97], [MR07]. In 2005, R e g e v
proposed a new lattice problem, namely the Learning with Errors problem
(LWE). It allowed the construction of worst-case reductions for encryption sche-
mes [Reg05]. Development of lattice-based cryptography until 2008 is well de-
scribed in [BDS08]. After 2008, there were many new proposals, e.g., signature
schemes [LM08], [Lyu09], [Lyu12], encryption schemes [SSTX09], [LP11], [SS11],
fully homomorphic encryption schemes [Gen09], [BV11], [BGV11], and many
more. We decided to give this overview since the current schemes are already
very promising and allow a good overview of what is possible based on lattice
problems. In addition, reviewing what has been done so far will reveal drawbacks
that can be avoided in the future.
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Our contribution

In this paper we present an overview of the most recent and most promising
cryptographic schemes with hardness based on lattice problems. More exactly,
we present the following schemes:

• the treeless signature scheme in [Lyu12],

• the trapdoor-signature scheme in [GPV08] using the trapdoor of [MP12],

• the LWE encryption scheme in [LP11],

• the provably secure NTRU encryption scheme in [SS11], and

• the identification scheme by zero-knowledge proofs in [KTX08].

We discuss their advantages and disadvantages and try to motivate why these
schemes are valuable candidates for future cryptography.

Organization of the paper

The remainder of the paper is organized as follows. We present the required
background on lattices and cryptography as well as our notation in Section 2.
The description of the selected cryptographic signature and encryption schemes
is shown in Section 3 and Section 4, respectively. Further schemes are detailed
in Section 5. Finally we present a conclusion in Section 6.

2. Preliminaries

Originally, most lattice schemes are developed over integer lattices, i.e., the
schemes mostly deal with matrices and vectors as elements. In order to have
more efficient computations and save storage, most of the schemes were later
transformed to the ring setting, namely dealing with polynomials over rings
instead. Here we deal with the more efficient ring variants of the schemes. Only
the trapdoor signature and the identification scheme are matrix-based.

We will use the polynomial rings R = Z[x]/〈f(x)〉 and Rq = Zq[x]/〈f(x)〉
for a polynomial f(x) that is monic and irreducible over Z. An example choice
for f(x) is f(x) = xn + 1 for n being a power of 2. This is the most commonly
used polynomial ring in cryptography. Other possible choices are f(x) =

∑n
i=0 x

i

for n+ 1 being prime.

Ring elements are denoted p, whereas vectors of ring elements are written
as p̂. [m] denotes the set {1, . . . ,m} and a||b is the usual string concatenation
of a and b.

For x ∈ Rq with x = x0 + x1x + · · · + xn−1x
n−1 ∼= (x0, . . . , xn−1)

T let
‖x‖∞ := maxi=0,...,n−1(|xi|) denote the �∞-norm, let ‖x‖1 := |x0|+ · · ·+ |xn−1|
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denote the �1-norm, and for p > 1 let ‖x‖p :=
(∑n−1

i=0 |xi|p
)1/p

denote the
�p-norm. The �2-norm usually is referred to as Euclidean norm.

For choosing (“sampling”) elements of sets or according to distributions, let

x
$← S denote the sampling of a uniformly random chosen element x from the

set S, i.e., x is the output of a uniformly random choice of an element out
of the set S, and let x ← D denote the sampling of the element x according to
the distribution D, i.e., the element x is chosen as an output of an algorithm
which has distribution D as its output distribution for elements of an underlying
set.

As needed in later sections, let x← Dn
v,σ denote the sampling of x according

to an n-dimensional discrete Gaussian distribution centered at v with standard
deviation σ, and let

Dn
v,σ(x) := ρnv,σ(x)

/∑
z∈Zn

ρnv,σ(z)

with
ρnv,σ(x) := exp

(−(||x− v||/σ)2/2) /(σ√2π)n
be the probability for this event. For brevity we write Dn

σ for Dn
0,σ.

Furthermore, we sample vectors from discrete Gaussian distributions over
lattices. That is x← DL,σ, where x ∈ L with standard deviation σ.

2.1. The ring-LWE problem

Here we state the ring-LWE problem. The ring-LWE problem defined in
[LPR10] is the adaption of the well-known LWE problem (for vectors or ma-
trices, respectively) to polynomial rings.

Let q ≥ 2 be an integer modulus, let n > 1 be the degree of the polynomial
f(x) defining Rq, and let χ be an error distribution (the distribution χ will be
the discrete Gaussian error distribution in most cases).

In the general LWE setting, a vector s ∈ Z
n
q (the secret) is given, and a vector

a ∈ Z
n
q is chosen uniformly at random. Furthermore, two things are computed:

an error term e according to the (“random”) error distribution χ, i.e., e ← χ,
and a pair (a, t) with t = 〈a|s〉+ e mod q.

In the search variant of the LWE problem, one has to find the vector s when
given an arbitrary number of sample pairs (ai, ti). In the decision variant, one
is asked to distinguish between arbitrary numbers of LWE sample pairs (ai, ti)
and uniformly drawn samples (ai, ti) from Z

n
q × Zq.

The hardness of the (matrix) LWE problem is discussed in [Reg05], [Pei09].
Two practical attacks, the so-called distinguishing and decoding attacks on LWE-
-based cryptosystems, are described in [LP11].
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2.2. The SIS problem over rings

The search variant of the Small Integer Solution problem �p-SISq,m,β,f with
�p-norm over rings and with parameters q,m, β, f is defined as follows: Given
n = deg

(
f(x)

)
, and m polynomials g1, . . . ,gm chosen uniformly and indepen-

dently from Rq = Zq[x]/〈f(x)〉, find polynomials e1, . . . , em ∈ Z[x] not all zero
such that

∑m
i=1 eigi = 0 ∈ Rq and ‖e‖p ≤ β with e = (eT1 , . . . , e

T
m)T. Informally

speaking, in the SIS problem one is asked to find a small integral and non-zero

element of the kernel of the function g :
(
Z[x]

)m→ Rq, (e1, . . . , em) �→∑m−1
i=0 giei.

Mostly when just writing SIS, we mean the search variant of SIS.

In the decisional variant of the SIS problem, one is given either the set(
(g1, . . . ,gm), e

)
uniformly chosen from Rm

q × Rq or
(
(g1, . . . ,gm), t

)
, where

all gi are uniformly chosen from Rq, but t =
∑m−1

i=0 giei for small integral ele-
ments ei, not all zero. The task is to distinguish both cases with non-negligible
advantage, i.e., to state the correct case with probability significantly different
from simply guessing.

In the work of [LM06] and [SSTX09], the authors show reduction proofs in
the infinity and Euclidean norm from the shortest vector problem (SVP) to SIS
over rings. An algorithm that solves SIS can be used to solve SVP for polynomial
approximation factors in ideal lattices in the worst case.

3. Signature schemes

In this section we present the two recent, very efficient and most promising
signature schemes based on hard lattice problems, i.e., the treeless signature
scheme of [Lyu12] and the trapdoor-signature scheme of [GPV08] using the new
trapdoor of [MP12].

3.1. Treeless signatures

The first provably secure signature scheme, whose security was based on ideal
lattice problems, was introduced by L y u b a s h e v s k y and M i c c i a n c i o
in [LM08]. Unfortunately, this scheme was only able to produce one-time sig-
natures; combined with a (hash) tree structure, one could obtain a signature
scheme which allowed to sign a limited number of messages. To address and
solve this limitation, Lyubashevsky removed the tree structure and developed
several versions of an unbounded signature scheme, called “treeless signature
scheme” (TSS), in a series of works [Lyu08b], [Lyu09], [Lyu12], which is prov-
ably secure in the Random Oracle Model.

The today’s most efficient (ring) variant of the treeless signature scheme was
proposed in [Lyu12] and is parametrized as follows:
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• the lattice dimension n, being a power of 2, and the modulus q, which
define the underlying ring Rq = Zq[x]/〈f(x)〉 with f(x) = xn + 1,

• a number γ of polynomials in the signing key and an integral bound d
on their coefficients,

• an integral bound κ on the size of the coefficients of the polynomials output
by the Random Oracle H,

• the (real) standard deviation σ of a discrete Gaussian distribution used
in the signature algorithm, and

• a (real) smoothing parameter M .

Define the set of signing keys S := {f ∈ Rq : ||f ||∞ ≤ d} and the set {f ∈ Rq :
||f ||∞ ≤ 1 and ||f ||1 ≤ κ} of outputs of the Random Oracle H for inputs from
{0, 1}∗, then the treeless signature scheme can be described as follows:

KeyGen(1n): Sample ŝ = (s1, . . . , sγ)
$← Sγ and â = (a1, . . . , aγ)

$← Rγ
q .

Output signing key (â, ŝ) and verification key (â, t) with t :=
∑γ

i=1 aisi.

Sign(μ, (â, ŝ)): Sample y1, . . . ,yγ ← Dn
σ and compute c = H

(∑γ
i=1 aiyi||μ

)
and ẑ = (z1, . . . , zγ) with zi = sic + yi. Output signature (ẑ, c) with
probability

min

(
1,

Dm
σ (z̄)

MDm
c̄,σ(z̄)

)
, (1)

where m = γn, and z̄ :=
(
zT1 , . . . , z

T
γ

)T
and c̄ :=

(
(s1c)

T , . . . , (sγc)
T
)T

are m-dimensional vectors.

Verify(μ, (ẑ, c), (â, t)): Check if ‖z̄‖ ≤ 2σ
√
m and c = H

(∑γ
i=1 aizi−tc||μ)

hold. If so, output 1 (accept), otherwise 0 (reject).

Concrete parameter choices for this scheme can be found in Table 1, where
the security level for the instantiations is for δ = 1.007 [Lyu12]. The parameter
M = exp

(
12dκ

√
m/σ + (dκ

√
m/(2σ))2

)
used in the output-condition (1) of the

signing algorithm is needed to decouple the distribution of the signature (ẑ, c)
from the distribution of the secret key ŝ.

The security of the treeless signature scheme is based on the hardness of the
ring equivalent of the �2-SISq,γ,β,f search problem with β = (4σ + 2d′κ)

√
m

for d′ = (2α + 1)d + α and for some positive integer α, and on the hardness
of the decisional variant of the ring-SISq,γ,d,f problem.

The sizes for a signing key, a verification key, and a signature are (in bits):

Signing Key Verification Key Signature

TSS 2γn · log2(q)� (γ + 1)n · log2(q)� (γ + 1)n · log2(q)�

86



A SELECTION OF RECENT LATTICE-BASED SIGNATURE AND ENCRYPTION SCHEMES

Table 1. Treeless Signature Scheme: Parameters according to [Lyu12],
Fig. 2, columns IV and V.

n 512 512

q 224 231

d 1 31

m = 2n 1024 1024

κ s.t. 2κ
(
n
κ

) ≥ 2100 14 14

σ = 12dκ
√
m 5376 166656

M = exp
(
12dκ

√
m/σ + (dκ

√
m/(2σ))2

)
2.72 2.72

approx. signature size (bits) ≈ m log(12σ) 16500 20500

approx. signing key size (bits) ≈ m log(2d+ 1) 2896 11585

approx. verification key size (bits) ≈ n log q 23170 32768

For practical parameters, i.e., n = 512, q ≈ n4 and γ = 2, the signing key as
well as the verification key have a size of about 18 kilobytes and the signature
is of about 10 kilobytes in size.

The number of required operations for key generation, signature creation and
verification are:

Gauss-samplings Polynomial mult. Polynomial add.

Key generation 0 γ γ − 1

Signing k(γ + 2) kγ k(2γ − 1)

Verification 0 γ γ

The parameter k denotes the number of sampling rounds during signature
creation (due to the output probability which can result in rejections of produced
signatures (ẑ, c)) and typically is k ≤ 7.

The advantages of the ring variant of the treeless signature scheme are small
key and signature sizes which are (up to some factor) quasi-linear in the security
parameter n: The signature key is of size 2γn · log2(q)�, and the verification key

and the signature are of size (γ+1)n·log2(q)�, i.e., all sizes being Õ(n). A second
advantage are the small number of operations that have to be performed to create
the keys, or compute or verify a signature.

On the other hand, during the signing process we have a conditional output
of the produced signature which results in a probabilistic signature creation due
to the unknown rejection rate. Furthermore, the scheme itself is proven to be
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secure in the Random Oracle Model, but not in the standard model. Thus, prac-
tical instantiations may lose the security properties provided by the authors.
As a last point, there is no equivalence proof for the decisional and the search
variant of the ring-SISq,γ,d,f problem for d chosen according to [Lyu12]
(“low-density SIS”) since all equivalence relations are only shown for d being
polynomial in the security parameter n. Thus, we cannot simply relate the secu-
rity of the ring variant of the treeless signature scheme to a single problem like
ring-SISq,γ,d,f , as is done for the matrix version of the scheme.

3.2. Trapdoor signatures

The signature scheme due to G e n t r y, P e i k e r t and V a i k u n t a n a t h a n
[GPV08] consists mainly of sampling a preimage from a hash function featured
with a trapdoor. The security of this construction is based on the hardness of SIS.
In [MP12] M i c c i a n c i o and P e i k e r t provided a new trapdoor notion that
improves all relevant bounds of the previous proposals [GPV08], [Ajt99], [AP09].
Similar to the constructions of [Ajt99], [AP09] they start with a uniform random
matrix Ā and extend it to a matrix A = [Ā|TG− ĀR] via deterministic trans-
formations. The main idea behind this proposal is to use a primitive matrix G
generating Z

n
q and for which one can easily sample preimages and find a basis S

satisfying the congruence relation G · S ≡ 0. Starting from the primitive vector
gT := (1, 2, 4, . . . , 2k−1) ∈ Z

k
q where k = log2 q� one can find an associated

basis Sk for the lattice Λ⊥
q (g

T ) which is defined by

Sk =

⎡
⎢⎢⎢⎣

2 0
−1 2

. . .
. . .

0 −1 2

⎤
⎥⎥⎥⎦ .

From this vector gT and the associated basis Sk one can easily create
S ∈ Z

nk×nk
q and the parity check matrix G ∈ Z

n×nk
q , respectively:

G =

⎡
⎢⎢⎢⎢⎢⎣

gT 0
gT

. . .

gT

0 gT

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

Sk 0
Sk

. . .

Sk

0 Sk

⎤
⎥⎥⎥⎥⎥⎦ .

In what follows we describe the preimage sampling algorithm for a syndrome u
from the q-ary lattice Λ⊥

u (G) = {x | G · x ≡ u mod q} using the randomized
nearest plane algorithm. Due to the niceness of the orthogonalized basis the
algorithm reduces to a few steps where a0 = u:
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for i = 0, . . . , k− 1 do :

(1) vi ← D2Zn+ai,s

(2) ai+1 =
ai−vi

2

Output: (v0, . . . , vk−1)
T

The authors of [MP12] provide two different types of instantiations for the
trapdoor generation algorithm, namely the statistical and computational one,
where each of them uses a different distribution to sample the trapdoor R.

In order to use the signature scheme of [GPV08] it is required to sample
a preimage from a spherical discrete Gaussian for a given syndrome u ∈ Z

n
q

using the trapdoor R. The Gaussian sampling algorithm mainly consists of two
parts. The first part involves the trapdoor R which is used to transform a sample
x from the primitive lattice Λ⊥

u (G) with parameter

r ≥‖ S ‖ ·
√

ln
(
2n(1 +

1

ε
)
)
/π ≈ 9

to a sample y = [RI ]·x of the lattice Λ⊥
u (A). Sampling from a lattice Λ according

to the discrete Gaussian distribution with parameter t means to use an appropri-
ate sampling algorithm (e.g., rejection sampling) in order to get a sample x ∈ Λ

from the distribution DΛ,t with probability ρt(x)/ρt(Λ) where ρt(x) = e−π‖x‖/t2

denotes the standard n-dimensional Gaussian function. Due to the fact that [RI ]

is not squared and the distribution of y with covariance COV = r2 [RI ] [R
� I] is

skewed it leaks information about the trapdoor. An attacker could collect some
samples and reconstruct the covariance matrix. Therefore we need the second
part to correct this flaw. This can be done by adding some perturbations from
a properly chosen distribution. Using the convolution technique from [Pei10] we
can choose a parameter s that is slightly larger than the largest eigenvalue of the
covariance matrix COV, and generate Gaussian pertubations p ∈ Z

m having co-
variance Σp = s2I−COV. The square root

√
Σp can be computed via cholesky

decomposition. In order to obtain a vector b that is from a spherical Gaussian
with parameter s it is required to sample a preimage y for an adjusted syndrome
a = u−Ap from Λ⊥

u (A). Then b = p+y provides a spherical distributed sample
satisfying Ab ≡ u mod q.

The following signature scheme is the same as in [GPV08] except that the key
generation algorithm of [MP12] is used. The main idea is to sample a preimage x
for the hash value H(μ) of the message μ so that A · x ≡ H(μ), where H(·)
denotes a random oracle.

KeyGen(1n): Sample Ā
$← Z

n×m̄
q and R

$← D, where R ∈ Z
m̄×w,

w = log2(q)�·n and D a distribution, which depends on the instantiation.
Output the signing key R and the verification key A = [Ā|TG − ĀR] ∈
Z
n×m
q , whereG is a primitive matrix and T ∈ Z

n×m
q is an invertible matrix.
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Sign(μ,R): Compute syndrome u = H(μ), sample p ← D
Zm,
√

Σp
and

determine perturbed syndrome v = u−A ·p. Then sample z← DΛ⊥
v (G),r,

where r2I is the covariance matrix and

r ≥‖ S ‖ ·
√
ln

(
2n

(
1 +

1

ε

))/
π.

Compute x = [p+ R
I z] and output the signature (x, s).

Verify(μ, (x, s), (H,A)): Check whether A · x ≡ H(μ) mod q and ‖x‖ ≤
s · √m. If so, output 1 (accept), otherwise 0 (reject).

This scheme has the following efficiency measures. The size of private and
public key as well as of a signature are (in bits):

Public Key Private Key Signature

Trapdoor
nmk, m̄nk

(
1 + log2(4σ)�

)
, m · ⌈(1 + log2(s · 4)

)⌉
,

[GPV08]
k = log2(q)� e.g., R

$← DZm̄×w,σ
s ≈ (

√
m̄+

√
n) · σ · r

[MP12]

For key generation, signature creation and verification, the required opera-
tions are:

Gauss- Matrix-matrix Matrix-vector Vector Cholesky
sampl. mult. mult. add. decomp.

Key generation 1 2 0 0 1

Signing 2 0 3 2 0

Verification 0 0 1 0 0

4. Encryption schemes

In this section we present the two most promising lattice-based encryption
schemes, namely the provably secure variant of the NTRU encryption scheme
[SS11] as well as the ring-LWE based encryption system of [LP11].

4.1. LWE encryption

There are multiple encryption schemes whose security is based on the LWE
problem. The development started with the work of R e g e v [Reg05], who pre-
sented a single-bit encryption scheme based on matrices. Followup schemes were
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presented in [Mic10]. The work of [LPR10] presents the first ring-based vari-
ant, it means, a more efficient encryption scheme with hardness based on the
ring-LWE problem.

In this section, we detail the scheme of L i n d n e r and P e i k e r t [LP11],
which presents the most recent development in this line of research. The au-
thors of [Mic10], [LP11] show the matrix variant and explain how to generate
a polynomial (ring-based) variant of the scheme. Here we only present the poly-
nomial variant due to the advantages in key size and runtime of this variant. This
scheme has already been presented in [GFS12]. It also includes a practical imple-
mentation of the LWE scheme. The authors present a software implementation
of the matrix and the ring variant of the LWE scheme as well as a hardware
implementation on FPGA of the ring-based scheme.

Let χk and χe be error distributions over R for key generation and encryption.
The LWE-Polynomial encryption is a tuple (KeyGen,Enc,Dec), where

KeyGen(a): Choose r1, r2 ← χk and let p = r1 − a · r2. Output public key
p and secret key r2.

Enc(a,p,m ∈ Σn): Choose e1, e2, e3 ← χe. Let m̄ = encode(m) ∈ Rq. The
ciphertext is then (c1, c2) ∈ R2

q with c1 = a·e1+e2 and c2 = p·e1+e3+m̄.

Dec((c1, c2), r2): Output decode(c1r2 + c2).

The functions encode and decode compile messages from the message space
to Rq (encode) and vice versa (decode). Both functions are detailed in [LP11]
and [GFS12]. Choices for useful parameters can be found in [LPR10], [LP11] and
[GFS12].

The decoding during decryption will fail with a certain probability. If |e1 ·r1+
e2 · r2+e3| is bigger than the threshold t = �q/4�, decoding will fail. The failure
probability is depending on the error distributions χk and χe, which is upper
bounded by a value δ. It is common to chose χk = χe = χ [LP11], [GFS12].
Different choices of the parameters n, q, c and s (s is the standard deviation of
the Gaussian distribution χ) lead to different values of δ.

Following [GFS12], s should be chosen such that

s2 =

√
2π

c
· t√

2n · ln(2/δ) .

The encryption system we present here is provably secure as long as the deci-
sion ring-LWE problem is hard. I.e., an attacker breaking the LWE-Polynomial
encryption system is able to solve the ring-LWE problem instance, and thus is
able to solve certain lattice problems in all lattices of a certain smaller dimension
(the so-called worst-case hardness). So far, most researchers believe that LWE
in polynomial rings is as hard as over the integers. Therefore, the restriction
of the security of the scheme to ring-LWE is not a concern.
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The size of private and public key as well as the size of a cipher are (in bits):

Public Key Private Key Ciphertext

LWE
2n · log2(q)� n · log2(q)� 2n · log2(q)�

q ≈ 5000

For key generation, computing a ciphertext, and decrypting it, the required
operations are:

Gauss-samplings Polynomial mult. Polynomial add.

Key generation 2 1 1

Encryption 3 2 3

Decryption 0 1 1

Here we left out the computation of encode and decode.

4.2. NTRU encrpytion

NTRUEncrypt is a lattice-based encryption scheme proposed in 1996 by
H o f f s t e i n, P i p h e r and S i l v e r m a n [HPS96]. NTRU is a promising en-
cryption scheme because of its efficiency and because it remains essentially un-
broken after more than a decade. However, there exists no proof that breaking
NTRU is as hard as the underlying lattice problem. Recently, S t e h l é and
S t e i n f e l d [SS11] proposed a variant of NTRU and proved that breaking this
variant is as hard as worst-case lattice problems. In this section we present this
latest version of NTRU, which we refer to as NTRU-CPA.

The encryption scheme NTRU-CPA=(KeyGen,Enc,Dec) is specified by pub-
licly known parameters as follows:

• the dimension n > 8, which must be a power of 2, determines the cyclo-
tomic polynomial f(x) = xn + 1 and the quotient ring R := Z[x]/〈f(x)〉,
• a prime q > 5 such that q ≡ 1 mod 2n, determines the ciphertext space
Rq = R/qR,

• a polynomial p ∈ R×
q with small coefficients (typically p = 2, p = 3 or

p = x+ 2), determines the message space Rp = R/pR,

• a distribution χ determines the ring-LWE noise,

• and a positive real σ determines the discrete Gaussian distribution DZn,σ

used for key generation.
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NTRU-CPA key generation, encryption and decryption algorithms are defined
as follows:

KeyGen(1κ): Sample f ′ from DZn,σ, let f = pf ′ + 1 mod q; if f /∈ R×
q

resample. Sample g from DZn,σ; if g mod q /∈ R×
q resample. Set secret

key sk := f and public key pk := h := pg/f ∈ Rq.

Enc(pk,m): Sample s, e ∈ Rq from χ, and return ciphertext c := hs+pe+
m ∈ Rq.

Dec(sk, c): Compute c′ := f · c ∈ Rq and return c′ mod p.

Parameter choices

Concrete parameters for NTRU-CPA can be selected as follows.

• Fix p = 2 for simplicity and because it provides a useful message space.

• Set the distribution χ to be a discrete Gaussian distribution DZn,r,

• and choose r = 8 so that the discrete Gaussian approximates a continuous
Gaussian well.

• Fix a value for n.

• Choose a prime q between 221r2n5 ln(n) and 222r2n6 ln(n) for correctness.

• Set σ = 2n
√
ln(8nq)q.

For this choice of parameters, the public key is statistically close to uniform,
thus an attack implies solving the ring-LWE problem. For the choice of n, the
running time of the distinguishing attack as described in [MR08] is given by

log2(tadv) =
14.4n log2 q

log22(c)
− 110, (2)

where

c =
q

r

√
ln(1/ε)/π and ε

is the advantage of the adversary. Table 2 shows parameters as described above
and the corresponding run time of an attack.

The NTRU-CPA scheme has the following efficiency measures. The size of pri-
vate and public key as well as the size of a cipher in bits are:

Public Key Private Key Ciphertext

NTRU nlog2 q� nlog2 q� nlog2 q�
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Table 2. Parameter values for NTRU-CPA and running time estimates for
best known attacks. For given values of n, columns two through four show
values for parameters q, σ and r that specify an instance of NTRU-CPA.
For the given adversary advantage values, column six shows the estimated

running time of a distinguishing attack.

Parameters Advantage Attack time [s]

n log2 q σ r log2(1/ε) log2 t

128 54.28 2.53× 1011 8 32 -76.67

256 59.47 3.20× 1012 8 32 -49.06

512 64.64 4.00× 1013 8 32 2.29

1024 69.79 4.96× 1014 8 32 98.24

2048 74.93 6.10× 1015 8 32 278.31

For key generation, computing a ciphertext, and decrypting it, the required
operations are:

Gauss-sampl. Polyn.mult. Polyn.add. Polyn.inv.

Key generation 2 2 0 1

Encryption 2 2 2 0

Decryption 0 1 0 0

5. Further schemes

5.1. Zero knowledge

With strong security guarantees, lattice problems are also used to construct
identification schemes, where zero-knowledge proofs are the main tool to con-
struct secure identification protocols [FFS88]. The early study of zero-knowledge
proofs based on lattice problems is due to G o l d r e i c h and G o l d w a s s e r
[GG00], in which they showed that coGapSVP and coGapCVP are in the class of
statistical zero-knowledge proofs (SZK). In 2003, M i c c i a n c i o and V a d h a n
constructed a SZK protocol with efficient prover [MV03]. Moreover, P e i k e r t
and V a i k u n t a n a t h a n proposed a non-interactive statistical zero-knowledge
proof system with efficient prover based on the problems GapSIVP, GapCRP,
and GapGSMP [PV08]. Later, L y u b a s h e v s k y [Lyu08a], as well as K a w a -
c h i, T a n a k a, and X a g a w a [KTX08], proposed concurrently-secure identi-
fication schemes based on lattice problems. B e n d l i n et al. [BD10] constructed
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a scheme based on worst-case GapSVP, in which proofs of plaintext knowledge
can be obtained using the LWE scheme by R e g e v [Reg05].

Here, we describe in more detail the scheme of K a w a c h i, T a n a k a, and
X a g a w a [KTX08], which is essentially a variant of S t e r n’ s framework [Ste96]
with the core string commitment technique replaced with one that is based
on lattice problems. This scheme itself has several variants. For example,
X a g a w a and T a n a k a rebuilt the scheme based on NTRU [XT09];
the variant of C a y r e l et al., allows for a reduced soundness error [CLRS10];
the variant of S i l v a et al., incurs a lower communication cost and hence is
suitable for practical use [SCL11]. We explain the basic variant which shows
the construction and allows for simpler explanation than the followup versions.

First, we define the lattice-based hash function and string commitment, which
will be used in zero-knowledge proof systems.

Lattice-based Hash: fA(x)=Ax mod q, where A∈Zn×m
q , q=q(n)=nO(1),

m = m(n) > n log q(n) and x ∈ {0, 1}m.

This is a provably secure hash function [Ajt96], [GGH96] for suitably chosen
m and q. That is, a collision in the hash function would imply solving the worst-
case GapSVP2

Õ(n)
problem [MR07].

Lattice-based String Commitment Com(s): Let n, r, l ∈ Z and m = 2r.
Step 1: S ← pad(s), where the padding function pad could be according
to the Merkle-Damg̊ard construction.

Step 2: Cut S into (S0, . . . , Sk), where Si ∈ {0, 1}r−l.

Step 3: H0 = 0 (or a fixed initialization vector).

Step 4: For i = 0 to k do Hi+1 ← fC(g(Hi)||Si), where g : Zn
q → {0, 1}l

is an efficiently invertible function and fC is the lattice-based hash function

for a uniformly random C
$← Z

n×r
q .

Step 5: Output Hk+1.

Here, we note Com : {0, 1}∗ → Z
n
q ; that is, the string commitment maps

a string of arbitrary length to a vector over Zq.

With this, the identification scheme works as follows:

KeyGen(1n): For the security parameter n, choose A ∈ Z
n×m
q , a random

vector x ∈ {0, 1}m such that ||x||1 = m/2 (the hamming weight must be
m/2) and y = fA(x). Output public key (A,y) and secret key x.

Action(A,y): Step Prover 1 : Choose a random permutation π over [m] and
a random vector r ∈ Z

m
q . Send commitments c1, c2 and c3:

• c1 = Com
(
π, fA(r)

)
,

• c2 = Com
(
π(r)

)
,

• c3 = Com
(
π(x+ r)

)
.

95



R. EL BANSARKHANI — D. CABARCAS — P.-CH. KUO — P. SCHMIDT — M. SCHNEIDER

StepVerifier 1 : Send a random challenge Ch ∈ {1, 2, 3} to Prover.

Step Prover 2 :

• If Ch = 1, send s = π(x) and t = π(r), which reveal c2 and c3,
respectively.
• If Ch = 2, send φ = π and u = x + r, which reveal c1 and c3,
respectively.
• If Ch = 3, send φ = π and v = r, which reveal c1 and c2, respectively.

Step Verifier 2 :

• If Ch = 1, accept if c2 = Com(t), c3 = Com(s+t), and ||s||1 = m/2.

• If Ch = 2, accept if c1 = Com
(
φ, fA(u)− y

)
, c3 = Com

(
φ(u)

)
.

• If Ch = 3, accept if c1 = Com(φ,Av), c2 = Com
(
φ(v)

)
.

Otherwise, reject.

It is easy to check that the soundness error of this scheme is 2/3.

Concerning the security of the scheme: Briefly speaking, breaking the iden-
tification scheme is to find a collision in the string commitment which implies
a collision in the provably secure lattice hash function. Thus, the security of
this scheme is based on the GapSVP problem, which is the decision version of
the shortest vector problem. For details, we refer to the original paper [KTX08].
Finally, we summarize several state-of-the-art zero-knowledge identification
schemes based on lattice problems in Table 3.

Table 3. Comparison of zero-knowledge identification schemes based on
lattice problems for n,m, q ∈ Z, the basis A,A0,A1 ∈ Z

n×m
q , x ∈ Z

m
q ,

y ∈ Z
n
q , and ah,at,xh,xt ∈ Zq [x]/(xn − 1). Rounds means the number of

rounds to reach soundness error 1/216.

PK SK Relation γ in GapSVP2
γ Rounds

[MV03] A0,A1 x A0x = 0 andA1x = 0 Õ(n1.5) 16

[PV08] A,y x Ax = y Õ(n2) 11

[KTX08] A,y x Ax = y and hamming
weight of x is m/2

Õ(n) 28

[CLRS10] A,y, Com x Ax = y Õ(n) 17

[XT09] ah, at,y xh,
xt

ahxh + atxt = y Based on NTRU
if ah = −h and
at = 1

28
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6. Conclusion

In this paper we presented the most recent, thus efficient and most promising
lattice-based schemes, which are the treeless signature scheme and the trapdoor-
signature scheme on the one hand and a provably secure version of NTRU and
an LWE-based encryption scheme on the other hand. We provided a detailed de-
scription of the schemes and have taken a glance on the sizes of keys, ciphertexts
or signatures, respectively. We furthermore reflected the number of operations
needed for all schemes and summarized them in the appendix. As a roundup, we
shed light on zero-knowledge identification schemes based on lattice problems.
Of course, there are several disadvantages of the provided schemes which have
to be considered. For instance, the key generation step of the trapdoor signa-
ture scheme involves the cholesky decomposition algorithm, which is very time
consuming. Furthermore the storage sizes of the required matrices are very large
compared to the other schemes.

Key generation of the NTRU-CPA requires sampling a discrete Gaussian dis-
tribution with large standard deviation. If done using standard techniques, such
as rejection sampling, this sampling takes a very long time.

The treeless and the trapdoor signature schemes are both proven secure only
in the Random Oracle Model. The signature generation of the treeless scheme
fails with a certain error probability, which increases the signature generation
time. The soundness error in the identification scheme is very large. This causes
large communication costs, since the number of rounds has to be increased.
The matrix-multiplications are slow as well. The identification scheme will be
more efficient when instantiated with polynomials over rings instead of matrices.
The LWE scheme is already quite efficient, both for storage and computations.
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Appendix A. Overview tables

Here we collect the data from the single chapters to provide a full overview
of the operations required inside the lattice-based schemes under supervision.
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We omit the zero-knowledge identification scheme, since it is a more complex
protocol than the other primitives “encryption” and “signature”.

Table 4. Overview of the gathered data—sizes of keys, ciphertexts, and
signatures in bits.

Public Key Private Key Ciphertext Signature

TSS (γ + 1)nlog2(q)� 2γnlog2(q)� − (γ + 1)nlog2(q)�
Trapdoor

nm · k n2klog2(4n)� −
m · log2(2s

√
m)�

k = log2(q)� s = 2n2k
√
7 · 4.5

LWE
2n · log2(q)� n · log2(q)� 2nlog2(q)� −

q ≈ 5000

NTRU-CPA nlog2 q� nlog2 q� nlog2 q� −

Table 5. Overview of the gathered data—operations required for computations.

Gauss-sampl. Polyn.mult. Polyn.add. Polyn.inv.

TSS
KeyGen 0 γ γ − 1 −
Sign k(γ + 2) kγ k(2γ − 1) −
Verify 0 γ γ −

LWE
KeyGen 2 1 1 −
Enc 3 2 3 −
Dec 0 1 1 −

NTRU-CPA
KeyGen 2 2 0 1

Enc 2 2 2 0

Dec 0 1 0 0

Gauss- Matrix Matrix-vector Vector Cholesky

sampl. mult. mult. add. decomp.

Trapdoor
KeyGen 1 2 0 0 1

Sign 3 0 2 1 0

Verify 0 0 1 0 0
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