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A COMPARISON OF LOCAL REDUCTION AND

SAT-SOLVER BASED ALGEBRAIC CRYPTANALYSIS

OF JH AND KECCAK

Peter Adamček — Marek Loderer — Pavol Zajac

ABSTRACT. Local reduction methods can be used to assess the resistance
of cryptosystems against algebraic attacks. The assessment is based on the sep-

aration of the attack into polynomial-time reduction algorithm, and exponen-
tial time guessing and backtracking. This approach is similar to that employed
by the DPLL algorithm that is used as a core of various modern SAT-solvers.
In the article we show the application of this method to evaluate the strength
of (reduced versions of) two chosen SHA-3 candidates: JH, and Keccak, respec-
tively. We compare the complexity estimates with the behavior of the full search

algorithm. We also compare the results based on the local reduction with the
attack based on the use of SAT-solvers PrecoSAT, and CryptoMiniSAT, respec-
tively.

1. Introduction

Let F : Z
n
2 → Z

m
2 be a one-way function. Informally, it is easy to com-

pute F (x) for any x (in time polynomial in n), but it is difficult to find any x
such that F (x) = y. If the function F behaves as a random function, we need on
average 2m randomly chosen x’s to find a preimage of y (or we can check all 2n

input options, if n ≤ m). One-way functions play a central role in cryptography,
where the preimage is usually something we want to keep secret, and the output
is a public information. Simply said, a basic cryptanalytic problem is to recover
the secret information using the publicly available data.

A lot of cryptanalytic problems can be formulated as a question of inverting
a one-way function:

• given a plaintext-ciphertext pair, find the key of the block cipher;
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• given a keystream of a stream cipher, determine the internal state;

• given a hash, find a preimage of the hash.

Most of the cryptanalytic research focuses on attacks based on statistics that
require a lot of data. However, we consider a different situation, in which the
attacker can only access a small number of data (e.g., a single encryption, or
a single hash).

A function that can be efficiently evaluated (in polynomial time), can be
described by a system of non-linear Boolean equations (polynomial in the size
of the input). The unknowns in the system represent the input, intermediate,
and output bits of the computation. After obtaining the output of the function F,
we can substitute the values of the output bits, and compute the input bits by
solving the equation system. This transformation is the core of the algebraic
cryptanalysis, although the scope of algebraic cryptanalysis is much broader
nowadays, see, e.g., [6]. Moreover, algebraic attacks can be combined with side-
-channel analysis. The correct complexity evaluation is critical when selecting
suitable cryptographic functions for constrained solutions found in telemedicine
systems such as [21].

The problem of solving a system of non-linear Boolean equations is NP-hard.
We expect that (in general) its complexity is exponential in the number of un-
known variables. However, there exist some classes of problems that are easy
to solve even in polynomial time [16]. We note that in the instances derived
from a problem of inverting a one-way function, the complexity can be upper
bound by 2n (the number of possible inputs) regardless of the number of vari-
ables in the equation system: once we choose all input bits, we can compute all
intermediate values (and verify the output bits).

In cryptographic practice, it is very important to know what is the expected
complexity of the given cryptanalytic problem, and how does it scale with the
parameters (e.g., the number of rounds of the iterated block cipher). The theoret-
ical complexity bounds (e.g., [19]) are usually based on random equation system
models, not on a concrete ciphers or families of ciphers. On the other hand,
the experimental results (mostly based on SAT solvers) are restricted to smaller
instances, and are often hard to scale to larger systems.

In [23], we present an evaluation methodology based on local reduction that
can be used to estimate the complexity of algebraic attacks. It is a generalization
of our results from [24], [27]. In this paper we extend these results further.
We demonstrate the use of the methodology in comparing the security estimates
for two selected SHA-3 candidate functions: JH [22], and Keccak [3], respectively.
We compare the estimated complexity results with the complexity of the real
attack using small versions of the problem, and also compare the estimates with
the results obtained with SAT solvers.
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The article is organized as follows. In Section 2 we present the basic prelim-
inaries: local reduction, and SAT-solver based algebraic cryptanalysis, respec-
tively. Sections 3 and 4 contain the methodology and experimental results of the
analysis of Keccak, and JH, respectively. Final Section 5 is used to discuss the
results, and possible open problems and limitations of our approach.

2. Preliminaries

Let
f1(x1, x2, . . . ,xm) = 0,

f2(x1, x2, . . . ,xm) = 0,
...

fn(x1, x2, . . . ,xm) = 0

be a system of Boolean equations, denoted by S. Let each fi depend only on
unknowns from the set Xi, i.e., if xj �∈ Xi, then

fi(x1, x2, . . . , xj , . . . , xm) = fi(x1, x2, . . . , xj + 1, . . . , xm)

for each x = (x1, x2, . . . , xj , . . . , xm) ∈ Z
m
2 .

Let |Xi| = li. We say that S is l-sparse, if li ≤ l for each i = 1, 2, . . . , n. Vector
x ∈ Z

m
2 is a solution of the system S if it is a solution of each equation fi(x) = 0

in the system.

We note that if the equation fi(x) = 0 does not depend on variable xj,
then the value of the jth coordinate is irrelevant in determining whether x is,
or is not, a solution of the equation. Thus, if we want to check whether x is
a solution of fi(x) = 0, we only need to know the values of the coordinates of x
corresponding to unknowns from Xi.

Equation fi(x) = 0 has at most 2li possible solutions in variables from Xi.
Let Vi denote the set of all such solutions. The pair (Xi, Vi), which we will call
a symbol1 [13], uniquely represents the equation fi(x) = 0 (and vice-versa).
The whole system of equations can be stored as a set of symbols S =

{
(Xi, Vi);

i = 1, 2, . . . , n
}
. An l-sparse system can be stored (and enumerated) in at most

O(n2l) bits (operations). Thus, for a (small) fixed l, the time and memory com-
plexity of the symbol representation is polynomial in the system size.

For each vector v ∈ Vi we can find 2m−li vectors in the full m-dimensional so-
lution space, which have the required fixed values in the coordinates given by Xi.
Let V ∗

i denote the set of vectors in the solution space corresponding to any of the
vectors in Vi. A vector is a solution of system S, if it is a solution of each equation

1A symbol is a compressed representation of the underlying algebraic variety {x; fi(x) = 0}.
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in the system. Thus all solutions of the system S are given by
⋂n

i=1 V
∗
i . An ef-

fective algorithm to compute this intersection is Gluing [17], [18]. Complexity
estimates for an improved version of Gluing on random equation systems are
presented in [19].

Alternative methods that can be used to solve systems in symbol represen-
tation are Agreeing [15], or the method of syllogisms [25] extended by using
guessing and backtracking. These methods implement in a more efficient way
an older idea of the local reduction [28] (see Section 2.1), with the addition
of a slightly different representation, and many optimizations known from the
development of the efficient SAT solvers.

2.1. Local reduction

Let S =
{
(Xi, Vi)

}
be a system of equations in the symbol representation.

Let us consider a system with a single solution s. Then each Vi contains exactly
one vector (si) that is a projection of the solution s into coordinates given
by Xi. We can remove any vector other than si from Vi, and the new system
will have the same solution s. We will call the process of removing vectors from
Vi’s (without changing the solution of the system) a local reduction. We say,
that S′ =

{
(Xi, V

′
i )
}
is a reduced version of the system S, if S and S′ have the

same set of solutions, and if V ′
i ⊂ Vi for each i. We will denote2 this by S′ ≤ S.

In the following, we will only consider two types of systems, which are most
common in the algebraic cryptanalysis: systems with a single solution, and sys-
tems with no solution, respectively. If S does not have any solution, the process
of local reduction leads to a removal of each vector in some Vi. In this case,
we say, that the reduction found a conflict in the system. If S has a single
solution, then there exists a reduced version of the system with |Vi| = 1 for
each i. We say that such a system is completely reduced. Reconstructing the full
solution of a completely reduced system is a trivial task.

A main goal of the reduction based approach to solving equation systems
is to remove individual solutions from the system, until we find a completely
reduced system (or a conflict). We do this by a combination of (polynomial) local
reduction algorithm, and (exponential) guessing and backtracking algorithm.

A polynomial local reduction algorithm R is any algorithm that fulfills the
following conditions:

(1) Its input, and output, are systems of equations in symbol representation.
We denote them by S, and R(S), respectively.

(2) S, and R(S) have the same set of solutions.

(3) R(S) ≤ S.

2It is easy to see, that the reduction property induces a partial order on a set of systems with

the same solution and the same Xi’s.
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(4) R(R(S)
)
= R(S).

(5) The (time and memory) complexity of R is polynomial in the size of S
(number of equations/variables).

A typical local reduction algorithm is the spreading of constants3: if all vectors
in some Vi have the same value in a selected coordinate (e.g., x1 = 0), then we
can safely remove all vectors from other symbols that have a different value in
this coordinate (i.e., x1 = 1).

In our experiments, we use a local reduction algorithm based on the method
of syllogisms [28], [26]. This method uses projections to pairs of variables (subsets
of Xi). If some combination of values does not occur in Vi, it must not occur in
any other Vj. Thus we can remove the offending vectors (if any). Moreover, each
missing combination can be written as a pair of (global) implications about the
values of variables in the solution. For example, if x1 = 0, x2 = 0 is not present
in V1, then we know that (x1 = 0) ⇒ (x2 = 1), and (x2 = 0) ⇒ (x1 = 1),
respectively. Using the syllogisms rule (transitivity of implications), it is possible
to find (in polynomial time) even more implications that are not directly induced
by the equation system, possibly leading to further reduction of the system.
The process is repeated, until we cannot find any more information about the
system, and cannot reduce the system further.

Although we have restricted R to polynomial time algorithms, there are still
some classes of systems, that can be reduced completely using just R [16].
However, under the exponential time hypothesis [10] we may assume that there
does not exist polynomial time R, that can completely reduce all possible sys-
tems. Condition R(R(S)

)
= R(S) means, that the system can only be reduced

once (using the same algorithm). If R does not produce a solution, we can
continue the process with the introduction of guesses (and a backtracking mech-
anism to compensate for incorrect guesses).

The basic alternative is to try to estimate the value of some variable
(e.g., x1 = 0). Then we can remove all vectors from Vi’s that are not consistent
with the guess. If the guess is correct, we get a reduced version of the system by
a different algorithm than R. Otherwise, we get an inconsistent system (assum-
ing a single solution). In both cases, we can continue the process recursively until
a solution/conflict, is found. In case of conflict, we must backtrack the algorithm
and check the other possible values for the guessed variables. For each guess the
number of options to verify is doubled, so the complexity of the process is 2g,
where g is the number of variables guessed until solution/conflict is found.

Another type of guessing and backtracking is based directly on the symbols in
the system4. Without a loss of generality, let us focus on V1={v1,1, v1,2, . . . v1,N1

}.
3Spreading of constants corresponds to Unit propagation in SAT solvers, see Section 2.3.
4This corresponds to Gluing2 algorithm from [14].
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Under the assumption that there is at most one solution of the system, we can
replace V1 by V ′

1 = {v1,1} (a guess of the solution). If we guessed correctly (with

probability N−1
1 , if we assume that each of the vectors is equally likely a projec-

tion of the global solution), we get a reduced system S′ ≤ S. In the other N1−1
cases, we get a system that does not have a solution. We can again apply the re-
duction and guessing recursively to S′, and if we get a conflict, we backtrack the
algorithm, and try another guess(es). The complexity of guess and backtracking
in this case is (approximately) O(N1N2 · · ·Nk), where k is the number of sym-
bols involved in the guessing, and N1, N2, . . . , Nk are the numbers of solutions
in each symbol we must verify. This corresponds to a bit complexity5

b =

k∑

i=1

log2Ni.

Both the number of variables g, and value b strongly depend not only on
the system, but also on the set of variables/symbols chosen for guessing [24].
We call the algorithm that chooses the sequence of variables/symbols a guessing
strategy. There are several guessing strategies (see Section 2.2) that can be used,
producing different results for different types of ciphers [27], [23].

Unfortunately, it is difficult to (theoretically) compute k, and Ni’s for a given
system, and reduction algorithm R. In practice, if we just want to estimate
the security of some cipher, we do not need to implement the full guess and
backtracking algorithm (with the exponential complexity). Instead, we follow
the algorithm with:

• random guesses, until we get a conflict, i.e., an empty system — an unin-
formed evaluation;

• always correct guesses, until we get a completely reduced system — an
oracle-based evaluation.

The oracle-based evaluation is only possible if we know the solution of the
system a-priori (we only want to estimate the complexity). A real-world attacker
can generate random instances of the cryptanalytic problem with known solution
to tune up the parameters of the full attack.

It is important to note that the complexity estimates using uninformed strate-
gies can be much lower than the oracle based estimates [24]. We can imagine
the guess and backtracking algorithm as a traversal of a tree of possible op-
tions. A lower estimate in uninformed case means that the tree is not “wide”,
and we can get conflicts sooner than we can find the solution of the system.

5Bit complexity b for cryptanalytic problems corresponds to complexity O(2b) of the total

search, or to chance c2−b of the random guess to be a correct solution of the problem.
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In practice, this also means that the real complexity might be lower than ex-
pected by the oracle based estimate. The oracle based estimate is good for the
worst-case scenarios (this can also be seen in Section 4.3).

2.2. Guessing strategies

We use three main guessing strategies in our experiments:

Rand: a random selection of symbols. If the solver/evaluator needs a new
guess, it chooses a symbol uniformly at random from all symbols that
have at least 2 solutions. This strategy can be used to provide an estimate
for the least sophisticated attack possible (worst-case average complexity).

Guess: selects randomly a symbol from the set of all symbols with max-
imal 2li/|Vi|, where li is the number of variables with unknown value
in a given symbol. This strategy tries to maximize the information gained
by each guess, as each guess fixes all li variables with probability of suc-
cess 1/|Vi| [24].

Impact2: is based on guessing variable values directly. It guesses the value
of a variable, which is active in the highest number of unreduced symbols
(symbols with at least 2 solutions) in the system. We note, that the vari-
ables which have a fixed value in any symbol are removed from this symbol
during the local reduction in each iteration of the algorithm. This strat-
egy tries to maximize the impact of each guessed variable in the system,
because we expect to remove half of the solution in each symbol where the
guessed variable is active.

We note that it is possible to define many different guessing strategies. Our
choice of strategies is for evaluation is limited to generic strategies (independent
of the type of the problem). A real-world attacker can construct a strategy that
copies some (presumed) flaws of the cipher, or use some other knowledge in the
attack to make it more effective.

2.3. SAT solvers

A logic expression C is called a k-CNF, if C =
∧n

i=1Ci, and Ci =
∨k

j=1 Li,j,

where Li,j ∈ {x1, . . . , xm,¬x1, . . . ,¬xm}. Ci’s are called clauses, and Li,j ’s
literals. k-CNF-SAT problem is a decision problem asking whether there
exists an assignment of truth values to xi’s such that C is satisfied (evalu-
ates to true). We delegate the answer to this problem to a black-box tool, a SAT
solver.
If the answer is positive (C can be satisfied), we also expect that the SAT-
-solver produces a proof, i.e., the actual assignment of the values such that C
evaluates to TRUE. In general, the running time of a SAT-solver is exponential
in the problem size (n,m). However, there are instances, where the SAT-solver
can provide an answer very quickly [5], [7].
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SAT solvers are important in algebraic cryptanalysis: we encode a cryptan-
alytic problem in k-CNF form, and ask for the proof of satisfiability (SAT).
We run a SAT-solver to provide the proof. Alternatively, we try to guess some
part of the solution (e.g., some of the key bits), and ask the solver to decide
whether the problem is unsatisfiable (UNSAT, indicating an incorrect guess),
or provide a SAT-proof (and thus the whole solution).

Most of the SAT-solvers used in algebraic cryptanalysis are based on the
DPLL algorithm [8]. The main idea of DPLL is to use two operations Unit
propagation, and Pure literal elimination, respectively. They are used to simplify
the CNF formula (following certain rules that can be quickly evaluated). These
operations play the same role as the local reduction algorithm R (they can be
rewritten in symbol form, e.g., the Unit propagation corresponds to the spreading
of constants). If it is not possible to continue with these two operations, the solver
makes a decision: it assigns a truth value to some variable, and encodes it as
a new clause added to the CNF formula. It then tries to prove a new formula
with the added decision clause (recursively). If it fails, it tries the other possible
assignment. Only if both options are exhausted, the SAT solver can say that the
formula is unsatisfiable.

The total number of decisions during DPLL algorithm (D) is one of the values
reported by the solver. This value is typically log-normal [2], so the average value
of (log2 D), can be used as the estimates of the bit complexity of the SAT-solver
based algebraic attack.

2.4. Symbol representation and CNF-SAT

There is a correspondence between a symbol representation and k-CNF rep-
resentation of the cryptanalytic problem. It is possible to convert any of these
representations in polynomial time to the other one.

LetXi denote the set of active variables in clause Ci (if Li,j is either x1 or ¬x1,
then x1 is active). There are exactly 2k − 1 possible assignments of truth values
for xj ’s that allows Ci to be satisfied. Let us encode truth values by 0, and 1,
respectively. Let Vi be a set of vectors (indexed by variables in Xi) of satisfying
assignments for Ci. Then (Xi, Vi) is a symbol representing a (k-sparse) Boolean
equation. Solutions of this equation are in one-to-one correspondence with all
proofs of Ci.

Let S =
{
(Xi, Vi)

}
be a (k-sparse) system of equations, with individual sym-

bols (Xi, Vi) induced by clauses Ci of C =
∧n

i=1Ci. It is easy to see that each
solution of the system S is in one-to-one correspondence with positive assign-
ments for C. Given a solver for S, it is possible to use it to decide k-CNF-SAT,
and provide a proof if the answer is SAT.

Let S =
{
(Xi, Vi)

}
be a k-sparse equation system. For the sake of simplicity,

let |Xi| = k for each i (it is easy to generalize to any ki). Let v ∈ Zk
2 \ Vi.
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There is a single clause that is not satisfied by v, which we denote by Cv.
For example, if Xi = {x1, x3, x5}, v = 011 (TRUE is encoded as 1), then v is not
a solution of x1 ∨¬x3 ∨¬x5. It is easy to see that Vi corresponds to all positive
assignments of

C(Xi,Vi) =
∧

v∈Z
k
2\Vi

Cv .

Vector w is a solution of the system S, if it is a solution of each equation in the
system. This means w corresponds to a positive assignment of

CS =

n∧

i=1

C(Xi,Vi).

A SAT-solver thus can be used to decide, whether system S has a solution or
not, or to find a single solution of the system (if the solver provides a proof for
SAT instances). To find all solutions of S we need a solver that can enumerate all
possible positive assignments of CS . However, in algebraic cryptanalysis, we are
usually content with a single solution, or with a decision version of the problem.

We note that the above transformation between the symbol representation,
and the CNF representation, is quite ineffective. In one direction, it produces
many large symbols, with pairs of symbols with many common variables. In prac-
tice, we can glue such symbols together to produce a more compact representa-
tion of the system without a significant impact on the system size. In the other
direction, the conversion produces many clauses with common variables (differ-
ent only in polarity of literals). These can be simplified in a similar way, e.g.,
by using the rule (x1 ∨ C) ∧ (¬x1 ∨ C) = C.

3. Evaluation of the Keccak f-function

Our first aim was to compare the results obtained by the local reduction
with the existing SAT-solver based attacks. As a reference, we have reproduced
the attack of M o r a w i e c k i and S r e b r n y [12] on the SHA-3 candidate
Keccak [3].

3.1. Keccak

Keccak is a family of sponge functions. Our experiments are limited to the
hash function Keccak [24], [26] which is based on permutation Keccak-f [1]
(simplified to f in the following). Our goal is to find the preimage of a hash,
which was created using a single application of the function f. More precisely,
we compute the inversion of the 24-bit value h = 
f(m||0)�24, where m is an
unknown message (at most 24 unknown bits). In the experiments, we only use
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messages with 16 unknown bits. The dependence on the size of the unknown
message was also explored (see Figures 2, and 3, respectively).

Permutation f is defined as a sequence of 5 operations (one of them non-
linear), repeated in nr rounds. We do not go into details of these operations
(they can be found in [3], and in various other sources), as they are not relevant
from the evaluation point of view. The goal of the evaluation is just to estimate
how the complexity of algebraic attacks is changed if we change nr.

3.2. Overview of the experiments

The experiments were conducted as follows:

(1) CNF files that encode the problem were prepared according to [12] for
nr = 1, 2, . . . , 14. Inputs and outputs of f were also encoded as unknowns.

(2) Each CNF was converted to a symbol representation using the method
described in Section 2.4. Symbols corresponding to clauses with the same
variables were glued together.

(3) For each nr, and for each b = 2, 4, . . . , 16: 30 messages were hashed, and
the encoded outputs were added into CNF, and symbol-encoded instances
of the problem. The message bits were stored to provide a guessing oracle.

(4) For each instance of the problem, the complexity was evaluated using the
SAT solver PrecoSAT version 576 [4], and using the sylog software [26]
with 3 guessing strategies: Rand, Guess, Impact2 (described in Section 2.2).

The parameters of the equation system/CNF are summarized in Table 1.
Complete description of the experiments as well as additional results are
provided in [1].

3.3. Experimental results

The experimental results of the evaluation are summarized in Figure 1. Mes-
sages with 16 unknown bits were used, so the total complexity is bounded by 16
bits. Number of rounds must be at least 4 (out of 14 rounds of Keccak-f [1])
before this bound is reached. After four rounds, evaluation strategy Guess, as
well as the results from the SAT-solver follow this bound independently of the
size of the system. Other two strategies are not as successful in identifying the
solution.

A further comparison of the selected guessing strategies, and the SAT-solver
is provided in Figures 2, and 3, respectively. We compare the estimated security
as we change the number of unknown bits of the message. This number is also
a complexity bound for the brute force attack.

Figure 2 shows the situation for nr = 2. In this case, the reported/estimated
complexity is lower than brute force attack, so the function is insecure. Local
reduction with Impact2 strategy leads to the best attack (in average).

10
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Table 1. Number of variables, symbols, and clauses in the instances en-
coding the inversion of Keccak-f [1] reduced to nr rounds.

Rounds Variables Symbols Clauses

1 200 199 730
2 472 661 2136
3 804 1250 3772
4 1007 1541 4747
5 1525 2437 7366
6 1754 2803 8346
7 2206 3566 10743
8 2469 3991 11949
9 2910 4787 14218
10 3128 5099 15184
11 3526 5776 17214
12 3834 6305 18575
13 4198 6885 20603
14 4461 7336 21829

Figure 1. Comparison of selected guessing strategies for local reduction
with the bit complexity of PrecoSAT solver based results on round reduced
Keccak preimage problem.
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Figure 2. The growth of average complexity of local reduction strategies
and PrecoSAT solver for 2-round Keccak when increasing the unknown
message bits.

Figure 3. The growth of average complexity of local reduction strategies
and PrecoSAT solver for 4-round Keccak when increasing the unknown

message bits.

Figure 3 shows the situation for nr = 4 that is also typical for a higher num-
ber of rounds. The average complexity reported by the SAT-solver as well as
estimated by the Guess strategy copies the expected complexity based on the
number of unknown message bits. Other strategies depend on the size of the
whole system, and this leads to overrating the complexity of the attack.

12
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Figure 4. Compression function Fd of the JH hash function.

We find that this behavior of local reduction is typical, if the complexity of the
attack is comparable with the brute force. The evaluation strategy can either
identify the key bits (inputs), and solve the system with the expected complexity
independent of the system size; or the estimate is higher, and depends on the
system size (a typical example is the random guessing strategy Rand).

4. Evaluation of JH

In this section we provide an analysis of the SHA-3 candidate JH [22]. We start
by using the local-reduction based evaluation. To simplify the interpretation
of the results (in comparison to Section 3), we take only the value provided by
the best guessing strategy. We also compare the estimate with the actual number
of reductions required for the full attack (on a small version of JH). Finally,
we compare the results obtained by the local reduction with the complexity
reported by two SAT-solvers: PrecoSAT, and CryptoMiniSAT2, respectively.

4.1. JH

JH is an iterative hash function based on the generalized AES design method-
ology. Its compression function Fd uses as a core a bijective function Ed, which
again is a composition of several round transformations (see Figure 4). Each
round consists of an application of S-boxes, a linear transformation, and a per-
mutation layer. Parameter d stands for the dimension of a block of bits. This pa-
rameter affects the size of the state, the number of message bits, and the (recom-
mended) number of rounds of the function Ed. For a more detailed information
we refer the reader to a specification of JH [22].

13
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Table 2. Parameters used by the generator of equations.

Dimension State Message Number of rounds Number of variables

d length length nr

3 32 16 1, . . . , 12 80+32nr

4 64 32 1, . . . , 18 160+64nr

5 128 64 1, . . . , 24 320+128nr

In our experiments, we explore only small versions of JH function, where pa-
rameter d has values d = 3, d = 4 and d = 5 (the SHA-3 candidate JH has
d = 8). We want to find a preimage of a hash that requires just one applica-
tion of compression function Fd (a single application of bijective function Ed).
JH’s padding rule adds one more block, so the message after the padding passes
through the compression function Fd at least twice. However, if we assume that
the attacker knows the whole final state6 of JH, and the length of secret message,
he can invert the second Fd, and compute the state after the first application
of Fd.

In this paper we only consider inverting a single application of function Fd,
assuming the whole output is known, and only message bits are unknown (so we
get a similar situation to Section 3). For the sake of simplicity, we simply say we
want to “invert JH”. The main goal of the experiments is to estimate how the
complexity of algebraic attacks is changed, if we change nr, and d. More details
of the experiments with the local reduction, as well as experiments in different
models are covered in details in [11].

4.2. Overview of the experiments

The experiments were conducted as follows:

(1) The problem of inverting JH was encoded as a local reduction problem us-
ing symbol representation. The intermediate, message, and output bits
were encoded as unknowns. In practice, a software generator of equa-
tions prepared files with the equation system, given parameters nr, and d,
respectively (see Table 2).

(2) For each d = 3, 4, 5, and nr = 1, 2, . . . , 6(d−1): 100 messages were hashed,
and assignments of the known outputs of Fd were added to the stored equa-
tion systems. The original message bits were stored to provide a guessing
oracle.

6In practice, the hash value is produced by truncating the final state.
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Figure 5. The average estimated complexity of the best guessing strategy
for the local reduction attack for various versions of JH.

(3) For the latter experiments with SAT solvers, each file was also converted
to CNF file (using the algorithm in Section 2.4)7.

(4) For each instance of the problem, the complexity was evaluated using
the sylog software [26] with guessing strategies: Rand, Guess, Impact2
(described in Section 2.2).

(5) Selected instances of the problem were solved by the full guess and back-
track algorithm, to compare the estimated and real complexity of the at-
tack. A modified version of the sylog software was used. In this version,
the algorithm is not stopped immediately after the solution is found, but
instead it explores all branches of the search tree (branch either ends in
a conflict, or in a solution, which is either the original message or a second
preimage). In this case, we measure the bit complexity as log2 R, where R
is the number of applications of the reduction algorithm R.

(6) Finally, the CNF files were used as the input to SAT solvers PrecoSAT
version 576 [4], and CryptoMiniSAT2 version 2.9.4 [20], respectively.

4.3. Experimental results

The experimental results of the complexity evaluation are summarized in
Figure 5. Messages with 16, 32 and 64 unknown bits were used (depending

7Unlike in Section 3, we start from the symbol representation, as it is easier to construct from

a given encryption scheme.
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on the parameter d, len = 2d+1). The values are normalized, so that value 1
(on y-axis) denotes the bit complexity of the brute force attack (len). We show
only the best average complexity (this was achieved mostly by Impact2, but in
some cases also by Guess). We can quickly compare various versions of the hash
function, and estimate the overall trend. We can see that the average expected
complexity of attack on JH with d = 3 is below the brute force bounds. According
to the overall trend in respect with d, we can expect that full JH (with d = 8)
also needs at least 10 rounds (out of 42 rounds) to reach the expected security
against local reduction attacks.

Figure 6. A comparison of the complexity estimate with the complexity
of the full attack.

Figure 6 shows the comparison of the estimated complexity with the complex-
ity of the full guess and backtrack local reduction attack. Due to the complexity
of the full attack, we only use 16 bit message and JH in version with d = 3.
Full attack used the search tree based on the order of variables given by the
guessing strategy Impact2 (which is variable based, instead of symbol based
strategies Rand, and Guess, respectively). One set of estimates was oracle-based
(a correct guess was found during the evaluation), and the other one was unin-
formed (the complexity estimate was based on the first conflict). The measured
bit complexity of the full attack is slightly lower than the estimated complexity,
but it copies the general trend (in respect to nr). We note, that the full search
based on the uninformed strategy sometimes fails to find the original message
(only 31% chance to find the solution for nr = 8). This is due to the fact, that
we only use guessing for those variables, that were marked by the evaluation.
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In practice, the attacker will add an additional variable(s) to guess, if the solu-
tion was not found by examining the symbols pointed by the evaluation. In this
case, his results will be similar to the results provided by the oracle-based set
of symbols/variables.

Figure 7. Comparison of the complexity estimate with the complexity
of SAT-solvers.

Finally, we compare the results of the evaluation with the complexity of the
SAT-solver based algebraic attack. Our observations are summarized in
Figure 7. Again, messages with 16 bits were used (d = 3). The complexity
reported by the SAT-solvers is higher than the estimates based on the local
reduction, and after 4 rounds they are higher than the brute force attack.
The trend provided by both SAT-solvers is the same8. On the other hand, a lo-
cal reduction attack with the guessing strategy Guess needs six rounds to reach
the complexity of the brute-force attack. The best average strategy (which is
Impact2, if the result is lower than Guess) gives lower complexity estimate than
SAT-solvers, but again, the trend with respect to nr is similar.

8In practice, SAT solvers also spend a lot of time by reducing a large CNF, which is a result
of the conversion from the symbol representation. Especially, as we do not encode XOR clauses
for CryptoMiniSAT in a special way, the actual running times of CryptoMiniSAT including
all precomputation were too large. Because the bit complexity was similar to that of the

PrecoSAT, we decided not to run the experiments over 6 rounds also with CryptoMiniSAT.
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5. Conclusions

The main goal of the paper was the use of the local reduction in the evaluation
of the cipher designs. We can base the final comparison on the number of rounds
that can be broken by a local reduction based attack. In case of Keccak-f [1],
we can break 3 rounds out of 14. The structure of Keccak family supports the
hypothesis that the results for the full SHA-3 candidate using Keccak-f [6] will
similarly be weak until it has at least 4 rounds (out of 24), giving security margin
24/4 = 6. On the other hand, JH with d = 3 seems to be broken, and we expect
that full JH with d = 8 needs at least 10 rounds (out of 42), giving security
margin 42/10 = 4.2. We should note that the attacks in practice can be better
than expected, as the evaluation targets a case of generic algebraic attacks. If we
can attack a version of the cipher with the higher number of rounds, it can be
a potentially easier target for a more advanced algebraic attack based on the
algebraic complexity reduction [6].

Our results indicate that the estimate of the complexity based on the oracle-
based evaluation is similar to actual number of reduction required to explore
the whole search space using the guess and backtrack algorithm. The best
average expected complexity has also a similar trend with respect to the num-
ber of rounds as the number of decisions reported by the SAT-solver during the
attack. Although the expected number of reductions is lower, SAT-solvers are
faster in practice (due to the easier “reduction steps”) than the solver imple-
menting the method of syllogisms. This can however change after more efficient
local reduction solvers are developed (or by the development of a special purpose
hardware like [9]).

The experiments (see also [24], [27]) show that none of the presented guess-
ing strategies can be considered optimal in the sense that it produces a lower
bound for the complexity of the generic local reduction based algebraic attack
(a natural “upper bound” is provided by Rand strategy). It is interesting to
note that Guess strategy achieves better results with Keccak, and Impact2
strategy with JH, respectively. All the strategies presented so far are relatively
simple to speed up the computation. However, even a guessing strategy that is
relatively complex can be used in an offline evaluation phase (which is fast), and
the actual full-search attack can use the order of variables/symbols precomputed
by the evaluation.
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