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NEUTRAL DIFFERENCE SYSTEM AND

ITS NONOSCILLATORY SOLUTIONS

Jana Pasáčková

University of Economics, Prague, CZECH REPUBLIC

ABSTRACT. The paper deals with a system of four nonlinear difference equa-
tions where the first equation is of a neutral type. We study nonoscillatory so-
lutions of the system and we present sufficient conditions for the system to have

weak property B.

1. Introduction

In this paper, we study a four-dimensional system of this form

Δ (xn + pnxn−σ) = An f1 (yn) ,

Δyn = Bn f2 (zn) ,

Δzn = Cn f3 (wn) ,

Δwn = Dn f4 (xγn
) ,

(S)

where n ∈ N0 = {n0, n0 + 1, . . . }, n0 is a positive integer, σ is a nonnegative
integer, {An}, {Bn}, {Cn}, {Dn} are positive real sequences defined for n ∈ N0.
Δ is the forward difference operator given by Δxn = xn+1 − xn.

The sequence γ : N → N satisfies

lim
n→∞

γn = ∞. (H1)

The sequence {pn} is a sequence of the real numbers and it satisfies

lim
n→∞ pn = P, where |P | < 1. (H2)

c© 2018 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 39A10.
K eyw ords: difference system, nonoscillatory solutions, neutral term, property B, weak
property B.
This paper was processed with contribution of long term institutional support of research

activities by Faculty of Informatics and Statistics, University of Economics, Prague.

139



JANA PASÁČKOVÁ

Functions fi : R → R for i = 1, . . . , 4 satisfy

fi(u)

u
≥ M, u ∈ R\{0}, M ∈ R and M > 0. (H3)

By a solution of the system (S) we mean a vector sequence (x, y, z, w) which
satisfies the system (S) for n ∈ N0. We study nonoscillatory solutions. Therefore,
the first important terms are oscillatory and nonoscillatory solutions. The com-
ponent x is said to be nonoscillatory if there exists n1 ≥ n0 such that xn ≥ 0
(respectively xn ≤ 0) for all n ≥ n1. The component x is said to be oscilla-
tory if for any n1 ≥ n0 there exists n ≥ n1 such that xn+1xn < 0. A solution
of system (S) is said to be nonoscillatory (respectively oscillatory) if all of its
components x, y, z, w are nonoscillatory (respectively oscillatory).

���������� 1� The system (S) has weak property B if every nonoscillatory
solution of (S) satisfies

xnzn > 0 and ynwn > 0 for large n. (1)

���������� 2� The system (S) has property B if any of its solutions is either
oscillatory or either satisfies

lim
n→∞

|xn| = lim
n→∞

|yn| = lim
n→∞

|zn| = lim
n→∞

|wn| = ∞, (2)

or

lim
n→∞ xn = lim

n→∞ yn = lim
n→∞ zn = lim

n→∞wn = 0. (3)

Strongly monotone solutions are solutions satisfying (1) and xnyn > 0. While
solutions satisfying (1) and xnyn < 0 are called Kneser solutions. Property B
is defined in accordance with those for the higher-order differential equations or
for the system of differential equations, see [9] and references therein.

2. Summary of previous results

This paper continues in our previous research, see [7], [8]. We studied the
weak property B and the property B in both papers.

In [7], we investigate the system (S), where 0 ≤ pn < 1 and
∞∑

n=n0

An = ∞,
∞∑

n=n0

Bn = ∞,
∞∑

n=n0

Cn = ∞. (CF)

We say that the system (S) is in the canonical form when conditions (CF)
are satisfied. In [7], we established sufficient conditions for the system in the
canonical form to have property B. The main theorem from this paper is the
following.
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����� 1 ([7, Theorem 3])� Assume lim pn = P , 0 < P < 1, (CF) and

∞∑
i=n0

Di

⎛
⎝γi−σ−1∑

j=n0

Aj

(
j−1∑
k=n0

Bk

(
k−1∑
l=n0

Cl

))⎞⎠= ∞. (4)

In addition, if
∞∑

i=n0

Di

⎛
⎝ i−1∑

j=n0

Cj

⎞
⎠= ∞ (5)

holds, then the system (S) has property B.

The conditions (CF) and (5) ensure that (S) has weak property B and the con-
dition (4) helps to ensure that all nonoscillatory solutions satisfy the asymptotic
properties.

In [8], we investigated oscillatory and nonoscillatory solutions of (S) and we
established sufficient conditions for the system to have strongly monotone solu-
tions or Kneser solutions. We found sufficient conditions for the system to have
property B as well. Unlike [7], in [8] we studied (S) without any conditions for
sequences {An} , {Bn} and {Cn} which led to the large number of conditions
for (S) to have weak property B or property B. The main theorems are the
following.

	
����� 2 ([8, Theorem 8])� Let

∞∑
i=n0

Di

⎛
⎝γi−σ−1∑

j=n0

Aj

⎞
⎠=∞, (6)

and
∞∑

i=n0

Bi

⎛
⎝ i−1∑

j=n0

Cj

⎞
⎠=∞ (7)

hold. In addition, if

∞∑
i=n0

Bi

⎛
⎝ ∞∑

j=i

Cj

⎞
⎠=∞ (8)

and
∞∑

i=n0

Ci

⎛
⎝ i−1∑

j=n0

Dj

⎞
⎠=∞ (9)

hold, then the system (S) has weak property B.
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����� 3 ([8, Theorem 9])� Let (6)–(8) and (9) hold. In addition, if

∞∑
i=n0

Ai

⎛
⎝ i−1∑

j=n0

Bj

⎞
⎠= ∞ (10)

and
∞∑

i=n0

Ai

⎛
⎝ ∞∑

j=i

Bj

⎞
⎠= ∞ (11)

hold, then the system (S) has property B.

Since we have found it very complicated, we try to find some simplification
of these conditions. For example, if only

∑
An = ∞. Thus, the aim of this paper

is to extend results from these papers.

The first motivation for our previous papers was our paper “Nonoscillatory
solutions of the four-dimensional difference system”, see [2]. In this paper we
investigated asymptotic properties of nonoscillatory solutions of the system (S*).
It is the system (S) without a neutral term (i.e., pn = 0), with power functions
instead of functions fi and with γn = n+ τ , which is the most common form of
the sequence γ

Δxn = An y
1
α
n ,

Δyn = Bn z
1
β
n ,

Δzn = Cn w
1
γ
n ,

Δwn = Dn x
δ
n+τ .

(S*)

By using the notation

An = a
− 1

α
n Bn = b

− 1
β

n Cn = c
− 1

γ
n Dn = dn,

the system (S*) can be written as a fourth-order nonlinear difference equation
of the form

Δ

(
cn

(
Δ

(
bn

(
Δ
(
an(Δxn)

α
))β))γ )− dnx

δ
n+τ = 0. (E)

Thus, if functions fi are invertible, then the system (S) can be easily rewrit-
ten as a fourth-order nonlinear neutral difference equation, similarly as (E).
Equations with quasi-differences have been widely studied in the literature; for
example see [3]–[6], [11], [12].

In [6], they studied property A which means that they investigated oscillatory
properties of solutions of the fourth-order difference equations. Their approach is
based on studying the four-dimensional difference system, where {Dn} is a neg-
ative real sequence, instead of the considered equation.
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Difference equations with a neutral term have been studied, for example, in
[10], [13]. In [10], they established conditions under which for every real constant
there exists a solution of considered equation convergent to this constant. The
investigated equation is of the m-order, where m ≥ 2.

In [13], they studied nonoscillatory solutions of a fourth-order nonlinear neu-
tral difference equations of the form

Δ

(
anΔ

(
bnΔ

(
cnΔ(xn − pnxn−τ )

)))
+ f(n, xn−σ) = 0. (12)

They defined an asymptotically zero solution as a minimal solution and asymp-
totically Qn,N solution as a maximal solution, where

Qn,N =

n−1∑
k=N

1

ck

k−1∑
j=N

1

bj

j−1∑
i=N

1

ai
.

Then they have found the necessary and sufficient conditions for the equation
to have a minimal and a maximal solution.

	
����� 4 ([13, Theorem 1])� Assume that the operator of the difference equa-
tion (12) is in the canonical form and conditions

xf(n, x) > 0 for all x �= 0, n ∈ N and

∞∑
i=1

pi < ∞ (13)

hold. Let

n

∞∑
i=n

1

ci

i−1∑
j=1

1

bj

j−1∑
k=1

1

ak

k−1∑
s=1

f

(
s,

1

s− σ

)
< ∞

for n > 3. Then (12) has an eventually positive solution xn which converges to
zero.

	
����� 5 ([13, Theorem 3])� Assume that the operator of the difference equa-
tion (12) is in the canonical form, conditions (13) hold and f is a nondecreas-
ing function in the second argument. Then a necessary and sufficient condition
for (12) to have solution xn satisfying

lim
xn

Qn,N
= β �= 0

is that
∞∑

n=1

|f (n,CQn,N )| < ∞

for some integer N ≥ 1 and some nonzero constant C.

143



JANA PASÁČKOVÁ

Another direction which can be investigated are the bounded and unbounded
solutions. A solution of a system is said to be bounded if all its components are
bounded, otherwise, it is called unbounded. The bounded and unbounded solu-
tions of a four-dimensional system with a neutral term have been studied in [1].
They investigated system (S) with γn = n− τ . They presented sufficient condi-
tions for solutions of the system to be bounded or unbounded. The conditions
depend on the type of nonoscillatory solutions.

In proofs of our theorems, we use the change of summation which is described
by the following remark.

Remark 1 (Change of summation)� Let {Xn} and {Yn} be positive real
sequences defined for n ∈ N0. Then

∞∑
i=n0

Xi

⎛
⎝ i∑

j=n0

Yj

⎞
⎠= ∞ if and only if

∞∑
i=n0

Yi

⎛
⎝ ∞∑

j=i

Xj

⎞
⎠= ∞.

3. Nonoscillatory solutions and their
asymptotic properties

The system (S) has property B if any of its nonoscillatory solutions satisfy
special asymptotic properties. Therefore, we start with the classification of all
possible types of nonoscillatory solutions. Throughout the paper, we can focus
on solutions whose first component is eventually positive for large n. Since the
system (S) has a solution (x, y, z, w), then it has the solution (−x,−y,−z,−w)
as well.

We use the notation

sn = xn + pnxn−σ , (14)

where n ∈ N0.

The following lemma establishes the relation between the sequences {sn} and
{xn}. By (H2) and (14), the boundedness of x implies the boundedness of s.
The opposite implication was proved in [8, Lemma 2] for |P | < 1. Therefore we
present the following lemma without the proof.


���� 1� Let {xn} be eventually positive sequence and {pn} satisfies (H2),
n ∈ N0. Let {sn} be the sequence defined by (14). Then {xn} is bounded if and
only if {sn} is bounded.
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If we assume nonoscillatory solutions with eventually positive x, then any
nonoscillatory solution (x, y, z, w) of (S) is one of the following types:

type (a) xn > 0 yn > 0 zn > 0 wn > 0 for large n,

type (b) xn > 0 yn > 0 zn > 0 wn < 0 for large n,

type (c) xn > 0 yn < 0 zn > 0 wn < 0 for large n,

type (d) xn > 0 yn < 0 zn < 0 wn < 0 for large n,

type (e) xn > 0 yn > 0 zn < 0 wn < 0 for large n,

type (f) xn > 0 yn > 0 zn < 0 wn > 0 for large n,

type (g) xn > 0 yn < 0 zn < 0 wn > 0 for large n,

type (h) xn > 0 yn < 0 zn > 0 wn > 0 for large n.

If we assume some conditions that hold for sequences {An}, {Bn}, {Cn} and
{Dn}, we find that some of the solutions cannot exist.

In the following, we assume that
∞∑

i=n0

Bi < ∞ and

∞∑
i=n0

Di < ∞.


���� 2� Assume ∞∑
i=n0

Ai = ∞. (15)

Then any nonoscillatory solution (x, y, z, w) of the system (S) with eventually
positive x cannot be of type (d) or (g).

P r o o f. Assume that (x, y, z, w) is a solution of type (d) or (g). Since yn < 0
and zn < 0 there exist n1 ∈ N0 such that yn ≤ k < 0 for n ≥ n1 ≥ n0. Using the
summation of the first equation of (S) we get

sn − sn0
=

n−1∑
i=n0

Aif1 (yi) ≤ M

n−1∑
i=n0

Aiyi ≤ Mk

n−1∑
i=n0

Ai.

Passing n → ∞ we get that sn → −∞. Thus, sn is unbounded, by Lemma 1,
xn is unbounded too. Since xn > 0 and yn < 0, x is positive and decreasing
which gives a contradiction with the unboundedness of x. Therefore, the solution
cannot be of type (d) or (g). �


���� 3� Assume
∞∑

i=n0

Bi

⎛
⎝ i−1∑

j=n0

Cj

⎛
⎝ ∞∑

k=j

Dk

⎞
⎠
⎞
⎠= ∞. (16)

Then any nonoscillatory solution (x, y, z, w) of the system (S) with eventually
positive x cannot be of type (b), (e), (f), (g), (h).
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P r o o f. Since
∑

B and
∑

D are convergent, the condition (16) implies that

∞∑
j=n0

Cj

⎛
⎝ ∞∑

k=j

Dk

⎞
⎠= ∞ and

∞∑
i=n0

Ci = ∞.

Assume that there exist n1 ∈ N0 and a solution such that zn < 0, wn > 0
for n ≥ n1 ≥ n0. From the fourth equation of (S) we have Δwn > 0 and this
implies that there exists k > 0 such that wn ≥ k for large n. Using (H3) we have
f3(wn) ≥ wn ≥ Mk. By the summation of the third equation of (S) we have

zn − zn0
=

n−1∑
i=n0

Cif3 (wi) ≥ Mk

n−1∑
i=n0

Ci. (17)

Passing n → ∞, we get a contradiction with the fact that zn < 0. This excludes
solutions of types (f) and (g).

Now, assume that (x, y, z, w) is a solution of type (h). Using the same ar-
gument and substituting (17) into the summation of the second equation we
obtain

yn − yn0
=

n−1∑
i=n0

Bif2 (zi) ≥ M

n−1∑
i=n0

Bizi ≥ M 2k

n−1∑
i=n0

Bi

⎛
⎝ i−1∑

j=n0

Cj

⎞
⎠.

Since
∑

C is divergent we get using the change of summation and by passing
n → ∞ a contradiction with a boundedness of y.

Assume that (x, y, z, w) is a solution of type (b). Since x is positive and
increasing, there exists n2 ∈ N0 such that xn ≥ l > 0 for n ≥ n2 ≥ n0. Using
the summation of the fourth equation of (S) we get

w∞ − wn =

∞∑
i=n

Dif4 (xγi
) ≥ M

∞∑
i=n

Dixγi
≥ Ml

∞∑
i=n

Di.

Thus,

wn ≤ −Ml

∞∑
i=n

Di.

Substituting this into the summation of the third equation of (S) we obtain

zn − zn0
=

n−1∑
i=n0

Cif3 (wi) ≤ M

n−1∑
i=n0

Ciwi ≤ −M 2l

n−1∑
i=n0

Ci

⎛
⎝ ∞∑

j=i

Dj

⎞
⎠. (18)

Passing n → ∞ we get the contradiction with the boundedness of z.
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Finally, assume that (x, y, z, w) is a solution of type (e). Using the substitution
of (18) into the summation of the second equation we obtain

yn − yn0
=

n−1∑
i=n0

Bif2 (zi) ≤ M

n−1∑
i=n0

Bizi ≤ −M 3l

n−1∑
i=n0

Bi

⎛
⎝ i−1∑

j=n0

Cj

⎛
⎝ ∞∑

k=j

Dk

⎞
⎠
⎞
⎠.

This gives the contradiction with the boundedness of y. �

4. Weak property B

From the previous section, we get the following theorem.

	
����� 6� Let the following conditions be satisfied:
∞∑

i=n0

Bi < ∞ and

∞∑
i=n0

Di < ∞,

and (15), (16) hold, then the system (S) has weak property B.

P r o o f. The conditions imply that solutions of type (b), (d), (e), (f), (g), (h)
do not exist. �
Example 1. Assume the difference system

Δ

(
xn − 1

2
xn−1

)
=

3

4
n · yn ,

Δyn =
1

n(n+ 1)
zn ,

Δzn = n(n+ 1)wn ,

Δwn =
1

n(n+ 1)
xn (log2 xn − 1) .

(E)

We have

An =
3

4
n, Bn =

1

n(n+ 1)
,

Cn = n(n+ 1), Dn =
1

n(n+ 1)
.

Thus,
∑

Bn,
∑

Dn are convergent. We can easily check that conditions (15),
(16) are satisfied. Therefore, the system (E) has a weak property B. In fact, the
solution is

(x, y, z, w) =

(
2n,

2n

n
, 2n(n− 1),

2n

n

)
and it is the solution of type (a).
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REFERENCES
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