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Abstract: This study investigates the internal deformation of the Fatric Unit in the Malé Karpaty Mountains during  
the Alpine orogeny, with the aim of clarifing the structural evolution and thrusting history of the Vysoká and Zliechov 
nappes. A comprehensive dataset of primary and deformation-related planar structures was collected and analysed to  
reconstruct the tectonic evolution of the Fatric Unit. Three main Alpine deformation phases (  –  ) were identified, 
reflecting significant changes in the regional stress field. (1) The earliest phase ( ) is associated with northwest-directed 
thrusting and NW–SE crustal shortening during the Eo-Alpine orogeny, as documented by asymmetric folds, stretching 
lineations, and large-scale recumbent folding. (2) The subsequent phase ( ) reflects a shift to a W–E compression axis 
during the Late Cretaceous to Early Eocene and is expressed by the development of extensional structures, predominantly 
calcite-filled veins. (3) The youngest phase ( ) records a return to the N–S-oriented compression associated with 
south-vergent backthrusting during the Late Oligocene to Early Miocene, probably related to the soft docking of  
the ALPACA Mega-Unit with the European Platform. Overall, the tectonic analysis of the Fatric Unit in the Malé  
Karpaty Mts. characterises three principal Alpine deformation stages of the Western Carpathians by constraining their 
timing and kinematics.
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Introduction

The Western Carpathians constitute a segment of the Alpine–
Carpathian orogenic belt and are conventionally interpreted as 
a product of the Cretaceous (Eo-Alpine) to Cenozoic (Neo-
Alpine) crustal shortening. This tectonic evolution is associated 
with the formation of thin-skinned nappe stacks comprising 
Mesozoic sedimentary sequences (Andrusov et al. 1973; 
Plašienka et al. 1997; Hók et al. 2014; Plašienka 2018).

The Malé Karpaty Mountains represent the westernmost  
of the so-called core mountains within the Internal Western 
Carpathians (Fig. 1a; Maheľ 1986; Hók et al. 2014, 2019), 
also referred to as the Central Western Carpathians (e.g., 
Plašienka 2018). Geomorphologically, the range is subdivided 
from southwest to northeast into the Devínske Karpaty, 
Pezinské Karpaty, Brezovské Karpaty, and Čachtické Karpaty 
Mountains (cf. Mazúr & Lukniš 1978). The region is charac-
terised by an allochthonous position of the Tatric crystalline 
basement overlying the Borinka Unit (Koutek &  Zoubek 
1936; Plašienka et al. 1991; Bielik et al. 1992; Hók et al. 

2022), as well as by Permian to Cretaceous cover successions 
of the Tatric Unit that are predominantly discontinuous and 
reduced, with a notable hiatus during the Late Triassic (cf. 
Plašienka et al. 1991).

Additionally, the Fatric and Hronic cover nappes are present 
exclusively in the northern part of the mountain range and 
represent a thin-skinned nappe system located in the tectonic 
overburden of the Tatric Unit (Fig. 1b; Andrusov et al. 1973; 
Maheľ 1986; Polák et al. 2011, 2012).

Deformed rocks represent a crucial source of information 
for the observation and reconstruction of the tectonic evolu-
tion within the study area. However, the analysis and inter
pretation of structural geometries in such rocks must be 
approached with caution. These deformed lithologies typically 
reflect the final stage of a complex deformation history, often 
obscuring earlier events. Consequently, it is frequently only 
possible to reconstruct the most recent phase of deformation. 
Structural elements such as folds, foliations, lineations, and 
boudins can originate through a variety of mechanisms, and 
relying solely on geometrical data to decipher their evolution 
presents inherent challenges. Some degree of misinterpreta-
tion is, therefore, inevitable and should be regarded as an 
inherent part of the iterative process of refining our geological 
understanding.
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The study area is characterised by outcrops that generally 
present as small exposures, and less frequently, as rock cliffs. 
Nevertheless, primary structural features can be reliably obser
ved only within these outcrop zones. The sequence of tectonic 
structures documented in these accessible locations serves as 
the basis for further structural analyses.

The primary objective of this study is to synthesise, eva
luate, and interpret an extensive dataset of structural 

measurements obtained from the Fatric Unit (specifically the 
Vysoká and Zliechov partial nappes), and investigates the 
internal deformation of the Fatric Unit in the Malé Karpaty 
Mountains during the Alpine orogeny. Our motivation arises 
from the tectonic position of the Fatric Unit in the Malé Karpaty 
Mountains as the most external element of the nappe system, 
combined with its pronounced backthrust-related overprint, 
which superimposes earlier deformation patterns.
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Fig. 1. Simplified tectonic map of the investigated area: a — Tectonic map of the Slovak sector of the Western Carpathians. The Malé Karpaty 
Mountains are highlighted by a red rectangle (adapted from Biely et al. 1996). b — Detailed tectonic map of the Malé Karpaty Mountains, 
indicating the specific study area within the Pezinské Karpaty Mountains drawn on Fig. 2 (modified after Polák et al. 2011). Note: VB – Vienna 
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Geological setting

The Malé Karpaty Mountains form part of the Tatra–Fatra 
Belt, which represents the outer zone of the Central Western 
Carpathians (e.g., Plašienka et al. 1997; Plašienka 1999, 
2018). This mountain range constitutes a key segment at  
the junction between the Western Carpathians and the Eastern 

Alps and is structurally composed of Paleoalpine complexes, 
specifically the Tatric, Fatric, and Hronic tectonic units and 
transitional Borinka and Orešany subunits (Figs. 1b, 2).

The Malé Karpaty Mts. extend over 100 km in length and 
approximately 15 km in width, forming a SW–NE-trending 
ridge that separates the Neogene Vienna Basin to the west 
from the Danube Basin to the east. On the northwestern side, 
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the boundary between the mountains and the Vienna Basin is 
defined by the Vienna Basin Transfer Fault (VBTF), a lower 
Miocene to Quaternary structure segmented into several fault 
strands (Decker et al. 2005; Beidinger & Decker 2011; Hinsch 
&  Decker 2011). On the southeastern side, the range is 
bounded by the Malé Karpaty Fault, interpreted as an early 
Neogene to Quaternary normal fault (Marko & Jureňa 1999).

The current geomorphological and tectonic configuration of 
the Malé Karpaty Mts. was established in the Late Neogene, 
during which time the range became fully separated from  
the surrounding Neogene basins, both tectonically and mor-
phologically (Minár et al. 2011).

The Tatric Unit comprises Variscan crystalline basement 
rocks overlain by a Mesozoic sedimentary cover, which is pre-
dominantly exposed in the southern and central parts of the 
mountain range (Plašienka et al. 1991; Ivan & Méres 2006).  
In contrast, the northern part is primarily formed by the nappe 
systems of the Fatric and Hronic units. Post-nappe Upper 
Cretaceous sediments are represented by the Brezová Group 
(Salaj et al. 1987), while Paleogene (Eocene–Oligocene) depo
sits located in the northwestern part of the region are assigned 
to the Malé Karpaty Group (Buček in Polák et al. 2012).

The Fatric Unit (sensu Andrusov et al. 1973) represents  
a thin-skinned nappe system within the tectonic framework  
of the Western Carpathians, positioned structurally above  
the Tatric Unit. In the Malé Karpaty region, it crops out in  
the northern part of the area (Fig. 2), forming a 2–4 km wide 
belt that extends from the village of Smolenice in the northeast 
to the village of Kuchyňa in the southwest. A substantial por-
tion of the Fatric Unit in this region is composed predomi-
nantly of the Vysoká Nappe, which structurally underlies  
the Zliechov Nappe (also referred to as the Krížna Nappe). 
The latter is locally preserved in small erosional remnants 
exposed in the northeastern part of the study area (cf. Maheľ 
& Cambel 1972; Maheľ 1986; Polák et al. 2012).

The lithostratigraphic succession of the Vysoká Nappe cor-
responds to a stratigraphic range from the Middle Triassic to 
the Cenomanian (Polák et al. 2012). The lower parts of the 
nappe are formed by typical Vysoká Limestone of Anisian age, 
overlain by Ladinian Ramsau Dolomite. A distinctive feature 
is the prominent development of the Carpathian Keuper, 
characterised by a succession of variegated claystones, dolo-
mites, and quartzites of Norian age. The Late Triassic is clas-
sically developed in black biodetrital, lumachelle, and often 
coral-bearing limestones and marls.

The Jurassic to Lower Cretaceous Vysoká sequence serves 
as a reference model for the shallower-water sedimentary 
sequences of the Fatric Unit. At the base lies a formation of 
dark, sandy crinoidal limestones and shales of Lower Liassic 
age, with an approximate thickness of 100 meters. The over
lying variegated sandy crinoidal limestones transition into 
nodular limestones of the Adnet or Prístodolok Formation, 
dated to the Late Liassic (Koša 1998). These are followed  
by Dogger-aged variegated crinoidal limestones, radiolarian 
limestones, radiolarites, and red nodular limestones of Late 
Jurassic age. The Lower Cretaceous succession is represented 

by a massive cherty and brecciated limestone (Padlá Voda 
Formation), shaly, marly cherty limestone (Hlboča Formation), 
and bioclastic limestone of the Barremian–Aptian Bohatá 
Formation (cf. Plašienka et al. 1991). The Albian–Cenomanian 
Poruba Formation consists predominantly of silicified marl-
stones, with intercalations of turbiditic sandstones occurring 
only in the uppermost parts.

The Zliechov Nappe is only marginally present, with a stra
tigraphic range from the Lower Jurassic to the Upper 
Cretaceous. The most characteristic lithostratigraphic unit is 
the Allgäu Formation (Fleckenmergel), composed of dark 
grey marly spotted limestones and marly shales of Lotharingian 
age, which gradually transition into siliceous Fleckenmergel 
of the Aalenian. The Middle Jurassic is represented by the 
Ždiar Formation, while the Late Jurassic is composed of  
the Jasenina and Osnica formations. The Lower Cretaceous 
lithostratigraphic units are represented by the Mráznica For
mation, which consists of marly laminated limestones and 
marly shales ranging from the Berriasian to the Hauterivian 
(e.g., Polák et al. 2012).

Methods and data used

Standard methods of field-geological research were applied 
during this study. Measurements of structural elements were 
conducted using a Freiberg-type geological compass. All 
structural data were further processed and visualised using 
Stereonet version 11 (Allmendinger et al. 2012; Cardozo 
& Allmendinger 2013). The structural elements are presented 
in lower hemisphere projections of the Lambert (Schmidt) net. 
For accurate determination of GPS coordinates, a Garmin 
GPSmap 62sc device was used. Structural data were collected 
across the Fatric Unit at 177 documented observation points. 
The position of these points is indicated in the Fig. 2 and addi-
tion data are in Supplementary Table S1.

The analysed mesoscopic and macroscopic structures are 
attributed to the Alpine orogeny and collectively referred to as 
Alpine deformation (DA). The field-based geological research 
focused on determining the attitude, in some cases the kine-
matics, of planar and linear structural elements. Planar struc-
tures were designated by letter symbols (S), and lineation  
by (L), with both indexed according to their relative chro
nological sequence. Relative ages were inferred from the ages 
of the host rocks and from observed cross-cutting or overprin
ting relationships among the structures. Numerical indexing 
based on relative age is conventionally applied as follows:  
S0 represents the primary planar fabric, which typically cor
responds to bedding planes in this context, while S1, S2, ..., Sn 
denote successive tectonic foliations arranged in order of 
superposition, from oldest to youngest (e.g., McClay 1992; 
Fossen 2016; Kriváňová et al. 2023; Vojtko &  Kriváňová 
2024).

Analogous to foliations, when multiple generations of linea
tions occur within the same rock, they are assigned numerical 
suffixes according to their relative chronological order: L0 

https://geologicacarpathica.com/data/files/supplements/GC-76-6-Lacny_TableS1.xlsx
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denotes the primary lineation, while L1, L2, ..., Ln correspond 
to successive tectonic lineations, arranged by superposition. 
Linear structures are further classified based on their orienta-
tion relative to tectonic transport: those parallel to the direc-
tion of tectonic transport (Lt), predominantly stretching 
lineation, and those perpendicular to the direction of shorte
ning (Lc), including intersection or crenulation lineations that 
are parallel to the fold axes (F). Macrofold axes are indexed as 
F1, F2, ..., Fn. A comparable indexing scheme is used for  
the associated deformation stages (D1, D2, ..., Dn) responsible 
for the evolution of these tectonic structures.

For the computation of plane intersections, construction  
of planes containing linear features, angles between lines  
and planes, bisecting planes between two surfaces, the correc-
tion of line-plane pairs, rotations, and spatial calculations,  
the GeolCalc 1.16 software (developed by R.  Vojtko) was 
used.

The digital terrain model (DTM) utilised in this study was 
derived from airborne LiDAR data, specifically from the 
Digital Model of Relief 5.0 (DMR 5.0) provided by the Geo
detic and Cartographic Institute Bratislava. These products 
originate from LLS: ÚGKK SR – The Geodesy, Cartography 
and Cadastre Authority of the Slovak Republic (available at: 
https://zbgis.skgeodesy.sk). All spatial datasets were managed 
using the GeoPackage format within Quantum GIS (QGIS) 
version 3.40 ‘Bratislava’ (QGIS.org 2025).

Structural observations

Bedding

In many areas comprised by Jurassic to Cretaceous succes-
sions, the S0 planes are folded (Fig. 3a), whereas in the Triassic 
carbonate formations, they exhibit stylolitisation, as evidenced 
by the presence of stylolitic seams (Fig.  4a). The measured 
planes in Jurassic–Cretaceous formations generally dip 
steeply, at angles between 50° and 80°, towards the northwest. 
A  general trend and plunge of poles to bedding planes is 
P0  158/42° (Fig.  3a). In the more homogeneous Middle 
Triassic lithologies located further south, the bedding tends to 
be more gently inclined than in the Jurassic–Cretaceous for-
mations, which are semi-ductile deformed – a result of their 
rheological properties (the formations are predominantly com-
posed of shales and marls). These units are often steeply 
dipping, occasionally subvertical, and commonly folded into 
the ductile behaving rocks of the Carpathian Keuper.

In the field, the carbonate rocks of the Jurassic–Cretaceous 
sequence typically form characteristic steeply dipping ridges 
(“klippen”). The klippen-like pattern of the Jurassic–Creta
ceous successions is well-preserved in the area of Buková 
hora (542 m asl.) and Kuchyňa-Vývrat settlement.

Conversely, elsewhere, the massive Middle Triassic carbo
nate behaved more rigidly and are more gently inclined, gene
rally dipping north-westward at angles of up to 50°, in some 
places reaching subhorizontal positions (e.g., Kŕč – 409 m asl. 

or Geltek – 594 m asl.), with a consistent north-westward dip. 
Bedding served as the reference plane for the identification 
and analysis of secondary tectonic structures, which are des
cribed in detail in the following sections.

 Alpine deformation

Structural association of  deformation stage is repre-
sented by  folds, primarily associated with  cleavage and  

 lineations, which are primarily developed within the rheo-
logically predisposed Jurassic–Cretaceous succession. 

The cleavage planes ( )are generally steeper than the S0 
bedding planes. With a northwest or southeast dip direction, 
they form a characteristic fan-like pattern of axial plane clea
vage. In the streonet, a distribution of poles to cleavage planes 
is characterised by a well-defined maximum density  with 
a mean orientation of 292/06° (Fig. 3b).

In several outcrops, open to closed folds, occasionally over-
turned, have been observed, displaying both symmetrical and 
asymmetrical geometries, often reaching metre- to tens of 
metre-scale dimensions (Fig. 4b). These folds predominantly 
verge to the northwest, although the opposite, southeast ver-
gence was also observed. The fold-related axial plane cleavage 
( ) typically dips toward the east-southeast to subvertical 
orientations and is closely associated with transport-parallel 
lineations ( ) with WNW trend (Figs. 4c, 5, and 6). The orien
tation of fold b-axes is generally in the NNE–SSW direction 
and is parallel to crenulation lineations, which are locally 
developed in lithologically suitable rocks of Jurassic and 
Cretaceous age (Fig. 5).

Foliation  in combination with bedding planes (S0) form 
S-C-like structures (Fig. 4f). In these structures, the S planes 
correspond to bedding (S0) , while and the C planes represent 
newly formed foliations ( ). This S–C fabric clearly indi-
cates top-to-the-northwest-directed transport, with an azimuth 
of approximately 305°. In some locations, recumbent folds 
with a north-westward vergence have also been observed and 
documented (Fig. 4b).

 Alpine deformation

During this deformation stage, both symmetrical and 
asymmetrical folds were formed, with their axes inclined 
towards the north (Fig. 4e). The asymmetrical  folds are of 
decimetric scale and exhibit vergence towards the east,  
which is associated with W–E compression. The measured 
and calculated axial planes ( ) correspond to the orientation 
of the documented folds. The  planes, which exhibit an 
almost subvertical orientation, with dips toward both the west 
and east (Fig.  3c). These planes can be classified as spaced  
and fold axial cleavage; however, in several outcrops, they 
may be mistaken for very young systematic extensional joints. 
Nonetheless, these structures are frequently associated with 
meso-scale open folds ( ), whose axes trend approximately 
north–south (Figs. 7 and 8). In such cases, their fold-related 
origin allows for a clear distinction from joints.

https://zbgis.skgeodesy.sk
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 Alpine deformation

The youngest identified Alpine deformation phase ( ) is 
characterised by a general NNW–SSE shortening, associated 
predominantly with the development of open to tight folds  
( ) with southward vergences indicating a top-to-the-south 
transport. The axial planes of these folds which are parallel 
with  cleavages ( ) are steeply inclined towards the north 
(Fig. 3d), while the fold axes are subhorizontal (Fig. 7), with  
a general trend and plunge of  092/02°. Field investigations 
revealed a close spatial and genetic relationship between  
the folds and south-vergent reverse to thrust faults (Fig. 4d). 
No transport lineations ( ) were observed in the rocks except 
for slickenside lineations present on the reverse fault planes, 
which exhibit a north–south orientation.

Interpretation of structures and discussion

In this contribution, an extensive dataset of planar primary 
structures associated with bedding (S0) and deformation-
related features ( ) was documented within the Triassic to 
Cretaceous sedimentary sequences of the Fatric Unit. Struc
tural analysis revealed a heterogeneous assemblage of mea
sured structures. The geometry and overprinting relationships 
of secondary planar elements (cleavages, fracture cleavages, 
and fold axial surfaces, various types of lineation as well as 
fold hinge lines or axes) indicate the presence of three princi-
pal Alpine deformation phases.

The first deformation stage ( ) is characterised by the 
enhancement of bedding through pressure-solution processes 
under pure shear conditions, followed by the development of 
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an asymmetric arrangement of tectonic planar structures ( ) 
formed under sub-simple to simple shear conditions.

This horizontal compressive stress led to the evolution of 
Alpine thrusts and reverse faults, resulting in the shortening of 
the crust, where the hanging wall was displaced upward rela-
tive to the footwall. The sense of shear within such zones can 
be interpreted primarily through the presence of asymmetric 
and intrafolial folds, parallelogram-shaped structures, and 
stretching lineations observed in deformed rocks (e.g., Ramsay 
1980; Lister & Snoke 1984; Passchier & Trouw 2005; Pelech 
& Hók 2017). Kinematic indicators, such as these asymmetric 

structures, provide evidence of shear direction associated with 
the Eo-Alpine tectonic phase because younger sediments were 
not incorporated to these fold structures (e.g., Marko et al. 
1990; Schittenhelm 2017).

The main criteria to determine the shear movement were 
S–C fabric with a combination of the intersection and stre
tching lineations. These data also refers to the Alpine thrusting 
of the Fatric Unit onto the Tatric Unit with the principal vector 
of tectonic transport an average azimuth of 305° (NW direc-
tion). This top-to-the-northwest direction of the Alpine tec-
tonic transport was determined by stretching or slickenside 
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lineations with NW–SE trends ( ), fold axes with NE–SW 
trends ( ) and also by large-scale recumbent folding affec
ting the sedimentary sequences. The emplacement of the Fat
ric Unit (Vysoká and Zliechov nappes) onto the Tatric Unit 
occurred approximately 90 Ma ago (cf. Plašienka et al. 1997; 
Plašienka 1999, 2003, 2018, 2019; Putiš et al. 2009; Prokešová 
et al. 2012). This is further supported by the thrust surface of 
the Tatric crystalline complex over the Borinka Unit, where 
the timing of thrusting has been constrained to the Late 
Cretaceous (~80–75 Ma) based on K–Ar dating of Alpine 
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sericitic blastomylonites within the granitoids (Kantor et al. 
1987; Putiš et al. 2009). These geochronological data are con-
sistent with the lithostratigraphy of the Fatric Unit, where the 
youngest known deposits (synorogenic flysch of the Poruba 
Formation) are of Cenomanian age (approximately 95 Ma) 
(Jablonský 1988).

A substantial reorganization of the palaeostress field took 
place during the Late Cretaceous to Early Eocene ( ).  
The principal shortening axis shifted from a northwest–south-
east to a west–east (W–E) orientation. The observed deforma-
tion ( ) was identified in the Mesozoic rocks of the Vysoká 

Nappe; however, it is no longer present in the Eocene–
Oligocene of the Malé Karpaty Group (Marko et al. 1995; 
Schittenhelm 2017). Therefore, it is considered to be of an older 
origin. The final stage of this deformation ( ) is characte
rised by an extension, and it is expressed by the development 
of extensional structures, predominantly joints filled with cal-
cite. These planes were favourably oriented and acted as zones 
of weakness, later filled with fibrous or blocky calcite and on 
some places with extensional en-echelon pattern. The orienta-
tion of the calcite veins varies, and this phenomenon will be 
object of further research. During the field research, it was not 
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possible to confirm unambiguously whether these were older 
calcite veins or extensive structures of Early to Middle 
Miocene age (cf. Marko et al. 1991, 1995; Fodor 1995).

During the Late Oligocene to Early Miocene period, the tec-
tonic regime gradually changed to a compressional setting, 
with the maximum shortening oriented in a north–south direc-
tion ( ). This led to south-vergent reworking of the origi-
nally north-vergent Fatric tectonic structure in the Malé 
Karpaty region (cf. Marko et al. 1991, 1995). The general 
structure of the Fatric sedimentary sequences was rotated and 
tilted, with bedding dipping towards the north-northwest. 
Rheologically weaker rock formations underwent re-folding  
( ), accompanied by the development of backthrusts with 

top-to-the-south kinematics. This deformation event is dated 
based on observations of deformation affecting Oligocene and 
Lower Miocene rocks. While the Oligocene sediments were 
affected by the same south-vergent deformation, the Karpatian 
sedimentary sequence unconformably overlie this structural 
framework (e.g., Nováková et al. 2017; Tomašových et al. 
2024). The relatively steep dip of the nappe body also reflects 
the influence of the south-vergent tectonic structure and is 
attributed to the soft docking of the ALPACA Mega-Unit and 
the European Platform (e.g., Kováč et al. 1989; Marko et al. 
1991; Pešková et al. 2012; Shittenhelm 2017). This process 
led to thrusting within the External Western Carpathians and 
the occurrence of reverse faulting in the hinterland. It is likely 
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that this deformation is associated with the development of  
a fan structure in the broader region surrounding the Pieniny 
Klippen Belt (e.g., Marko et al. 1991; Pešková et al. 2012).

Conclusions

The Fatric Unit is primarily composed of Triassic to Cre
taceous sedimentary sequences, which exhibit varying rheo-
logical properties. Despite these differences, all formations are 
characterised by well-preserved and well-developed bedding 
(S0), which served as a reliable primary fabric. This bedding 
was utilised as a key structural marker for identifying and ana-
lysing Alpine deformation during this study.

The structural analysis of the Fatric Unit reveals a complex 
tectonic history marked by multiple deformation phases asso-
ciated with the Alpine orogeny. Three principal deformation 
stages ( ) to ( ) were identified, each reflecting distinct 
stress regimes and tectonic processes. The earliest deforma-
tion phase ( ) is linked to Eo-Alpine compressional tecto
nics, resulting in northwest-directed thrusting and large-scale 
recumbent folding. Subsequent reorganization of the paleo
stress field during the Late Cretaceous to Early Eocene ( ) 
introduced a W–E oriented shortening phase, followed by 
extensional processes expressed through calcite-filled joints. 
The final compressional phase ( ) is refered to the Late 
Oligocene–Early Miocene, involved south-vergent backthrus
ting that overprinted earlier structures and contributed to the 
overall fan-shaped architecture of the region. This structural 
evolution reflects the complex interplay of compressionanl 
and extensional tectonic regimes during the Alpine orogeny, 
culminating in the present-day configuration of the Western 
Carpathians.
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