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ABSTRACT. In this paper, sufficient conditions to guarantee the square in-
tegrability of all solutions and the asymptotic stability of the zero solution of

a non-autonomous third-order neutral delay differential equation are established.
An example is given to illustrate the main results.

1. Introduction

In this paper, we discuss three classic questions on the behavior of solutions
of differential equations, namely, their boundedness, stability, and square inte-
grability. In particular, we examine the uniform asymptotic stability of solutions
of the third order nonlinear neutral delay differential equation

[
x(t) + βx(t− τ)

]′′′
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(
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(
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)
x′(t)

)′
+

b(t)
(
R
(
x(t)

)
x′(t)

)
+ c(t)f

(
x(t− τ)

)
= 0, (1.1)

as well as the boundedness and square integrability of solutions of the corre-
sponding forced equation
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Here β and τ are constants with 0 ≤ β ≤ 1 and τ ≥ 0, the functions a, b,
c : [0,∞) → [0,∞), Q, R : R → [0,∞), h : [0,∞) → R, and f : R → R are
continuous, and xf(x) > 0 for x �= 0.

For second order equations, determining the asymptotic stability and square
integrability of solutions has been a very active area of research over the years;
see, for example, the monographs [3] and [4]. These properties have received far
less attention for third order equations; some early well-known results on special
cases of equation (1.1) can be found in E z e i l o [12], H a r a [19], and the classic
work of R e i s s i g, S a n s o n e, and C o n t i [25]. More recent results have ap-
peared in the monograph of P a d h i and P a t i [23] and the papers A d em o l a
and A r a w om o [1], B a c u l ı́ k o v á and D ž u r i n a [2], B a r t u š e k and
G r a e f [5], [6], D o š l á [9], G r a e f et al. [13]–[17], M i h a l ı́ k o v á and K o s t i -
k o v á [20], Om e i k e [21], O u d j e d i [22], Q i a n [24], R e m i l i et al. [26]–[38],
T i a n et al. [39], T u n ç [40]–[45], and Z h a n g and Y u [46].

By a solution of (1.1) or (1.2) we mean a continuous function x : [tx,∞) → R

such that x(t) + βx(t − τ) ∈ C3
(
[tx,∞),R

)
and which satisfies the equation

on [tx,∞).

2. Asymptotic stability

We shall make use of the following assumptions on the functions appearing
in the equations. Assume that there are positive constants a0, a1, c0, b1, q0, q1,
r0, r1, L, δ, d, M , η, and J such that the following conditions are satisfied:

(H1) 0 < a0 ≤ a (t) ≤ a1 and 0 < c0 ≤ c(t) ≤ b(t) ≤ b1;

(H2) 0 < q0 ≤ Q(x) ≤ q1 and 1 ≤ r0 ≤ R(x) ≤ r1;

(H3) δ
(
1 + β

2

)
< d < a0q0 and −L ≤ b′(t) ≤ c′(t) ≤ 0;

(H4) f(0) = 0, f(x)
x

≥ M > 0 for x �= 0, f ′ is continuous and f ′(x) ≤ δ for all x;

(H5)
1
2da

′(t)Q(x)− c0
(
d− (

1 + β
2

)
δ
)
+ b1β

2 (r1 + r1β + δ) ≤ −η < 0;

(H6) β(a1q1 − d) + b1βr1(1 + β)− (2− β)(a0q0 − d) < 0;

(H7)
∫ +∞
−∞

(|Q′(u)| + |R′(u)|)du ≤ J < +∞.

Our main result on the asymptotic stability of the zero solution of equation
(1.1) is contained in the following theorem.

������� 2.1� Assume that conditions (H1)–(H7) hold. Then, the zero solution
of equation (1.1) is uniformly asymptotically stable if

τ < min

{
2η

b1δ(1 + β + 2d)
,
(2− β)(a0q0 − d)− β(a1q1 − d)− b1βr1(1 + β)

b1δ(1 + β)

}
.

P r o o f. For convenience, we introduce the notation

θ1(t) =
(
Q
(
x(t)

))′
= Q′(x(t))x′(t), θ2(t) =

(
R
(
x(t)

))′
= R′(x(t))x′(t),
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and

X(t) = x(t) + βx(t− τ).

Then,

X ′(t) = Y (t) = y(t) + βy(t− τ) and X ′′(t) = Z(t) = z(t) + βz(t− τ).

We will write equation (1.1) as the equivalent system:

x′(t) = y(t),

y′(t) = z(t),

Z ′(t) = −a(t)Q(x)z(t)− a(t)Q′(x)y2(t)− b(t)R(x)y(t)

− c(t)f
(
x(t)

)
+ c(t)

t∫
t−τ

f ′
(
x(s)

)
y(s) ds.

(2.1)

Define a Lyapunov functional U (t, x, y, Z) such that U (t, 0) = 0 and

U = exp

⎛
⎝− 1

κ

t∫
t1

(|θ1(s)|+ |θ2(s)|
)
ds

⎞
⎠ V, (2.2)

where

V = V0 + V1 + μ

t∫
t−τ

z2(s) ds+ σ

t∫
t−τ

y2(s) ds+ λ

0∫
−τ

t∫
t+s

y2(u) du ds, (2.3)

and

V0 = dc(t)F (x) + c(t)Y (t)f(x) +
b(t)R(x)

2
Y 2(t),

V1 =
1

2
Z2(t) + dyZ(t) +

1

2
da(t)Q(x)y2,

F (x) =

x∫
0

f(u) du,

and κ, μ, σ and λ are constants to be suitably selected below.

First, we shall show that V (t) defined by (2.3) is positive definite. From (H1)
and (H3), we have

V1 =
1

2

(
Z2 + 2dyZ + da(t)Q(x)y2

)
=

1

2

(
(Z + dy)2 + dy2

(
a(t)Q(x)− d

))
= V11.
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In the same way, it follows that

V1 =
da(t)Q(x)

2

(
y +

1

a(t)Q(x)
Z

)2
+

1

2

(
a(t)Q(x)− d

a(t)Q(x)

)
Z2 = V12.

Then

V1 =
1

2
V11 +

1

2
V12

=
1

4
(Z + dy)2 +

1

4
da(t)Q(x)

(
y +

1

a(t)Q(x)
Z

)2

+
1

4
d
(
a(t)Q(x)− d

)
y2 +

1

4a(t)Q(x)

(
a(t)Q(x)− d

)
Z2

≥ d(a0q0 − d)

4
y2 +

(a0q0 − d)

4a1q1
Z2.

From this inequality we see that there is a positive constant k0 such that

V1 ≥ k0(y
2 + Z2),

where k0 = min
{
d
4 (a0q0 − d), 1

4a1q1
(a0q0 − d)

}
. From (H1) and (H3), we obtain

V0 = dc(t)F (x) +
b(t)R(x)

2
Y 2 +

c(t)

2

(
Y + f(x)

)2 − c(t)

2
Y 2 − c(t)

2
f2(x)

≥ dc(t)

x∫
0

(
1− f ′(u)

d

)
f(u) du+

b(t)

2

(
R(x)− c(t)

b(t)

)
Y 2

≥ dc(t)

x∫
0

(
1− δ

d

)
f(u) du+

c0
2
(r0 − 1)Y 2

≥ δ1F (x) +
c0
2
(r0 − 1)Y 2,

where δ1 = dc0
(
1− δ

d

)
. Observe that by (H4), we have

f2(x)

x2
≥M 2,

which implies that

F (x) ≥ 1

2δ
f2(x) ≥ M 2

2δ
x2(t).

Since

σ

t∫
t−τ

y2(s) ds+ μ

t∫
t−τ

z2(s) ds+ λ

0∫
−τ

t∫
t+s

y2(u) du ds > 0,

it follows that

V ≥ k1(Z
2 + y2 + x2 + Y 2), (2.4)
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where k1 = min
{
k0,

M2δ1
2δ , c02 (r0 − 1)

}
. By (H7), we have

U ≥ k2(Z
2 + y2 + x2 + Y 2) (2.5)

for some constant k2 > 0. It is not difficult to see that

W (x, y, Z) = k2(Z
2 + y2 + x2 + Y 2) = 0 if and only if x = y = Z = 0, (2.6)

and

U ≥ k2(Z
2 + y2 + x2 + Y 2) =W (x, y, Z) > 0 if (x, y, Z) �= 0. (2.7)

The derivative of the functional V along the trajectories of the system (2.1)
is given by

V ′ = H(t, x, y) +
1

2
da′(t)Q(x)y2 + βc(t)yy(t− τ)f ′(x) + b(t)βR(x)y(t− τ)z

+ b(t)β2R(x)y(t− τ)z(t− τ)− σy2(t− τ)

− db(t)R(x)y2 + c(t)y2f ′(x) + σy2 + λτy2

+
(
d− a(t)Q(x)

)
z2(t) + μz2(t) + β

(
d− a(t)Q(x)

)
zz(t− τ)− μz2(t− τ)

− λ

t∫
t−τ

y2(s) ds+ c(t)
(
z + βz(t− τ) + dy

) t∫
t−τ

f ′
(
x(s)

)
y(s) ds+ ψ(Y, Z),

where

ψ(Y, Z) =
b(t)

2
θ2(t)Y

2 − 1

2
da(t)θ1(t)y

2 − a(t)θ1(t)yZ

and

H(t, x, y) = dc′(t)F (x) + c′(t)Y f(x) +
b′(t)R(x)

2
Y 2.

Notice that

ψ(Y, Z) ≤ b1
2
|θ2(t)|Y 2 +

a1
2
|θ1(t)|(1 + d)(y2 + Z2)

≤ ω
(|θ1(t)|+ |θ2(t)|

)
(y2 + Y 2 + Z2),

with ω = 1
2
max{b1, a1(1 + d)}.

If c′(t) = 0, then H(t, x, y) = b′(t)R(x)
2 Y 2 ≤ 0. If c′(t) < 0, then H(t, x, y) can

be written as

H(t, x, y) = dc′(t)H1(t, x, y),
where

H1(t, x, y) =

[
F (x) +

b′(t)R(x)
2dc′(t)

{
Y +

c′(t)
b′(t)R(x)

f(x)

}2
− c′(t)

2db′(t)R(x)
f2(x)

]
.
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From (H3), we have 0 < c′(t)
b′(t) ≤ 1, so

H1(t, x, y) ≥ F (x)− 1

2d
f2(x) ≥

x∫
0

(
1− δ

d

)
f(u) du ≥ δ1

dc0

x∫
0

f(u) du ≥ 0.

It follows immediately that

H(t, x, y) = dc′(t)H1(t, x, y) ≤ 0.

Hence, on combining the two cases for c′(t), we have H(t, x, y) ≤ 0 for all t ≥ 0,
x, and y.

From condition (H4) and applying the fact that 2uv ≤ u2 + v2, we obtain

z

t∫
t−τ

f ′
(
x(s)

)
y(s) ds ≤ δτ

2
z2 +

δ

2

t∫
t−τ

y2(s) ds, (2.8)

βz(t− τ)

t∫
t−τ

f ′
(
x(s)

)
y(s) ds ≤ βδτ

2
z2(t− τ) +

δβ

2

t∫
t−τ

y2(s) ds, (2.9)

and

dy

t∫
t−τ

f ′
(
x(s)

)
y(s) ds ≤ δτ

2
dy2 +

δd

2

t∫
t−τ

y2(s) ds. (2.10)

Applying conditions (H1) and (H3) and using (2.8)–(2.10), we have

V ′ ≤
(
1

2
da′(t)Q(x)− b(t)

(
dR(x)− δ

(
1 +

β

2

)
c(t)

b(t)

)
+ σ +

dδτ

2
b1 + λτ

)
y2(t)

+

(
μ− (2− β)(a0q0 − d)− βb1r1

2
+
δτ

2
b1

)
z2(t)

+

(
b1βr1
2

(1 + β) +
δβb1
2

− σ

)
y2(t− τ)

+

(
β(a1q1 − d) + b1β

2r1
2

− μ+ β
δτ

2
b1

)
z2(t− τ)

+

(
δ

2
b1 + β

δ

2
b1 +

dδ

2
b1 − λ

) t∫
t−τ

y2(s) ds

+ ω
(|θ1(t)|+ |θ2(t)|

)(
y2 + Y 2 + Z2

)
.
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Let
μ =

β(a1q1 − d) + b1r1β
2 + βδτb1

2
, λ =

δb1
2

(1 + β + d)

and
σ =

b1β

2
(r1 + βr1 + δ).

Then,

V ′ ≤
(
1

2
da′(t)Q(x)− c0

(
d−

(
1 +

β

2

)
δ

)

+
b1β

2
(r1 + βr1 + δ) +

b1δτ

2
(1 + β + 2d)

)
y2(t)

+
1

2

(
β(a1q1 − d) + b1βr1(1 + β)− (2− β)(a0q0 − d) + b1δτ(1 + β)

)
z2(t)

+ ω

(
|θ1(t)|+ |θ2(t)|

)(
y2 + Y 2 + Z2

)
≤ 1

2

(
β(a1q1 − d) + b1βr1(1 + β)− (2− β)(a0q0 − d) + b1δτ(1 + β)

)
z2(t)

+

(
−η + b1δτ

2
(1 + β + 2d)

)
y2(t) + ω

(
|θ1(t)|+ |θ2(t)|

)(
y2 + Y 2 + Z2

)
.

From (2.4), (2.2), and taking 1
κ = ω

k1
, we see that

d

dt
U = exp

⎛
⎝− ω

k1

t∫
t1

(|θ1(s)|+ |θ2(s)|) ds
⎞
⎠(

d

dt
V − ω(|θ1(t)|+ |θ2(t)|)

k1
V

)

≤ 1

2

(
β(a1q1 − d) + b1βr1(1 + β)− (2− β)(a0q0 − d) + b1δτ(1 + β)

)
z2(t)

+

(
−η +

b1δτ

2
(1 + β + 2d)

)
y2(t).

Therefore, from (H5) and (H6) there exists a positive constant N such that

U ′ ≤ −N (y2(t) + z2(t)
)
, (2.11)

provided that

τ < min

{
2η

b1δ(1 + β + 2d)
,
(2− β)(a0q0 − d)− β(a1q1 − d)− b1βr1(1 + β)

b1δ(1 + β)

}
.

Finally, it follows that

U ′(x, y, z) = 0 if and only if x = y = z = 0, (2.12)

and
U ′(x, y, z) < 0 for (x, y, z) �= 0. (2.13)
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From the properties of the Lyapunov function U , namely (2.5), (2.6), (2.7),
(2.12), and (2.13), we see that the zero solution of the system (2.1) is uniformly
asymptotically stable (see [7], [18]), and this completes the proof of the theorem.

�

3. Boundedness of solutions of (1.2)

To study the boundedness of solutions of the forced equation (1.2), we will
write it as the system

x′(t) = y(t),

y′(t) = z(t),

Z ′(t) = −a(t)Q(x)z(t)− a(t)Q′(x)y2(t)− b(t)R(x)y(t)

− c(t)f
(
x(t)

)
+ h(t) + c(t)

t∫
t−τ

f ′
(
x(s)

)
y(s) ds.

(3.1)

Our main theorem in this section is as follows.

������� 3.1� Assume that the conditions of Theorem 2.1 are satisfied and
there is a positive constant D1 such that

(I1)

t∫
t1

|h(s)| ds < D1.

Then there exists a positive constant D such that any solution x(t) of (3.1)
satisfies

|x(t)| ≤ D, |y(t)| ≤ D, and |Z(t)| ≤ D. (3.2)

P r o o f. Differentiating (2.3) along the solutions of system (3.1), we obtain

V ′
(3.1) = V ′

(2.1) + h(t)(dy + Z).

Since V ′
(2.1) ≤ 0, it follows that

V ′
(3.1) ≤ K2|h(t)|(|y| + |Z|),

where K2 = max {d, 1}. Now the inequality (2.4) and the fact that |p| ≤ p2 + 1 imply

V ′
(3.1) ≤ K2 |h(t)| (y2 + Z2 + 2)

≤ K2 |h(t)| V (t) + 2K2 |h(t)| . (3.3)

Integrating from t1 = t0 + τ to t, we obtain

V (t)− V (t1) ≤ 2K2

t∫
t1

|h(s)| ds+K2

t∫
t1

V (s) |h(s)| ds,
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or
V (t) ≤ V (t1) + 2K2D1 +K2

t∫
t1

V (s) |h(s)| ds.

Applying Gronwall’s inequality, it follows that

V (t) ≤ (V (t1) + 2K2D1

)
exp

⎛
⎝K2

t∫
t1

|h(s)| ds
⎞
⎠≤ D2, (3.4)

i.e., V (t) is bounded. In view of (2.4), this implies the conclusion of the theorem
holds. �

����		
�� 3.2� Under the conditions of Theorem 2.1, the zero solution of equa-
tion (1.1) is globally uniformly asymptotically stable.

P r o o f. By Theorem 2.1, the zero solution of equation (1.1) is uniformly asymp-
totically stable, and by Theorem 3.1, all solutions are bounded. The conclusion
then follows by the well-known LaSalle’s invariance principle. �

4. Square integrability of solutions

In this section, we are concerned with the square integrability of solutions
of equation (1.2). Our main result in this direction is contained in the following
theorem.

������� 4.1� In addition to the assumptions of Theorem 3.1, assume that

(I2) c0M − b1r1
2

> 0;

(I3)

+∞∫
t1

|a′(s)| ds < A.

Then all solutions of equation (1.2) and their derivatives belong to L2[t1,+∞).

P r o o f. Define W(t) by

W (t) = U (t) + ε

t∫
t1

(
z2(s) + y2(s)

)
ds, (4.1)

where ε > 0 is a constant to be specified later. By differentiating W(t) and using
(2.11), (3.3), and the fact that

exp

⎛
⎝− 1

κ

t∫
t1

(|θ1(s)|+ |θ2(s)|) ds
⎞
⎠ ≤ 1,
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we obtain

W ′(t) ≤ (ε−N)
(
z2(t) + y2(t)

)
+
(
K2V (t) + 2K2

)|h(t)|.
Choosing ε < N , from (3.4) we obtain

W ′(t) ≤ K4 |h(t)| , (4.2)

where K4 = K2D2 + 2K2. Integrating (4.2) from t1 = t0 + τ to t and using
condition (I1) of Theorem 3.1, we have

W (t)−W (t1) =

t∫
t1

W ′(s) ds ≤ K4D1.

Now,

U (t1) =W (t1),

so

W (t) ≤ K4D1 + U (t1).

Hence, by (4.1),
t∫

t1

(
y2(s) + z2(s)

)
ds <

K4D1 + U (t1)

ε
,

which implies the existence of positive constants σ1 and σ2 such that

t∫
t1

x′′2(s) ds =

t∫
t1

z2(s) ds ≤ σ2

and
t∫

t1

x′2(s) ds =

t∫
t1

y2(s) ds ≤ σ1.

To prove that
∫ t

t1
x2(s) ds <∞, multiply (1.2) by x(t− τ) to obtain

x(t− τ)x′′′(t) + βx(t− τ)x′′′(t− τ)

+ a(t)Q(x)x(t− τ) x′′(t) + a(t)Q′(x)x(t− τ)x′2(t)

+ b(t)R(x)x(t− τ) x′(t) + c(t)x(t− τ)f
(
x(t− τ)

)
= x(t− τ)h(t). (4.3)
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Integrating (4.3) from t1 to t, we have

t∫
t1

c(s)x(s− τ)f
(
x(s− τ)

)
ds = L1(t) + L2(t) + L3(t), (4.4)

where

L1(t) = −
t∫

t1

(
x(s− τ)x′′′(s) + βx(s− τ)x′′′(s− τ)

)
ds,

L2(t) = −
t∫

t1

(
a(s)Q

(
x(s)

)
x(s− τ)x′′(s) + a(s)Q′(x(s))x′2(s)x(s− τ)

+b(s)R(x(s))x(s− τ)x′(s)
)
ds,

L3(t) =

t∫
t1

h(s)x(s− τ) ds.

Integrating by parts

L1(t) = M1(t)−M1(t1) +

t∫
t1

x′(s− τ)x′′(s) ds

≤ |M1(t)−M1(t1)|+
t∫

t1

1

2

(
x′2(s− τ) + x′′2(s)

)
ds,

where

M1(t) = −x(t− τ)X ′′(t) +
β

2
x′2(t− τ).

Now,

t∫
t1

x′2(s− τ) ds =

t−τ∫
t0

x′2(u) du ≤
t1∫

t0

x′2(u) du+ σ1 ≤ σ3 + σ1 for some σ3 > 0.

In view of (3.2), we see that

|M1(t)−M1(t1)| ≤ D2

(
3β

2
+ 1

)
+ |M1(t1)| for all t ≥ t1.

Thus,

L1(t) ≤ D2

(
3β

2
+ 1

)
+ |M1(t1)|+ 1

2
(n+ σ1 + σ2) = l1.
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Similarly we have

L2(t) = −
t∫

t1

(
a(s)Q

(
x(s)

)
x(s− τ)x′′(s) + a(s)Q′(x(s))x′2(s)x(s− τ)

+ b(s)R
(
x(s)

)
x(s− τ)x′(s)

)
ds

= −a(t)Q(x(t))x(t− τ)x′(t) + a(t)Q
(
x(t)

) t∫
t1

x′(s)x′(s− τ) ds

+

t∫
t1

a′(s)Q
(
x(s)

)
x(s− τ)x′(s) ds

−
t∫

t1

a′(s)Q
(
x(s)

)⎡⎣ s∫
t1

x′(u)x′(u− τ) du

⎤
⎦ds

+

t∫
t1

a(s)Q′(x(s))x(s− τ)x′2(s) ds

−
t∫

t1

a(s)Q′(x(s))x′(s)
⎡
⎣ s∫
t1

x′(u)x′(u− τ) du

⎤
⎦ ds

−
t∫

t1

b(s)R
(
x(s)

)
x(s− τ)x′(s) ds+M2(t1),

where M2(t1) = a(t1)Q
(
x(t1)

)
x(t1 − τ)x′(t1). Then

L2(t) ≤ q1

t∫
t1

⎛
⎝|a′(s)||x′(s)||x(s− τ)|+ |a′(s)|

⎡
⎣ s∫
t1

x′(u)x′(u− τ) du

⎤
⎦
⎞
⎠ ds

+ a1

t∫
t1

(|Q′(x(s))x′(s)||x′(s)||x(s− τ)|

+ |Q′(x(s))x′(s)|
⎡
⎣ s∫
t1

x′(u)x′(u− τ) du

⎤
⎦
⎞
⎠ ds+

b1r1
2

t∫
t1

x2(s− τ) ds

+
b1r1
2

t∫
t1

x′2(s) ds+ |M2(t1)|+ a1q1

(
D2 + σ1 +

n

2

)
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≤ a1q1

(
D2 + σ1 +

n

2

)
+ |M2(t1)|+ q1

(
D2 + σ1 +

n

2

) t∫
t1

|a′(s)| ds

+ a1

(
D2 + σ1 +

n

2

) x(t)∫
x(t1)

|Q′(u)| du+
b1r1
2

t∫
t1

x2(s− τ) ds+
b1r1
2
σ1

≤ a1q1

(
D2 + σ1 +

n

2

)
+ |M2(t1)|+ q1

(
D2+ σ1 +

n

2

)
A

+ a1

(
D2+ σ1+

n

2

)
J +

b1r1
2
σ1 +

b1r1
2

t∫
t1

x2(s− τ) ds.

Also,

L3(t) ≤
t∫

t1

|x(s− τ)| |h(s)| ds ≤ D

t∫
t1

h(s) ds ≤ D1D.

From (4.4) and condition (I2), we obtain

c0M

t∫
t1

x2(s− τ) ds ≤
t∫

t1

c(s)x(s− τ)f
(
x(s− τ)

)
ds

≤ K +
b1r1
2

t∫
t1

x2(s− τ) ds,

where

K = l1 +
(
D2 + σ1 +

n

2

)
(a1q1 + q1A+ a1J)

+ |M2(t1)|+ b1r1
2
σ1 +D1D.

Observe that (
c0M − b1r1

2

) t∫
t1

x2(s− τ) ds ≤ K,

from which it follows that

t∫
t1

x2(s− τ) ds <∞ for all t ≥ t1.

Hence,
∫ +∞
t1

x2(s) ds <∞, and this completes the proof of theorem. �
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5. Example

As an example of our results, consider the forced third order non-autonomous
delay neutral differential equation[
x(t) +

1

10
x(t− τ)

]′′′
+

(
1

π
arctan t+

13

2

)((
2− 1

1 + x2

)
x′
)′

+

(
1

2 + t2
+ 1

)((
1 +

1

3 + x2

)
x′
)

+

(
1

4 + t2
+ 1

)(
3

2
x(t− τ) +

x(t− τ)

1 + x2(t− τ)

)
=

sin t

1 + t2
.

(5.1)

It is easy to see that for all t ≥ t1:

6 = a0 ≤ a(t) =
1

π
arctan t+

13

2
≤ 7 = a1,

a′(t) =
1

π

1

1 + t2
≤ 1

π
,

1 = c0 ≤ c(t) =
1

4 + t2
+ 1 ≤ b(t) =

1

2 + t2
+ 1 ≤ 3

2
= b1,

1 = q0 ≤ Q(x) = 2− 1

1 + x2
≤ 2 = q1,

1 ≤ R(x) = 1 +
1

3 + x2
≤ 4

3
= r1,

3

2
=M ≤ f(x)

x
=

3

2
+

1

1 + x2
with x �= 0 and |f ′(x)| ≤ 5

2
= δ,

δ

(
1 +

β

2

)
=

105

40
< d < 6 = a0q0 for β =

1

10
and d = 5,

c0M − b1r1
2

=
3

2
− 1 > 0,

1

2
da′(t)Q(x)−c0(d−

(
1 +

β

2

)
δ)+

b1β

2
(r1+r1β+δ) ≤ − 48

100
< 0 for d = 5,

β(a1q1 − d) + b1βr1(1 + β)− (2− β)(a0q0 − d) ≤ −39

50
< 0 for d = 5,

+∞∫
t1

|a′(s)| ds = 1

π

+∞∫
t1

1

1 + s2
< +∞,

+∞∫
t1

|h(s)| ds ≤
+∞∫
t1

1

1 + s2
< +∞,
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and
+∞∫

−∞
(|Q′(u)|+ |R′(u)|) du ≤ J < +∞.

All the conditions of Theorem 4.1 are satisfied, so every solution of (5.1) and
their derivatives are bounded and belong to L2[t1,+∞). In addition, if h(t) ≡ 0,
then the zero solution of (5.1) is uniformly asymptotically stable.
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