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ABSTRACT. We study the asymptotic properties of solutions to nonautonomous
difference equations of the form

A"z = anf(n,Ton)) +bn, fiNXR—=R, o:N—=N
Using the iterated remainder operator and asymptotic difference pairs we estab-

lish some results concerning approximative solutions and approximations of solu-
tions. Our approach allows us to control the degree of approximation.

1. Introduction

Let N, R denote the set of positive integers and real numbers, respectively.
Let m € N. We consider the nonautonomous difference equations of the form
A"y = an f(N, To(n)) + bn- (E)
an,bp €ER, f:NXxR—-R, o0:N—=N, o(n)— occ.
By a solution of ([E]) we mean a sequence x: N — R satisfying ([El) for all large n.
We say that z is a full solution of () if (E) is satisfied for all n. Moreover,
if p € N and ([E) is satisfied for all n > p, then we say that z is a p-solution.

In recent years, the equation (E]) and similar equations have been studied
in many papers, see for example, [I], [], [B], [9], [12], [15], [I7], [18], [2I]. Some
classical results on asymptotic behavior of solutions can be found in [2], [3],
(6)-15], [0}-[14], [22)-[24)

In this paper we establish some results concerning approximative solutions of
the equation ([El). In particular, we present sufficient conditions under which for
a given solution y of equation A™y = b there exists a solution x of (E) such
that x and y are asymptotically equivalent. We give also some results concerning
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approximations of solutions. The results obtained in this paper generalize the
main results from [I5] and [1§].

2. Notation and terminology

We use the symbols
Sol(El), Sol, (El)
to denote the set of all solutions of (E]), and the set of all p-solutions of (El),
respectively. The space of all sequences : N — R we denote by SQ. Moreover
SQ*={x€SQ: x, #0 for any n}.
For integers p, ¢ such that 0 < p < ¢, we define

N(p) ={p,p+1.p+2,...}, Np,q ={p.p+1,...,q}.

If 2,y in SQ, then
xy and |z

denote the sequences defined by zy(n) = x,y, and |z|(n) = |x,|, respectively.
Let a,b € SQ, t € [1,00). We will use the following notations

Fin = {x € SQ: x,, = 0 for all large n}, A(t) := {a € 5Q: int_1|an\ < oo},
n=1

o(1) = {x € SQ: x is convergent to zero}, O(1) = {x € SQ: x is bounded},

o(a) = {azx: z € o(1)} + Fin, O(a) = {ax: x € O(1)} + Fin,
A~™b ={y € SQ: A™y = b}, Pol(m — 1) = KerA™ = A=,
Note that Pol(m — 1) is the space of all polynomial sequences of degree less
than m. Moreover for any y € A™""b we have

A™"b =y + Pol(m — 1).

For a subset A of a metric space X and ¢ > 0 we define an e-framed interior
of A by _
Int(A,e) = {x € X: B(x,¢) C A},

where B(x,¢) denotes a closed ball of radius ¢ about x. We say that a subset
U of X is a uniform neighborhood of a subset Z of X, if there exists a positive
number ¢ such that Z C Int(U,¢). Let g: [0,00) — [0,00) and w € SQ*, we say
that f is (g, w)-dominated if

[f(n, O < g(jtw; ') for (n,t) € NxR. (1)

We say that a sequence z € SQ is (f,0)-bounded if the sequence (f(n, Ty (n)))
is bounded. We say that f is locally equibounded if for any ¢ € R there exists
a neighborhood U of t such that f is bounded on N x U.
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LEMMA 2.1. If f is locally equibounded, then any bounded sequence x is (f,o)-
-bounded.

Proof. Choose a,b € R such that z(N) C [a, b]. For any ¢ € [a, b] there exist an
open subset U; of R and a positive constant M; such that

[f(n, s)| < M;

for any s € Uy and any n € N. There exists a finite subset {t1,...t,} of [a,b]
such that
[a,b] C U, U---UUy,.

If M =max(M;,,...M,,), then |f(n,20,))] < M for any n. O

LEMMA 2.2. Assume X is a closed subset of R, g: X — R is locally bounded
and Y is a bounded subset of X. Then the set g(Y') is bounded.

Proof. Choose a closed interval [a, b] such that Y C [a, b], and let Z = X Nla, b].
For any ¢t € Z there exist a neighborhood U; of ¢ and a positive constant Q;
such that |g(s)| < Q; for any s € U; N X. By compactness of Z we can choose
t1,t2,...,tn € Z such that

Z CUy UU,U---UU, .
Then Y C Z and for any s € Z we have

g(S) S ma‘X{Qtlv"'7Qtn}' |:|

In what follows, we present the main tools used in our paper, i.e., the remain-
der operator, the asymptotic difference pairs and the fixed point lemma based
on the Schauder fixed point theorem.

2.1. The remainder operator

Let

S(m) = {a € 5Q: the series Z Z Z a;, is convergent}.

i=lis=l1  im=im—1
For any a € S(m) we define the sequence r™(a) by
rMa)n) =YY > a,
711:n i2:i1 im:im—l
Then S(m) is a linear subspace of o(1), 7 (a) € o(1) for any a € S(m) and
r™: S(m) — o(1)
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is a linear operator which we call the remainder operator of order m. The value
r™(a)(n) we denote also by r/*(a) or simply r"'a. If a € A(m), then a € S(m)
and

m—147—
:Z( +‘7 n>aj for any n € N. (2)

The following lemma is a consequence of [16, Lemma 3.1, Lemma 4.2, and
Lemma 4.8].

LEMMA 2.3. Assume a € A(m), u € O(1), k € {0,1,...,m}, and p € N. Then
(a) O(a) C A(m) Co(n'™™), [r™(ua)| < [lufr™|al, Ar™|a] <0,
(b) |riral < 7r7al < Zzozp n™ ay,|, r*a € A(m — k),
(¢) A™r™a = (—=1)"a, r"Fin(p) = Fin(p) = A™Fin(p).

For more information about the remainder operator see [10].

2.2. Asymptotic difference pairs

We say that a pair (A, Z) of linear subspaces of SQ is an asymptotic difference
pair of order m or, simply, m-pair if

Fin+ZcCZ OMACA, ACA™Z

We say that an m-pair (A4, Z) is evanescent if Z C o(1). If A € SQ and (A, A) is
an m-pair, then we say that A is an m-space. We will use the following lemma.
LEMMA 2.4. Assume (A, Z) is an m-pair, and a,b,z € SQ. Then

(a) ifb—a€ A, then A~"b+Z =A""a+ Z,

(b) ifbe A, then A=™b+ Z = Pol(m — 1) + Z,

(¢) ifae A and A™xz € O(a) +b, then x € A~"b+ Z.
Proof. See [I8 Lemma 3.5. Lemma 3.6, and Lemma 3.7]. O
LEMMA 2.5. Assume (A, Z) is an evanescent m-pair, a € A, u € O(1), A € R,
and z,y € SQ. Then

(a) O(a) C A C A(m),

(b) ™A C Z,

(¢) if xp = Yn + Arl(au) for large n, theny € x + Z.

Proof. By [I8 Remark 3.4] we have (a) and (b). Assume z,, = y,, + Ar]’*(au)

for large n. Then
y—x +r"(Aau) € Fin,

and, by (b), we get y —x € " A+ Fin C Z+ Fin C Z. Thereforey € x + Z. 0O
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EXAMPLE 1. Assume s € R, (s+1)(s+2)...(s+m) #0,and ¢t € (—oo,m —1].
Then

(o(ns), o(ns+n‘)), (O(ns), O(ns+m)), (A(m — 1), o(nt))
are m-pairs.
EXAMPLE 2. Assume s € (—oo, —m), t € (—00,0], and u € [1,00). Then
(O(ns)7 O(ns—i-m))’ (O(ns)7 O(ns—l-m))’ (A(m - t)v O(nt))v (A(Hl + 11), A(ll))
are evanescent m-pairs.

We say that a subset A of SQ is an m-space if (A, A) is an m-pair.
EXAMPLE 3. If A € (0,1) U (1,00), then o(A") and O(A") are m-spaces.
2.3. The fixed point lemma
LEMMA 2.6. Assume y € SQ, p € o(1), and

S={zeSQ: x—y[ <|pl}.
Then the formula

d(x, y) = sup |xn - yn|
neN

defines a metric on S such that any continuous map H: S — S has a fixed point.

Proof. The assertion is a consequence of [I7, Theorem 3.3 and Theorem 3.1].

O

3. Approximative solutions

This section is devoted to approximative solutions. By an approximative solu-
tion we mean a sequence y which is asymptotically equivalent to some solution.
For a sequence x € SQ we define the sequence G(z) by

G(z)(n) = anf(n, To(n))- (3)
THEOREM 3.1. Assume (A, Z) is an evanescent m-pair, a€ A, peN, y€ A~™h
UCR, M >0, y(N)C Int(U Mrp'[a]), [f(n,t)]<M for (n,t) e Nx U,
and f is continuous on N x R. Then y € Sol,(E) + Z.

Proof. Define p € SQ and S C SQ by

S={zeSQ:|r—yl <p} (4)

Pn =

) Mrital forn >p
0 forn<p’
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Since the sequence r"|a| is nonincreasing, we have p, < p, for any n. Assume
re S If keN, then |2,4) — Yol < por) < pp and we obtain

Zo(k) € BWo(rys pp) C U.
Hence [f(k, Z5))| < M. Thus, for any = € S, we have
Gr e O(a) C A C A(m).

Let
| for n <p,
H: S — SQ, H(z)(n) = {y + (=1)"™r"Gx for n>p.

If z € S and n > p, then
[H(z)(n) = yn| = |[r) Ga| < |Gz < Mrylal = pn.
Hence HS C S. Let £ > 0. Choose ¢ € N and 8 > 0 such that

(5)

e} q
Man_l\an| <e and Ban_l\an\ <e. (6)

n=q n=p

Let
D={(nt) eNxR:neN(p,q) and [t—yy,m) <pn}

Then D is a compact subset of R%2. Hence f is uniformly continuous on D and
there exists § > 0 such that if (n, s), (n,t) € D and |s — t| < 0, then

|f(n,s) = f(n,t)] < B.
Let z,y € S, ||z — y|| < d. Using Lemma [2-3] we obtain
|Hx — Hz| = ||r"™(Gx — Gz2)|| = sup |7' (Gzx —G2)| < suprm|G9(: — Gz|

=Gz — Gz| < Z n™ G (z)(n) — G(2)(n)|

Z “HG(@)(n) = G() ()| +)Y_ ™G (2)(n) — G(2)(n)|

q

Z “la, +an_1|G(x)(n)| +> N G(2)(n)]

oo
< 5+Man_1|an| +Man_1|an| < 3e.

n=q n=q

Hence the map H: S — S is continuous. By Lemma 2.0 there exists an z € S
such that Hx = x. Then, for n > p, we get

Tpn =Yn + (=1)"r "Gz, (7)
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Hence for n > p, we have
A"z, = A"y, + A" (=1)"r"G(x) = b, + G(z)(n).
Therefore z € Sol,(E). Using () and Lemma 25 we get y € x + Z.

0

COROLLARY 3.1. Assume (A, Z) is an evanescent m-pair, a € A, y € A~™b,
and there exists a uniform neighborhood U of the set y(N) such that the restric-

tion fIN x U is continuous and bounded. Then y € Sol(E) + Z.

Proof. Choose a constant M such |f(n,t)| < M for any (n,t) € N x U. More-
over, choose a positive e such that y(N) C Int(U,e). Since r"|a| = o(1), there

exists an index p such that Mr)'|a| < e. Then
y(N) C Int(U, Mry'[a])
and, by Theorem Bl we get
y € Sol,(E) + Z C Sol(El) + Z.

0

THEOREM 3.2. Assume (A,Z) is an evanescent m-pair, a € A, LM > 0,

w e SQ,
g:[0,00) = [0,00), g[0, L] C [0, M], |f(n,1)]
< g([tw; 1)) for (n,t) e NxR,
p €N, f is continuous, y € A™™b, and |y o o| < L|w| — Mr}'|a|. Then
y € Sol, (E) + Z.
Proof. Define p and S by ). Let « € S. Using the inequality
yool < Liu| - Milal,
we get

To(n) = Yo(n) T Yo(n)
|wn, |

Lo(n)

Wnp

|To(n) = Yon)| + [Yomn)]
|wn|
Mr;”|a| + |ya(n)‘

W

< L for any n.

Using the inequality
If(n,t)| < g(Jtw, ') and inclusion g¢[0, L] C [0, M],
we have
|xa(n) |
wn

‘f(na‘ra(n)” Sg( ) SM for any n.
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Therefore,
|G(x)(n)| < May,.
Now, repeating the second part of the proof of Theorem [B.I] we obtain
y € Sol, (E) + Z. O

COROLLARY 3.2. Assume (A,Z) is an evanescent m-pair, a € A, w € SQ,
lw| > X >0,y € A™b, yoo € O(w), g is locally bounded, f is is continuous
and (g, w)-dominated. Then

y € Sol(E) + Z.

Proof. Choose a positive constant P such that |y o o] < Plw|. Let

L=P+1 and oa=inf{Llw,|— |ysm)|:n €N}
Then

Llwy| — |ya(n)| = Plw,| — |yo(n)| + |wn| > Plw,| — |ya(n)| +A> A forany n.
Hence o> A > 0. By Lemma [2.2] there exists a positive constant M such that
9]0, L] C [0, M]. Since lim,,_,» r"|a| = 0, there exists an index p such that

Mrj'al < a.
Then
Mr)'a| < Lwy — |Yo(n)| for any n.

Hence, by Theorem B2 y € Sol, (El) + Z C Sol(E) + Z. d

4. Approximations of solutions

In this section, we present results concerning the approximations of solutions.
In what follows, we assume that

g: 10,00) = [0, 00).
We say that g is of Bihari type if g(t) > 0 for ¢ > 0 and for any ¢ > 0 we have

oo

THEOREM 4.1. If (A, Z) is an m-pair, a€ A, and x is an (f,0)-bounded solution
of (E), thenz € A~™b+ Z.

Proof. Since x is a solution of (El), we have
A"z, = an f(n, Zy(n)) + b, for all large n.
Hence, there exists a bounded sequence u such that A™x = au + b. Therefore

A™z € O(a) + b and, by Lemma [2Z4] we get z € A~"b+ Z. O
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COROLLARY 4.1. If (A, Z) is an m-pair, a,b € A, and z is an (f,0)-bounded
solution of (E)), then x € Pol(m — 1) + Z.

Proof. By Lemma[2Z4] we have Pol(m—1)+Z = A™™b+Z. Hence the assertion
is a consequence of Theorem 4.1 O

COROLLARY 4.2. Assume (A,Z) is an m-pair, a € A, Z C O(1), u € O(1),
b= A"u, and f is locally equibounded. Then for any bounded solution x of (E)
there exists a constant ¢ € R such that

reutc+ 2. (8)

Proof. By Lemma [ZI x is (f,0)-bounded. By Theorem I =z €

A™™b + Z. Note that
A™"b =wu+ Pol(m — 1).

Choose z € Z and ¢ € Pol(m — 1) such that
r=u-+¢+=z.
Then ¢ =z — u — z is bounded. Hence ¢ is constant and we get (8. g

THEOREM 4.2. Assume that (A, Z) is an m-pair, a € A, w € SQ*, O(wy41) =
O(wy), the sequence o(n) —n is bounded, g is locally bounded, and f is (g, w)-

-dominated. Then
O(w) N Sol(E) € A™b + Z.

Proof. Choose k € N such that
lo(n) —n| <k for any n.

Since wy4+1=0(wy), there exists a constant M > 1 such that |wy,41| <M |w,| for
large n. Then

[wnto| < Mwpy| < M2|wn|a ooy [wnpk] < Mk|wn|
Hence, for any p € N(0, k), we have
[wnip| < MF|w,| for large n.

Analogously, since w,, = O(wy41), there exists a constant @@ > 1 such that for
any p € N(0, k), we have

[wn—p| < QF|wy| for large n.
Hence, there exists a constant L > max(M k Qk) such that
|w(a(n))‘ < Llw,| for any n.

Let
x € O(w) N Sol(El).
Choose a positive constant P; such that |x,| < Pi|w,| for any n. Let P = LP;.

Then
[To(n)| < Pilwem)| < Plw,| for any n. (9)
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By Lemma 22| there exists a positive constant Q1 such that
g(s) <@y for any s € [0, P]. (10)
Using (@), @), and ([I0) we get

|f(na'ra(n))| <y <|x;(n)|> < Ql.

|wn|

Hence z € Sol(E) and the sequence (f(n,Z,(,)) is bounded. Therefore, using
Lemma 2.4] we obtain z € A=™b+ Z. O

COROLLARY 4.3. Assume the assumptions of Theorem [[.3 are satisfied and
be A. Then
O(w) N Sol(El) C Pol(m — 1) + Z.

Proof. The assertion is a consequence of Theorem and Lemma [2.4] O

In the proof of the next theorem we will use the following two lemmas.

LEMMA 4.1. Assume u € SQ, u >0, a € A(1), g: [0,00) — [0, 00),

n—1
M,ce (0,00), peN, un§c+MZ|aj|g(uj) for n>np,
Jj=p

g is nondecreasing and of Bihari type. Then the sequence u is bounded.

Proof. The assertion is a consequence of [19, Lemma 4.1]. O

LEMMA 4.2. [I5, Lemma 7.3] If x is a sequence of real numbers, m € N and
p € N(m) then there exists a positive constant L = L(xz,p,m) such that

n—1
|2, <™t L+Z|Amxi| for n>np.

i=p
THEOREM 4.3. Assume (A, Z) is an m-pair, o(n) < n for large n,
ac€ ANA(1), beA(l), weSQ* w'eOm ™,
g is nondecreasing and of Bihari type, and f is (g, w)-dominated. Then
Sol([E) ¢ A™™b + Z.
Moreover, if b € A, then
Sol([El) C Pol(m — 1) + Z.
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Proof. Assume z is a solution of (El). Choose an index p such that
A"y = an f(N, Tom)) +bp for any n > p.
Choose M > 0 such that
\wgl| < Mn‘—™,
For n € N let
tn = [To(ywy |-

By Lemma 2] there exists a positive constant L such that

o(n)—1 n—1
o] < o)™ L+ Y [ATz] | < o™ L4 ) [A ]
i=p i=p
Let c= ML+ MY ;2 |b;|]. Then
n—1 n—1
tn = |To(uywy | < ML+ M [A™2;| = ML+ MY |b + aif (j,20())]
i=p i=p
n—1 n—1
< ML—I—MZ\I) |—|—MZ|a1\g u;) —c—I—MZ\(mg U;)-
=1 1=p i=p

Hence, by Lemma[£T] the sequence u is bounded. Therefore, there exists a con-
stant @ > 1 such that g(u,) < @ for any n and we get

|f(n,2om)| < g (|Zomywn|) = g(un) < Q
for any n. Hence z is an (f, o)-bounded solution and, by Theorem EIl we get
re AT+ Z.
If b € A, then, using Lemma 24 (b), we obtain
x € Pol(m — 1) 4+ Z.

COROLLARY 4.4. Assume s € (—00,0], o(n) <n for large n,
a€Am—s), beA(l), |[f(nt)<gh' ™|t for any (n,t) € N xR,
and g s nondecreasing and of Bihari type. Then
Sol(E) € A™™b + o(n®).
Moreover, if b € A(m —s), then
Sol(E)) C Pol(m — 1) + o(n®).

Proof. By Example 2, (A(m —s), o(n®)) is an m-pair. Hence the assertion is
a consequence of Theorem [4.3] O
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