DOI: 10.2478/tmmp-2018-0008
Tatra Mt. Math. Publ. 71 (2018), 81-97

STABILITY AND SQUARE INTEGRABILITY OF SOLUTIONS TO THIRD ORDER NEUTRAL DELAY DIFFERENTIAL EQUATIONS

John R. Graef ${ }^{1}$ - Linda D. Oudjedi ${ }^{2}$ - Moussadek Remili ${ }^{2}$
${ }^{1}$ University of Tennessee at Chattanooga, Chattanooga, USA
${ }^{2}$ University of Oran, Oran, ALGERIA

Abstract

In this paper, sufficient conditions to guarantee the square integrability of all solutions and the asymptotic stability of the zero solution of a non-autonomous third-order neutral delay differential equation are established. An example is given to illustrate the main results.

1. Introduction

In this paper, we discuss three classic questions on the behavior of solutions of differential equations, namely, their boundedness, stability, and square integrability. In particular, we examine the uniform asymptotic stability of solutions of the third order nonlinear neutral delay differential equation

$$
\begin{align*}
& {[x(t)+\beta x(t-\tau)]^{\prime \prime \prime}+a(t) }\left(Q(x(t)) x^{\prime}(t)\right)^{\prime}+ \\
& b(t)\left(R(x(t)) x^{\prime}(t)\right)+c(t) f(x(t-\tau))=0 \tag{1.1}
\end{align*}
$$

as well as the boundedness and square integrability of solutions of the corresponding forced equation

$$
\begin{align*}
& {[x(t)+\beta x(t-\tau)]^{\prime \prime \prime}+a(t) }\left(Q(x(t)) x^{\prime}(t)\right)^{\prime}+ \\
& b(t)\left(R(x(t)) x^{\prime}(t)\right)+c(t) f(x(t-\tau))=h(t) \tag{1.2}
\end{align*}
$$

[^0]Here β and τ are constants with $0 \leq \beta \leq 1$ and $\tau \geq 0$, the functions a, b, $c:[0, \infty) \rightarrow[0, \infty), Q, R: \mathbb{R} \rightarrow[0, \infty), h:[0, \infty) \rightarrow \mathbb{R}$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ are continuous, and $x f(x)>0$ for $x \neq 0$.

For second order equations, determining the asymptotic stability and square integrability of solutions has been a very active area of research over the years; see, for example, the monographs [3] and [4]. These properties have received far less attention for third order equations; some early well-known results on special cases of equation (1.1) can be found in Ezeilo [12, H ar a [19], and the classic work of Reissig, Sansone, and Conti [25]. More recent results have appeared in the monograph of Padhi and Pati [23] and the papers Ademola and Arawomo [1], Baculíková and Džurina [2], Bartušek and Graef [5], [6], Došlá (9], Graef et al. [13]-17], Mihalí ková and Kostiková [20], Omeike [21], Oudjedi [22, Qian [24], Remili et al. [26]-38], Tian et al. 39], Tunç [40]-45], and Zhang and Yu u6.

By a solution of (1.1) or (1.2) we mean a continuous function $x:\left[t_{x}, \infty\right) \rightarrow \mathbb{R}$ such that $x(t)+\beta x(t-\tau) \in C^{3}\left(\left[t_{x}, \infty\right), \mathbb{R}\right)$ and which satisfies the equation on $\left[t_{x}, \infty\right)$.

2. Asymptotic stability

We shall make use of the following assumptions on the functions appearing in the equations. Assume that there are positive constants $a_{0}, a_{1}, c_{0}, b_{1}, q_{0}, q_{1}$, $r_{0}, r_{1}, L, \delta, d, M, \eta$, and J such that the following conditions are satisfied:
$\left(\mathrm{H}_{1}\right) \quad 0<a_{0} \leq a(t) \leq a_{1}$ and $0<c_{0} \leq c(t) \leq b(t) \leq b_{1}$;
$\left(\mathrm{H}_{2}\right) \quad 0<q_{0} \leq Q(x) \leq q_{1}$ and $1 \leq r_{0} \leq R(x) \leq r_{1}$;
$\left(\mathrm{H}_{3}\right) \delta\left(1+\frac{\beta}{2}\right)<d<a_{0} q_{0}$ and $-L \leq b^{\prime}(t) \leq c^{\prime}(t) \leq 0 ;$
$\left(\mathrm{H}_{4}\right) f(0)=0, \frac{f(x)}{x} \geq M>0$ for $x \neq 0, f^{\prime}$ is continuous and $f^{\prime}(x) \leq \delta$ for all x;
$\left(\mathrm{H}_{5}\right) \frac{1}{2} d a^{\prime}(t) Q(x)-c_{0}\left(d-\left(1+\frac{\beta}{2}\right) \delta\right)+\frac{b_{1} \beta}{2}\left(r_{1}+r_{1} \beta+\delta\right) \leq-\eta<0$;
$\left(\mathrm{H}_{6}\right) \beta\left(a_{1} q_{1}-d\right)+b_{1} \beta r_{1}(1+\beta)-(2-\beta)\left(a_{0} q_{0}-d\right)<0$;
$\left(\mathrm{H}_{7}\right) \int_{-\infty}^{+\infty}\left(\left|Q^{\prime}(u)\right|+\left|R^{\prime}(u)\right|\right) d u \leq J<+\infty$.
Our main result on the asymptotic stability of the zero solution of equation (1.1) is contained in the following theorem.

Theorem 2.1. Assume that conditions $\left(H_{1}\right)-\left(H_{7}\right)$ hold. Then, the zero solution of equation (1.1) is uniformly asymptotically stable if

$$
\tau<\min \left\{\frac{2 \eta}{b_{1} \delta(1+\beta+2 d)}, \frac{(2-\beta)\left(a_{0} q_{0}-d\right)-\beta\left(a_{1} q_{1}-d\right)-b_{1} \beta r_{1}(1+\beta)}{b_{1} \delta(1+\beta)}\right\} .
$$

Proof. For convenience, we introduce the notation

$$
\theta_{1}(t)=(Q(x(t)))^{\prime}=Q^{\prime}(x(t)) x^{\prime}(t), \quad \theta_{2}(t)=(R(x(t)))^{\prime}=R^{\prime}(x(t)) x^{\prime}(t)
$$

STABILITY, BOUNDEDNESS AND SQUARE INTEGRABILITY

and

$$
X(t)=x(t)+\beta x(t-\tau) .
$$

Then,

$$
X^{\prime}(t)=Y(t)=y(t)+\beta y(t-\tau) \quad \text { and } \quad X^{\prime \prime}(t)=Z(t)=z(t)+\beta z(t-\tau)
$$

We will write equation (1.1) as the equivalent system:

$$
\begin{align*}
x^{\prime}(t)= & y(t), \\
y^{\prime}(t)= & z(t) \\
Z^{\prime}(t)= & -a(t) Q(x) z(t)-a(t) Q^{\prime}(x) y^{2}(t)-b(t) R(x) y(t) \tag{2.1}\\
& -c(t) f(x(t))+c(t) \int_{t-\tau}^{t} f^{\prime}(x(s)) y(s) \mathrm{d} s .
\end{align*}
$$

Define a Lyapunov functional $U(t, x, y, Z)$ such that $U(t, 0)=0$ and

$$
\begin{equation*}
U=\exp \left(-\frac{1}{\kappa} \int_{t_{1}}^{t}\left(\left|\theta_{1}(s)\right|+\left|\theta_{2}(s)\right|\right) \mathrm{d} s\right) V \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
V=V_{0}+V_{1}+\mu \int_{t-\tau}^{t} z^{2}(s) \mathrm{d} s+\sigma \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s+\lambda \int_{-\tau}^{0} \int_{t+s}^{t} y^{2}(u) \mathrm{d} u \mathrm{~d} s \tag{2.3}
\end{equation*}
$$

and

$$
\begin{aligned}
V_{0} & =d c(t) F(x)+c(t) Y(t) f(x)+\frac{b(t) R(x)}{2} Y^{2}(t), \\
V_{1} & =\frac{1}{2} Z^{2}(t)+d y Z(t)+\frac{1}{2} d a(t) Q(x) y^{2}, \\
F(x) & =\int_{0}^{x} f(u) \mathrm{d} u,
\end{aligned}
$$

and κ, μ, σ and λ are constants to be suitably selected below.
First, we shall show that $V(t)$ defined by (2.3) is positive definite. From $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{3}\right)$, we have

$$
\begin{aligned}
V_{1} & =\frac{1}{2}\left(Z^{2}+2 d y Z+d a(t) Q(x) y^{2}\right) \\
& =\frac{1}{2}\left((Z+d y)^{2}+d y^{2}(a(t) Q(x)-d)\right)=V_{11}
\end{aligned}
$$

In the same way, it follows that

$$
V_{1}=\frac{d a(t) Q(x)}{2}\left(y+\frac{1}{a(t) Q(x)} Z\right)^{2}+\frac{1}{2}\left(\frac{a(t) Q(x)-d}{a(t) Q(x)}\right) Z^{2}=V_{12}
$$

Then

$$
\begin{aligned}
V_{1}= & \frac{1}{2} V_{11}+\frac{1}{2} V_{12} \\
= & \frac{1}{4}(Z+d y)^{2}+\frac{1}{4} d a(t) Q(x)\left(y+\frac{1}{a(t) Q(x)} Z\right)^{2} \\
& +\frac{1}{4} d(a(t) Q(x)-d) y^{2}+\frac{1}{4 a(t) Q(x)}(a(t) Q(x)-d) Z^{2} \\
\geq & \frac{d\left(a_{0} q_{0}-d\right)}{4} y^{2}+\frac{\left(a_{0} q_{0}-d\right)}{4 a_{1} q_{1}} Z^{2}
\end{aligned}
$$

From this inequality we see that there is a positive constant k_{0} such that

$$
V_{1} \geq k_{0}\left(y^{2}+Z^{2}\right)
$$

where $k_{0}=\min \left\{\frac{d}{4}\left(a_{0} q_{0}-d\right), \frac{1}{4 a_{1} q_{1}}\left(a_{0} q_{0}-d\right)\right\}$. From $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{3}\right)$, we obtain

$$
\begin{aligned}
V_{0} & =d c(t) F(x)+\frac{b(t) R(x)}{2} Y^{2}+\frac{c(t)}{2}(Y+f(x))^{2}-\frac{c(t)}{2} Y^{2}-\frac{c(t)}{2} f^{2}(x) \\
& \geq d c(t) \int_{0}^{x}\left(1-\frac{f^{\prime}(u)}{d}\right) f(u) \mathrm{d} u+\frac{b(t)}{2}\left(R(x)-\frac{c(t)}{b(t)}\right) Y^{2} \\
& \geq d c(t) \int_{0}^{x}\left(1-\frac{\delta}{d}\right) f(u) \mathrm{d} u+\frac{c_{0}}{2}\left(r_{0}-1\right) Y^{2} \\
& \geq \delta_{1} F(x)+\frac{c_{0}}{2}\left(r_{0}-1\right) Y^{2}
\end{aligned}
$$

where $\delta_{1}=d c_{0}\left(1-\frac{\delta}{d}\right)$. Observe that by $\left(\mathrm{H}_{4}\right)$, we have

$$
\frac{f^{2}(x)}{x^{2}} \geq M^{2}
$$

which implies that

$$
F(x) \geq \frac{1}{2 \delta} f^{2}(x) \geq \frac{M^{2}}{2 \delta} x^{2}(t)
$$

Since

$$
\sigma \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s+\mu \int_{t-\tau}^{t} z^{2}(s) \mathrm{d} s+\lambda \int_{-\tau}^{0} \int_{t+s}^{t} y^{2}(u) \mathrm{d} u \mathrm{~d} s>0
$$

it follows that

$$
\begin{equation*}
V \geq k_{1}\left(Z^{2}+y^{2}+x^{2}+Y^{2}\right) \tag{2.4}
\end{equation*}
$$

where $k_{1}=\min \left\{k_{0}, \frac{M^{2} \delta_{1}}{2 \delta}, \frac{c_{0}}{2}\left(r_{0}-1\right)\right\}$. By $\left(\mathrm{H}_{7}\right)$, we have

$$
\begin{equation*}
U \geq k_{2}\left(Z^{2}+y^{2}+x^{2}+Y^{2}\right) \tag{2.5}
\end{equation*}
$$

for some constant $k_{2}>0$. It is not difficult to see that

$$
\begin{equation*}
W(x, y, Z)=k_{2}\left(Z^{2}+y^{2}+x^{2}+Y^{2}\right)=0 \quad \text { if and only if } \quad x=y=Z=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
U \geq k_{2}\left(Z^{2}+y^{2}+x^{2}+Y^{2}\right)=W(x, y, Z)>0 \quad \text { if } \quad(x, y, Z) \neq 0 \tag{2.7}
\end{equation*}
$$

The derivative of the functional V along the trajectories of the system (2.1) is given by

$$
\begin{aligned}
V^{\prime}= & H(t, x, y)+\frac{1}{2} d a^{\prime}(t) Q(x) y^{2}+\beta c(t) y y(t-\tau) f^{\prime}(x)+b(t) \beta R(x) y(t-\tau) z \\
& +b(t) \beta^{2} R(x) y(t-\tau) z(t-\tau)-\sigma y^{2}(t-\tau) \\
& -d b(t) R(x) y^{2}+c(t) y^{2} f^{\prime}(x)+\sigma y^{2}+\lambda \tau y^{2} \\
& +(d-a(t) Q(x)) z^{2}(t)+\mu z^{2}(t)+\beta(d-a(t) Q(x)) z z(t-\tau)-\mu z^{2}(t-\tau) \\
& -\lambda \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s+c(t)(z+\beta z(t-\tau)+d y) \int_{t-\tau}^{t} f^{\prime}(x(s)) y(s) \mathrm{d} s+\psi(Y, Z)
\end{aligned}
$$

where

$$
\psi(Y, Z)=\frac{b(t)}{2} \theta_{2}(t) Y^{2}-\frac{1}{2} d a(t) \theta_{1}(t) y^{2}-a(t) \theta_{1}(t) y Z
$$

and

$$
H(t, x, y)=d c^{\prime}(t) F(x)+c^{\prime}(t) Y f(x)+\frac{b^{\prime}(t) R(x)}{2} Y^{2}
$$

Notice that

$$
\begin{aligned}
\psi(Y, Z) & \leq \frac{b_{1}}{2}\left|\theta_{2}(t)\right| Y^{2}+\frac{a_{1}}{2}\left|\theta_{1}(t)\right|(1+d)\left(y^{2}+Z^{2}\right) \\
& \leq \omega\left(\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right|\right)\left(y^{2}+Y^{2}+Z^{2}\right)
\end{aligned}
$$

with $\omega=\frac{1}{2} \max \left\{b_{1}, a_{1}(1+d)\right\}$.
If $c^{\prime}(t)=0$, then $H(t, x, y)=\frac{b^{\prime}(t) R(x)}{2} Y^{2} \leq 0$. If $c^{\prime}(t)<0$, then $H(t, x, y)$ can be written as

$$
H(t, x, y)=d c^{\prime}(t) H_{1}(t, x, y)
$$

where

$$
H_{1}(t, x, y)=\left[F(x)+\frac{b^{\prime}(t) R(x)}{2 d c^{\prime}(t)}\left\{Y+\frac{c^{\prime}(t)}{b^{\prime}(t) R(x)} f(x)\right\}^{2}-\frac{c^{\prime}(t)}{2 d b^{\prime}(t) R(x)} f^{2}(x)\right]
$$

From $\left(H_{3}\right)$, we have $0<\frac{c^{\prime}(t)}{b^{\prime}(t)} \leq 1$, so

$$
H_{1}(t, x, y) \geq F(x)-\frac{1}{2 d} f^{2}(x) \geq \int_{0}^{x}\left(1-\frac{\delta}{d}\right) f(u) \mathrm{d} u \geq \frac{\delta_{1}}{d c_{0}} \int_{0}^{x} f(u) \mathrm{d} u \geq 0 .
$$

It follows immediately that

$$
H(t, x, y)=d c^{\prime}(t) H_{1}(t, x, y) \leq 0
$$

Hence, on combining the two cases for $c^{\prime}(t)$, we have $H(t, x, y) \leq 0$ for all $t \geq 0$, x, and y.

From condition $\left(\mathrm{H}_{4}\right)$ and applying the fact that $2 u v \leq u^{2}+v^{2}$, we obtain

$$
\begin{gather*}
z \int_{t-\tau}^{t} f^{\prime}(x(s)) y(s) \mathrm{d} s \leq \frac{\delta \tau}{2} z^{2}+\frac{\delta}{2} \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s \tag{2.8}\\
\beta z(t-\tau) \int_{t-\tau}^{t} f^{\prime}(x(s)) y(s) \mathrm{d} s \leq \frac{\beta \delta \tau}{2} z^{2}(t-\tau)+\frac{\delta \beta}{2} \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s, \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
d y \int_{t-\tau}^{t} f^{\prime}(x(s)) y(s) \mathrm{d} s \leq \frac{\delta \tau}{2} d y^{2}+\frac{\delta d}{2} \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s \tag{2.10}
\end{equation*}
$$

Applying conditions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{3}\right)$ and using (2.8) -(2.10), we have

$$
\begin{aligned}
V^{\prime} \leq & \left(\frac{1}{2} d a^{\prime}(t) Q(x)-b(t)\left(d R(x)-\delta\left(1+\frac{\beta}{2}\right) \frac{c(t)}{b(t)}\right)+\sigma+\frac{d \delta \tau}{2} b_{1}+\lambda \tau\right) y^{2}(t) \\
& +\left(\mu-\frac{(2-\beta)\left(a_{0} q_{0}-d\right)-\beta b_{1} r_{1}}{2}+\frac{\delta \tau}{2} b_{1}\right) z^{2}(t) \\
& +\left(\frac{b_{1} \beta r_{1}}{2}(1+\beta)+\frac{\delta \beta b_{1}}{2}-\sigma\right) y^{2}(t-\tau) \\
& +\left(\frac{\beta\left(a_{1} q_{1}-d\right)+b_{1} \beta^{2} r_{1}}{2}-\mu+\beta \frac{\delta \tau}{2} b_{1}\right) z^{2}(t-\tau) \\
& +\left(\frac{\delta}{2} b_{1}+\beta \frac{\delta}{2} b_{1}+\frac{d \delta}{2} b_{1}-\lambda\right) \int_{t-\tau}^{t} y^{2}(s) \mathrm{d} s \\
& +\omega\left(\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right|\right)\left(y^{2}+Y^{2}+Z^{2}\right) .
\end{aligned}
$$

Let

$$
\mu=\frac{\beta\left(a_{1} q_{1}-d\right)+b_{1} r_{1} \beta^{2}+\beta \delta \tau b_{1}}{2}, \quad \lambda=\frac{\delta b_{1}}{2}(1+\beta+d)
$$

and

$$
\sigma=\frac{b_{1} \beta}{2}\left(r_{1}+\beta r_{1}+\delta\right)
$$

Then,

$$
\begin{aligned}
V^{\prime} \leq & \left(\frac{1}{2} d a^{\prime}(t) Q(x)-c_{0}\left(d-\left(1+\frac{\beta}{2}\right) \delta\right)\right. \\
& \left.+\frac{b_{1} \beta}{2}\left(r_{1}+\beta r_{1}+\delta\right)+\frac{b_{1} \delta \tau}{2}(1+\beta+2 d)\right) y^{2}(t) \\
& +\frac{1}{2}\left(\beta\left(a_{1} q_{1}-d\right)+b_{1} \beta r_{1}(1+\beta)-(2-\beta)\left(a_{0} q_{0}-d\right)+b_{1} \delta \tau(1+\beta)\right) z^{2}(t) \\
& +\omega\left(\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right|\right)\left(y^{2}+Y^{2}+Z^{2}\right) \\
\leq & \frac{1}{2}\left(\beta\left(a_{1} q_{1}-d\right)+b_{1} \beta r_{1}(1+\beta)-(2-\beta)\left(a_{0} q_{0}-d\right)+b_{1} \delta \tau(1+\beta)\right) z^{2}(t) \\
& +\left(-\eta+\frac{b_{1} \delta \tau}{2}(1+\beta+2 d)\right) y^{2}(t)+\omega\left(\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right|\right)\left(y^{2}+Y^{2}+Z^{2}\right)
\end{aligned}
$$

From (2.4), (2.2), and taking $\frac{1}{\kappa}=\frac{\omega}{k_{1}}$, we see that

$$
\begin{aligned}
\frac{d}{d t} U= & \exp \left(-\frac{\omega}{k_{1}} \int_{t_{1}}^{t}\left(\left|\theta_{1}(s)\right|+\left|\theta_{2}(s)\right|\right) \mathrm{d} s\right)\left(\frac{d}{d t} V-\frac{\omega\left(\left|\theta_{1}(t)\right|+\left|\theta_{2}(t)\right|\right)}{k_{1}} V\right) \\
\leq & \frac{1}{2}\left(\beta\left(a_{1} q_{1}-d\right)+b_{1} \beta r_{1}(1+\beta)-(2-\beta)\left(a_{0} q_{0}-d\right)+b_{1} \delta \tau(1+\beta)\right) z^{2}(t) \\
& +\left(-\eta+\frac{b_{1} \delta \tau}{2}(1+\beta+2 d)\right) y^{2}(t) .
\end{aligned}
$$

Therefore, from $\left(\mathrm{H}_{5}\right)$ and $\left(\mathrm{H}_{6}\right)$ there exists a positive constant N such that

$$
\begin{equation*}
U^{\prime} \leq-N\left(y^{2}(t)+z^{2}(t)\right) \tag{2.11}
\end{equation*}
$$

provided that

$$
\tau<\min \left\{\frac{2 \eta}{b_{1} \delta(1+\beta+2 d)}, \frac{(2-\beta)\left(a_{0} q_{0}-d\right)-\beta\left(a_{1} q_{1}-d\right)-b_{1} \beta r_{1}(1+\beta)}{b_{1} \delta(1+\beta)}\right\}
$$

Finally, it follows that

$$
\begin{equation*}
U^{\prime}(x, y, z)=0 \quad \text { if and only if } \quad x=y=z=0 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
U^{\prime}(x, y, z)<0 \quad \text { for } \quad(x, y, z) \neq 0 \tag{2.13}
\end{equation*}
$$

From the properties of the Lyapunov function U, namely (2.5), (2.6), (2.7), (2.12), and (2.13), we see that the zero solution of the system (2.1) is uniformly asymptotically stable (see [7] [18]), and this completes the proof of the theorem.

3. Boundedness of solutions of (1.2)

To study the boundedness of solutions of the forced equation (1.2), we will write it as the system

$$
\begin{align*}
x^{\prime}(t)= & y(t), \\
y^{\prime}(t)= & z(t), \\
Z^{\prime}(t)= & -a(t) Q(x) z(t)-a(t) Q^{\prime}(x) y^{2}(t)-b(t) R(x) y(t) \tag{3.1}\\
& -c(t) f(x(t))+h(t)+c(t) \int_{t-\tau}^{t} f^{\prime}(x(s)) y(s) \mathrm{d} s .
\end{align*}
$$

Our main theorem in this section is as follows.
Theorem 3.1. Assume that the conditions of Theorem 2.1 are satisfied and there is a positive constant D_{1} such that
($\left.\mathrm{I}_{1}\right) \int_{t_{1}}^{t}|h(s)| \mathrm{d} s<D_{1}$.
Then there exists a positive constant D such that any solution $x(t)$ of (3.1) satisfies

$$
\begin{equation*}
|x(t)| \leq D, \quad|y(t)| \leq D, \quad \text { and } \quad|Z(t)| \leq D \tag{3.2}
\end{equation*}
$$

Proof. Differentiating (2.3) along the solutions of system (3.1), we obtain

$$
V_{\sqrt{(3.1)}}^{\prime}=V_{(2.1)}^{\prime}+h(t)(d y+Z)
$$

Since $V_{[\underline{2.1]}}^{\prime} \leq 0$, it follows that

$$
V_{(3.1]}^{\prime} \leq K_{2}|h(t)|(|y|+|Z|),
$$

where $K_{2}=\max \{d, 1\}$. Now the inequality (2.4) and the fact that $|p| \leq p^{2}+1$ imply

$$
\begin{align*}
V_{\sqrt[(3.1)]{\prime}} & \leq K_{2}|h(t)|\left(y^{2}+Z^{2}+2\right) \\
& \leq K_{2}|h(t)| V(t)+2 K_{2}|h(t)| \tag{3.3}
\end{align*}
$$

Integrating from $t_{1}=t_{0}+\tau$ to t, we obtain

$$
V(t)-V\left(t_{1}\right) \leq 2 K_{2} \int_{t_{1}}^{t}|h(s)| \mathrm{d} s+K_{2} \int_{t_{1}}^{t} V(s)|h(s)| \mathrm{d} s
$$

STABILITY, BOUNDEDNESS AND SQUARE INTEGRABILITY

or

$$
V(t) \leq V\left(t_{1}\right)+2 K_{2} D_{1}+K_{2} \int_{t_{1}}^{t} V(s)|h(s)| \mathrm{d} s
$$

Applying Gronwall's inequality, it follows that

$$
\begin{equation*}
V(t) \leq\left(V\left(t_{1}\right)+2 K_{2} D_{1}\right) \exp \left(K_{2} \int_{t_{1}}^{t}|h(s)| \mathrm{d} s\right) \leq D_{2} \tag{3.4}
\end{equation*}
$$

i.e., $V(t)$ is bounded. In view of (2.4), this implies the conclusion of the theorem holds.

Corollary 3.2. Under the conditions of Theorem[2.1, the zero solution of equation (1.1) is globally uniformly asymptotically stable.

Proof. By Theorem [2.1] the zero solution of equation (1.1) is uniformly asymptotically stable, and by Theorem 3.1 all solutions are bounded. The conclusion then follows by the well-known LaSalle's invariance principle.

4. Square integrability of solutions

In this section, we are concerned with the square integrability of solutions of equation (1.2). Our main result in this direction is contained in the following theorem.

Theorem 4.1. In addition to the assumptions of Theorem 3.1, assume that
(I_{2}) $c_{0} M-\frac{b_{1} r_{1}}{2}>0$;
(I_{3}) $\int_{t_{1}}^{+\infty}\left|a^{\prime}(s)\right| \mathrm{d} s<A$.
Then all solutions of equation (1.2) and their derivatives belong to $L^{2}\left[t_{1},+\infty\right)$.
Proof. Define W(t) by

$$
\begin{equation*}
W(t)=U(t)+\varepsilon \int_{t_{1}}^{t}\left(z^{2}(s)+y^{2}(s)\right) \mathrm{d} s \tag{4.1}
\end{equation*}
$$

where $\varepsilon>0$ is a constant to be specified later. By differentiating $\mathrm{W}(\mathrm{t})$ and using (2.11), (3.3), and the fact that

$$
\exp \left(-\frac{1}{\kappa} \int_{t_{1}}^{t}\left(\left|\theta_{1}(s)\right|+\left|\theta_{2}(s)\right|\right) \mathrm{d} s\right) \leq 1
$$

we obtain

$$
W^{\prime}(t) \leq(\varepsilon-N)\left(z^{2}(t)+y^{2}(t)\right)+\left(K_{2} V(t)+2 K_{2}\right)|h(t)|
$$

Choosing $\varepsilon<N$, from (3.4) we obtain

$$
\begin{equation*}
W^{\prime}(t) \leq K_{4}|h(t)| \tag{4.2}
\end{equation*}
$$

where $K_{4}=K_{2} D_{2}+2 K_{2}$. Integrating (4.2) from $t_{1}=t_{0}+\tau$ to t and using condition (I_{1}) of Theorem 3.1] we have

$$
W(t)-W\left(t_{1}\right)=\int_{t_{1}}^{t} W^{\prime}(s) \mathrm{d} s \leq K_{4} D_{1}
$$

Now,

$$
U\left(t_{1}\right)=W\left(t_{1}\right)
$$

so

$$
W(t) \leq K_{4} D_{1}+U\left(t_{1}\right)
$$

Hence, by (4.1),

$$
\int_{t_{1}}^{t}\left(y^{2}(s)+z^{2}(s)\right) \mathrm{d} s<\frac{K_{4} D_{1}+U\left(t_{1}\right)}{\varepsilon}
$$

which implies the existence of positive constants σ_{1} and σ_{2} such that

$$
\int_{t_{1}}^{t} x^{\prime \prime 2}(s) \mathrm{d} s=\int_{t_{1}}^{t} z^{2}(s) \mathrm{d} s \leq \sigma_{2}
$$

and

$$
\int_{t_{1}}^{t} x^{\prime 2}(s) \mathrm{d} s=\int_{t_{1}}^{t} y^{2}(s) \mathrm{d} s \leq \sigma_{1}
$$

To prove that $\int_{t_{1}}^{t} x^{2}(s) \mathrm{d} s<\infty$, multiply (1.2) by $x(t-\tau)$ to obtain

$$
\begin{align*}
x(t-\tau) x^{\prime \prime \prime}(t) & +\beta x(t-\tau) x^{\prime \prime \prime}(t-\tau) \\
& +a(t) Q(x) x(t-\tau) x^{\prime \prime}(t)+a(t) Q^{\prime}(x) x(t-\tau) x^{\prime 2}(t) \\
& +b(t) R(x) x(t-\tau) x^{\prime}(t)+c(t) x(t-\tau) f(x(t-\tau)) \\
& =x(t-\tau) h(t) \tag{4.3}
\end{align*}
$$

STABILITY, BOUNDEDNESS AND SQUARE INTEGRABILITY

Integrating (4.3) from t_{1} to t, we have

$$
\begin{equation*}
\int_{t_{1}}^{t} c(s) x(s-\tau) f(x(s-\tau)) \mathrm{d} s=L_{1}(t)+L_{2}(t)+L_{3}(t) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{1}(t)= & -\int_{t_{1}}^{t}\left(x(s-\tau) x^{\prime \prime \prime}(s)+\beta x(s-\tau) x^{\prime \prime \prime}(s-\tau)\right) \mathrm{d} s \\
L_{2}(t)= & -\int_{t_{1}}^{t}\left(a(s) Q(x(s)) x(s-\tau) x^{\prime \prime}(s)+a(s) Q^{\prime}(x(s)) x^{\prime 2}(s) x(s-\tau)\right. \\
& \left.+b(s) R(x(s)) x(s-\tau) x^{\prime}(s)\right) d s \\
L_{3}(t)= & \int_{t_{1}}^{t} h(s) x(s-\tau) \mathrm{d} s
\end{aligned}
$$

Integrating by parts

$$
\begin{aligned}
L_{1}(t) & =M_{1}(t)-M_{1}\left(t_{1}\right)+\int_{t_{1}}^{t} x^{\prime}(s-\tau) x^{\prime \prime}(s) \mathrm{d} s \\
& \leq\left|M_{1}(t)-M_{1}\left(t_{1}\right)\right|+\int_{t_{1}}^{t} \frac{1}{2}\left(x^{\prime 2}(s-\tau)+x^{\prime \prime 2}(s)\right) \mathrm{d} s
\end{aligned}
$$

where

$$
M_{1}(t)=-x(t-\tau) X^{\prime \prime}(t)+\frac{\beta}{2} x^{\prime 2}(t-\tau)
$$

Now,

$$
\int_{t_{1}}^{t} x^{\prime 2}(s-\tau) \mathrm{d} s=\int_{t_{0}}^{t-\tau} x^{\prime 2}(u) \mathrm{d} u \leq \int_{t_{0}}^{t_{1}} x^{\prime 2}(u) \mathrm{d} u+\sigma_{1} \leq \sigma_{3}+\sigma_{1} \quad \text { for some } \sigma_{3}>0
$$

In view of (3.2), we see that

$$
\left|M_{1}(t)-M_{1}\left(t_{1}\right)\right| \leq D^{2}\left(\frac{3 \beta}{2}+1\right)+\left|M_{1}\left(t_{1}\right)\right| \quad \text { for all } t \geq t_{1}
$$

Thus,

$$
L_{1}(t) \leq D^{2}\left(\frac{3 \beta}{2}+1\right)+\left|M_{1}\left(t_{1}\right)\right|+\frac{1}{2}\left(n+\sigma_{1}+\sigma_{2}\right)=l_{1}
$$

Similarly we have

$$
\begin{aligned}
L_{2}(t)= & -\int_{t_{1}}^{t}\left(a(s) Q(x(s)) x(s-\tau) x^{\prime \prime}(s)+a(s) Q^{\prime}(x(s)) x^{\prime 2}(s) x(s-\tau)\right. \\
& \left.+b(s) R(x(s)) x(s-\tau) x^{\prime}(s)\right) \mathrm{d} s \\
= & -a(t) Q(x(t)) x(t-\tau) x^{\prime}(t)+a(t) Q(x(t)) \int_{t_{1}}^{t} x^{\prime}(s) x^{\prime}(s-\tau) \mathrm{d} s \\
& +\int_{t_{1}}^{t} a^{\prime}(s) Q(x(s)) x(s-\tau) x^{\prime}(s) \mathrm{d} s \\
& -\int_{t_{1}}^{t} a^{\prime}(s) Q(x(s))\left[\int_{t_{1}}^{s} x^{\prime}(u) x^{\prime}(u-\tau) \mathrm{d} u\right] \mathrm{d} s \\
& +\int_{t_{1}}^{t} a(s) Q^{\prime}(x(s)) x(s-\tau) x^{\prime 2}(s) \mathrm{d} s \\
& -\int_{t_{1}}^{t} a(s) Q^{\prime}(x(s)) x^{\prime}(s)\left[\int_{t_{1}}^{s} x^{\prime}(u) x^{\prime}(u-\tau) d u\right] \mathrm{d} s \\
& -\int_{t_{1}}^{t} b(s) R(x(s)) x(s-\tau) x^{\prime}(s) \mathrm{d} s+M_{2}\left(t_{1}\right),
\end{aligned}
$$

where $M_{2}\left(t_{1}\right)=a\left(t_{1}\right) Q\left(x\left(t_{1}\right)\right) x\left(t_{1}-\tau\right) x^{\prime}\left(t_{1}\right)$. Then

$$
\begin{aligned}
L_{2}(t) \leq & q_{1} \int_{t_{1}}^{t}\left(\left|a^{\prime}(s)\right|\left|x^{\prime}(s)\right||x(s-\tau)|+\left|a^{\prime}(s)\right|\left[\int_{t_{1}}^{s} x^{\prime}(u) x^{\prime}(u-\tau) \mathrm{d} u\right]\right) \mathrm{d} s \\
& +a_{1} \int_{t_{1}}^{t}\left(\left|Q^{\prime}(x(s)) x^{\prime}(s) \| x^{\prime}(s)\right||x(s-\tau)|\right. \\
& \left.+\left|Q^{\prime}(x(s)) x^{\prime}(s)\right|\left[\int_{t_{1}}^{s} x^{\prime}(u) x^{\prime}(u-\tau) \mathrm{d} u\right]\right) \mathrm{d} s+\frac{b_{1} r_{1}}{2} \int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s \\
& +\frac{b_{1} r_{1}}{2} \int_{t_{1}}^{t} x^{\prime 2}(s) \mathrm{d} s+\left|M_{2}\left(t_{1}\right)\right|+a_{1} q_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq & a_{1} q_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right)+\left|M_{2}\left(t_{1}\right)\right|+q_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right) \int_{t_{1}}^{t}\left|a^{\prime}(s)\right| \mathrm{d} s \\
& +a_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right) \int_{x\left(t_{1}\right)}^{x(t)}\left|Q^{\prime}(u)\right| \mathrm{d} u+\frac{b_{1} r_{1}}{2} \int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s+\frac{b_{1} r_{1}}{2} \sigma_{1} \\
\leq & a_{1} q_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right)+\left|M_{2}\left(t_{1}\right)\right|+q_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right) A \\
& +a_{1}\left(D^{2}+\sigma_{1}+\frac{n}{2}\right) J+\frac{b_{1} r_{1}}{2} \sigma_{1}+\frac{b_{1} r_{1}}{2} \int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s
\end{aligned}
$$

Also,

$$
L_{3}(t) \leq \int_{t_{1}}^{t}|x(s-\tau)||h(s)| \mathrm{d} s \leq D \int_{t_{1}}^{t} h(s) \mathrm{d} s \leq D_{1} D
$$

From (4.4) and condition $\left(I_{2}\right)$, we obtain

$$
\begin{aligned}
c_{0} M \int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s & \leq \int_{t_{1}}^{t} c(s) x(s-\tau) f(x(s-\tau)) \mathrm{d} s \\
& \leq K+\frac{b_{1} r_{1}}{2} \int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s
\end{aligned}
$$

where

$$
\begin{aligned}
K= & l_{1}+\left(D^{2}+\sigma_{1}+\frac{n}{2}\right)\left(a_{1} q_{1}+q_{1} A+a_{1} J\right) \\
& +\left|M_{2}\left(t_{1}\right)\right|+\frac{b_{1} r_{1}}{2} \sigma_{1}+D_{1} D
\end{aligned}
$$

Observe that

$$
\left(c_{0} M-\frac{b_{1} r_{1}}{2}\right) \int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s \leq K
$$

from which it follows that

$$
\int_{t_{1}}^{t} x^{2}(s-\tau) \mathrm{d} s<\infty \quad \text { for all } \quad t \geq t_{1}
$$

Hence, $\int_{t_{1}}^{+\infty} x^{2}(s) \mathrm{d} s<\infty$, and this completes the proof of theorem.

5. Example

As an example of our results, consider the forced third order non-autonomous delay neutral differential equation

$$
\begin{align*}
{\left[x(t)+\frac{1}{10} x(t-\tau)\right]^{\prime \prime \prime} } & +\left(\frac{1}{\pi} \arctan t+\frac{13}{2}\right)\left(\left(2-\frac{1}{1+x^{2}}\right) x^{\prime}\right)^{\prime} \\
& +\left(\frac{1}{2+t^{2}}+1\right)\left(\left(1+\frac{1}{3+x^{2}}\right) x^{\prime}\right) \\
& +\left(\frac{1}{4+t^{2}}+1\right)\left(\frac{3}{2} x(t-\tau)+\frac{x(t-\tau)}{1+x^{2}(t-\tau)}\right)=\frac{\sin t}{1+t^{2}} \tag{5.1}
\end{align*}
$$

It is easy to see that for all $t \geq t_{1}$:

$$
\begin{aligned}
& 6=a_{0} \leq a(t)=\frac{1}{\pi} \arctan t+\frac{13}{2} \leq 7=a_{1}, \\
& a^{\prime}(t)=\frac{1}{\pi} \frac{1}{1+t^{2}} \leq \frac{1}{\pi}, \\
& 1=c_{0} \leq c(t)=\frac{1}{4+t^{2}}+1 \leq b(t)=\frac{1}{2+t^{2}}+1 \leq \frac{3}{2}=b_{1}, \\
& 1=q_{0} \leq Q(x)=2-\frac{1}{1+x^{2}} \leq 2=q_{1}, \\
& 1 \leq R(x)=1+\frac{1}{3+x^{2}} \leq \frac{4}{3}=r_{1}, \\
& \frac{3}{2}=M \leq \frac{f(x)}{x}=\frac{3}{2}+\frac{1}{1+x^{2}} \quad \text { with } \quad x \neq 0 \quad \text { and } \quad\left|f^{\prime}(x)\right| \leq \frac{5}{2}=\delta, \\
& \delta\left(1+\frac{\beta}{2}\right)=\frac{105}{40}<d<6=a_{0} q_{0} \quad \text { for } \quad \beta=\frac{1}{10} \quad \text { and } \quad d=5, \\
& c_{0} M-\frac{b_{1} r_{1}}{2}=\frac{3}{2}-1>0, \\
& \frac{1}{2} d a^{\prime}(t) Q(x)-c_{0}\left(d-\left(1+\frac{\beta}{2}\right) \delta\right)+\frac{b_{1} \beta}{2}\left(r_{1}+r_{1} \beta+\delta\right) \leq-\frac{48}{100}<0 \quad \text { for } \quad d=5 \text {, } \\
& \beta\left(a_{1} q_{1}-d\right)+b_{1} \beta r_{1}(1+\beta)-(2-\beta)\left(a_{0} q_{0}-d\right) \leq-\frac{39}{50}<0 \quad \text { for } \quad d=5, \\
& \int_{t_{1}}^{+\infty}\left|a^{\prime}(s)\right| \mathrm{d} s=\frac{1}{\pi} \int_{t_{1}}^{+\infty} \frac{1}{1+s^{2}}<+\infty, \\
& \int_{t_{1}}^{+\infty}|h(s)| \mathrm{d} s \leq \int_{t_{1}}^{+\infty} \frac{1}{1+s^{2}}<+\infty,
\end{aligned}
$$

STABILITY, BOUNDEDNESS AND SQUARE INTEGRABILITY

and

$$
\int_{-\infty}^{+\infty}\left(\left|Q^{\prime}(u)\right|+\left|R^{\prime}(u)\right|\right) \mathrm{d} u \leq J<+\infty
$$

All the conditions of Theorem4.1 are satisfied, so every solution of (5.1) and their derivatives are bounded and belong to $L^{2}\left[t_{1},+\infty\right)$. In addition, if $h(t) \equiv 0$, then the zero solution of (5.1) is uniformly asymptotically stable.

REFERENCES

[1] ADEMOLA, A. T.-ARAWOMO, P. O.: Uniform stability and boundedness of solutions of nonlinear delay differential equations of third order, Math. J. Okayama Univ. 55 (2013), 157-166.
[2] BACULÍKOVÁ, B.—DŽURINA, J.: On the asymptotic behavior of a class of third order nonlinear neutral differential equations, Cent. Eur. J. Math. 8 (2010), 1091-1103.
[3] BARTUŠEK, M.—DOŠLÁ, Z.— GRAEF, J. R.: The Nonlinear Limit-Point/Limit-Circle Problem. Birkhäuser, Boston, 2004.
[4] BARTUŠEK, M.- GRAEF, J. R.: The Strong Nonlinear Limit-Point/Limit-Circle Problem. In: Trends in Abstract and Applied Analysis, Vol. 6, World Scientific, Hackensack, NJ, 2018.
[5] On L^{2} solutions of third order nonlinear differential equations, Dynam. Systems Appl. 9 (2000), 469-482.
[6] Some limit-point/limit-circle results for third order differential equations, Discrete Contin. Dynam. Systems (2001), Suppl., 31-38.
[7] BURTON, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. In: Math. Sci. Eng., Vol. 178, Academic Press, Orlando, 1985.
[8] DOROCIAKOVÁ, B.: Some nonoscillatory properties of third order differential equations of neutral type, Tatra Mt. Math. Publ. 38 (2007), 71-76.
[9] DOS̆LÁ, Z.: On square integrable solutions of third order linear differential equations, in: Proc. of the Inter. Scientific Conf. Math., Herlany, Slovakia, 1999 (A. Haščák, ed.), Univ. Technology Košice, 2000, pp. 68-72.
[10] DOŠLÁ, Z.-LIŠKA, P.: Oscillation of third-order nonlinear neutral differential equations, Appl. Math. Lett. 56 (2016), 42-48.
[11] Comparison theorems for third-order neutral differential equations, Electron. J. Differential Equations 2016 (2016), 1-13.
[12] EZEILO, J. O. C.: On the stability of solutions of certain differential equations of the third order, Quart. J. Math. Oxford Ser. (2) 11 (1960), 64-69.
[13] GRAEF, J. R.-BELDJERD, D.-REMILI, M.: On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay, Panamer. Math. J. 25 (2015), 82-94.
[14] _Stability and square integrability of solutions of nonlinear third order differential equations, Dyn. Contin. Discrete Impuls. Sys., Ser. A, Math. Anal. 22 (2015), 313-324.
[15] GRAEF, J. R.-REMILI, M.: Asymptotic behavior of solutions of a third order nonlinear differential equation, Nonlinear Oscill. 20 (2017), 74-84.
[16] Qualitative behavior of solutions of a third order nonlinear differential equation, Math. Nachr. 290 (2017), 2832-2844.
[17] GRAEF, J. R.-TUNÇ, C.: Global asymptotic stability and boundedness of certain multidelay functional differential equations of third order, Math. Methods Appl. Sci. 38 (2015), 3747-3752.
[18] HADDOCK, J.: Stability theory for nonautonomous systems, in: An International Symposium, Providence, 1974, Dyn. Syst., Vol. 2, Academic Press, New York, 1976 pp. 271-274.
[19] HARA, T.: On the uniform ultimate boundedness of the solutions of certain third order differential equations, J. Math. Anal. Appl. 80 (1981), 533-544.
[20] MIHALÍKOVÁ, B.-KOSTIKOVÁ, E.: Boundedness and oscillation of third order neutral differential equations, Tatra Mt. Math. Publ. 43 (2009), 137-144.
[21] OMEIKE, M. O.: New results on the asymptotic behavior of a third-order nonlinear differential equation, Differ. Equ. Appl. 2 (2010), 39-51.
[22] OUDJEDI, L. D.-BELDJERD, O.-REMILI, M.: On the stability of solutions for non--autonomous delay differential equations of third-order, Differ. Uravn. Protsessy Upr. 2014 (2014), No. 1, 22-34.
[23] PADHI, S.-PATI, S.: Theory of Third-Order Differential Equations. Springer, New Delhi, India, 2014.
[24] QIAN, C.: On global stability of third-order nonlinear differential equations, Nonlinear Anal. 42 (2000), 651-661.
[25] REISSIG, R.-SANSONE, G.-CONTI, R.: Non-linear Differential Equations of Higher Order. In: Monogr. Textbooks Pure Appl. Math., Noordhoff Internat. Publ., Leyden, 1974.
[26] OUDJEDI, L.-BELDJERD, D.-REMILI, M.: On the stability of solutions for non--autonomous delay differential equations of third-order, Differ. Uravn. Protsessy Upr. 2014 (2014), 22-34.
[27] REMILI, M.-BELDJERD, D.: A boundedness and stability results for a kind of third order delay differential equations, Appl. Appl. Math. 10 (2015), 772-782.
[28] _On the asymptotic behavior of the solutions of third order delay differential equations, Rend. Circ. Mat. Palermo 63 (2014), 447-455.
[29] _On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations, Acta Univ. M. Belii, Ser. Math. 24 (2016), 43-57.
[30] _Stability and ultimate boundedness of solutions of some third order differential equations with delay, J. Association Arab Univ. for Basic and Appl. Sci. 23 (2017), 9095.
[31] Boundedness and stability in third order nonlinear differential equations with bounded delay, An. Univ. Oradea Fasc. Mat. XXIII (2016), 135-143.
[32] Boundedness and stability in third order nonlinear differential equations with multiple deviating arguments, Arch. Math. (Brno) 52 (2016), 79-90.
[33] Stability and boundedness of the solutions of non autonomous third order differential equations with delay, Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 53 (2014), 139-147.
[34] Stability of the solutions of nonlinear third order differential equations with multiple deviating arguments, Acta Univ. Sapientiae Math. 8 (2016), 150-165.
[35] _On asymptotic stability of solutions to third order nonlinear delay differential equation, Filomat 30 (2016),
[36] Uniform stability and boundedness of a kind of third order delay differential equations, Bull. Comput. Appl. Math. 2 (2014), 25-35.
[37] Uniform ultimate boundedness and asymptotic behaviour of third order nonlinear delay differential equation, Afr. Mat. 27 (2016), 1227-1237.
[38] REMILI, M.-OUDJEDI, L. D.-BELDJERD, D.: On the qualitative behaviors of solutions to a kind of nonlinear third order differential equation with delay, Comm. Appl. Anal. 20 (2016), 53-64.

STABILITY, BOUNDEDNESS AND SQUARE INTEGRABILITY

[39] TIAN, Y.-Z.-CAI, Y.-L.-FU, Y.-L.- LI, T.-X.: Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ. 267 (2015), 14 p.
[40] TUNÇ, C.: Global stability of solutions of certain third-order nonlinear differential equations, Panamer. Math. J. 14 (2004), 31-35.
[41] On the asymptotic behavior of solutions of certain third-order nonlinear differential equations, J. Appl. Math. Stoch. Anal. 1 (2005), 29-35.
[42] Boundedness of solutions of a third-order nonlinear differential equation, J. Inequal. Pure Appl. Math. 6 (2005), No. 1, Article 3, 6 p.
[43] _On the stability and boundedness of solutions to third order nonlinear differential equations with retarded argument, Nonlinear Dynam. 57 (2009), 97-106.
[44] _Some stability and boundedness conditions for non-autonomous differential equations with deviating arguments, Elect. J. Qualitative Theory Diff. Equ. 2010 (2010), No. 1, 12 p .
[45] _The boundedness of solutions to nonlinear third order differential equations, Nonlinear Dyn. Syst. Theory 10 (2010), 97-102.
[46] ZHANG, L.-YU, L.: Global asymptotic stability of certain third-order nonlinear differential equations, Math. Methods Appl. Sci. 36 (2013), 1845-1850.

Received March 12, 2018

John R. Graef
Department of Mathematics
University of Tennessee at Chattanooga Chattanooga, TN 37403-2598
USA
E-mail: john-graef@utc.edu
Linda D. Oudjedi
Moussadek Remili
Department of Mathematics
University of Oran
1 Ahmed Benbella
31000 Oran
ALGERIA
E-mail: oudjedi@yahoo.fr remilimous@gmail.com

[^0]: © 2018 Mathematical Institute, Slovak Academy of Sciences.
 2010 Mathematics Subject Classification: 34K12, 34K20, 34K40.
 Keywords: uniform ultimate boundedness, square integrability, Lyapunov functional, neutral differential equation of third order.

