
�

�
�����������	 
��	�����
��

DOI: 10.2478/tmmp-2018-0010
Tatra Mt. Math. Publ. 71 (2018), 109–121

APPROXIMATION OF SOLUTIONS

TO NONAUTONOMOUS DIFFERENCE EQUATIONS

Janusz Migda
1

— Ma�lgorzata Migda
2

1A. Mickiewicz University, Poznań, POLAND
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ABSTRACT. We study the asymptotic properties of solutions to nonautonomous
difference equations of the form

Δmxn = anf(n, xσ(n)) + bn, f : N× R → R, σ : N → N.

Using the iterated remainder operator and asymptotic difference pairs we estab-
lish some results concerning approximative solutions and approximations of solu-
tions. Our approach allows us to control the degree of approximation.

1. Introduction

Let N, R denote the set of positive integers and real numbers, respectively.
Let m ∈ N. We consider the nonautonomous difference equations of the form

Δmxn = anf(n, xσ(n)) + bn. (E)

an, bn ∈ R, f : N× R → R, σ : N → N, σ(n) → ∞.

By a solution of (E) we mean a sequence x : N → R satisfying (E) for all large n.
We say that x is a full solution of (E) if (E) is satisfied for all n. Moreover,
if p ∈ N and (E) is satisfied for all n ≥ p, then we say that x is a p-solution.

In recent years, the equation (E) and similar equations have been studied
in many papers, see for example, [1], [4], [5], [9], [12], [15], [17], [18], [21]. Some
classical results on asymptotic behavior of solutions can be found in [2], [3],
[6]–[8], [10]–[14], [22]–[24].

In this paper we establish some results concerning approximative solutions of
the equation (E). In particular, we present sufficient conditions under which for
a given solution y of equation Δmy = b there exists a solution x of (E) such
that x and y are asymptotically equivalent. We give also some results concerning

c© 2018 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 39A10.
Keywords: nonautonomous equation, difference pair, prescribed asymptotic behavior,

asymptotically polynomial solution, bounded solution.

109



JANUSZ MIGDA—MA�LGORZATA MIGDA

approximations of solutions. The results obtained in this paper generalize the
main results from [15] and [18].

2. Notation and terminology

We use the symbols
Sol(E), Solp(E)

to denote the set of all solutions of (E), and the set of all p-solutions of (E),
respectively. The space of all sequences x : N → R we denote by SQ. Moreover

SQ∗= {x ∈ SQ: xn �= 0 for any n}.
For integers p, q such that 0 ≤ p ≤ q, we define

N(p) = {p, p+ 1, p+ 2, . . . }, N(p, q) = {p, p+ 1, . . . , q}.
If x, y in SQ, then

xy and |x|
denote the sequences defined by xy(n) = xnyn and |x|(n) = |xn|, respectively.
Let a, b ∈ SQ, t ∈ [1,∞). We will use the following notations

Fin = {x ∈ SQ: xn = 0 for all large n}, A(t) :=

{
a ∈ SQ:

∞∑
n=1

nt−1|an| < ∞
}
,

o(1) = {x ∈ SQ: x is convergent to zero}, O(1) = {x ∈ SQ: x is bounded},
o(a) = {ax : x ∈ o(1)}+ Fin, O(a) = {ax: x ∈ O(1)}+ Fin,

Δ−mb = {y ∈ SQ: Δmy = b}, Pol(m− 1) = KerΔm = Δ−m0.

Note that Pol(m − 1) is the space of all polynomial sequences of degree less
than m. Moreover for any y ∈ Δ−mb we have

Δ−mb = y + Pol(m− 1).

For a subset A of a metric space X and ε > 0 we define an ε-framed interior
of A by

Int(A, ε) =
{
x ∈ X: B(x, ε) ⊂ A

}
,

where B(x, ε) denotes a closed ball of radius ε about x. We say that a subset
U of X is a uniform neighborhood of a subset Z of X, if there exists a positive
number ε such that Z ⊂ Int(U, ε). Let g : [0,∞) → [0,∞) and w ∈ SQ∗, we say
that f is (g, w)-dominated if

|f(n, t)| ≤ g(|tw−1
n |) for (n, t) ∈ N× R. (1)

We say that a sequence x ∈ SQ is (f, σ)-bounded if the sequence
(
f(n, xσ(n))

)
is bounded. We say that f is locally equibounded if for any t ∈ R there exists
a neighborhood U of t such that f is bounded on N× U .
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����� 2.1� If f is locally equibounded, then any bounded sequence x is (f, σ)-
-bounded.

P r o o f. Choose a, b ∈ R such that x(N) ⊂ [a, b]. For any t ∈ [a, b] there exist an
open subset Ut of R and a positive constant Mt such that

|f(n, s)| ≤ Mt

for any s ∈ Ut and any n ∈ N. There exists a finite subset {t1, . . . tn} of [a, b]
such that

[a, b] ⊂ Ut1 ∪ · · · ∪ Utn .

If M = max(Mt1 , . . .Mtn), then |f(n, xσ(n))| ≤ M for any n. �

����� 2.2� Assume X is a closed subset of R, g : X → R is locally bounded
and Y is a bounded subset of X. Then the set g(Y ) is bounded.

P r o o f. Choose a closed interval [a, b] such that Y ⊂ [a, b], and let Z = X∩[a, b].
For any t ∈ Z there exist a neighborhood Ut of t and a positive constant Qt

such that |g(s)| ≤ Qt for any s ∈ Ut ∩ X. By compactness of Z we can choose
t1, t2, . . . , tn ∈ Z such that

Z ⊂ Ut1 ∪ Ut2 ∪ · · · ∪ Utn .

Then Y ⊂ Z and for any s ∈ Z we have

g(s) ≤ max{Qt1 , . . . , Qtn}. �
In what follows, we present the main tools used in our paper, i.e., the remain-

der operator, the asymptotic difference pairs and the fixed point lemma based
on the Schauder fixed point theorem.

2.1. The remainder operator

Let

S(m) =

{
a ∈ SQ: the series

∞∑
i1=1

∞∑
i2=i1

. . .

∞∑
im=im−1

aim is convergent

}
.

For any a ∈ S(m) we define the sequence rm(a) by

rm(a)(n) =

∞∑
i1=n

∞∑
i2=i1

. . .

∞∑
im=im−1

aim .

Then S(m) is a linear subspace of o(1), rm(a) ∈ o(1) for any a ∈ S(m) and

rm : S(m) → o(1)
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is a linear operator which we call the remainder operator of order m. The value
rm(a)(n) we denote also by rmn (a) or simply rmn a. If a ∈ A(m), then a ∈ S(m)
and

rm(a)(n) =

∞∑
j=n

(
m− 1 + j − n

m− 1

)
aj for any n ∈ N. (2)

The following lemma is a consequence of [16, Lemma 3.1, Lemma 4.2, and
Lemma 4.8].

����� 2.3� Assume a ∈ A(m), u ∈ O(1), k ∈ {0, 1, . . . ,m}, and p ∈ N. Then

(a) O(a) ⊂ A(m) ⊂ o(n1−m), |rm(ua)| ≤ ‖u‖rm|a|, Δrm|a| ≤ 0,

(b) |rmp a| ≤ rmp |a| ≤ ∑∞
n=p n

m−1|an|, rka ∈ A(m− k),

(c) Δmrma = (−1)ma, rmFin(p) = Fin(p) = ΔmFin(p).

For more information about the remainder operator see [16].

2.2. Asymptotic difference pairs

We say that a pair (A,Z) of linear subspaces of SQ is an asymptotic difference
pair of order m or, simply, m-pair if

Fin + Z ⊂ Z, O(1)A ⊂ A, A ⊂ ΔmZ.

We say that an m-pair (A,Z) is evanescent if Z ⊂ o(1). If A ⊂ SQ and (A,A) is
an m-pair, then we say that A is an m-space. We will use the following lemma.

����� 2.4� Assume (A,Z) is an m-pair, and a, b, x ∈ SQ. Then

(a) if b− a ∈ A, then Δ−mb+ Z = Δ−ma+ Z,

(b) if b ∈ A, then Δ−mb+ Z = Pol(m− 1) + Z,

(c) if a ∈ A and Δmx ∈ O(a) + b, then x ∈ Δ−mb+ Z.

P r o o f. See [18, Lemma 3.5. Lemma 3.6, and Lemma 3.7]. �

����� 2.5� Assume (A,Z) is an evanescent m-pair, a ∈ A, u ∈ O(1), λ ∈ R,
and x, y ∈ SQ. Then

(a) O(a) ⊂ A ⊂ A(m),

(b) rmA ⊂ Z,

(c) if xn = yn + λrmn (au) for large n, then y ∈ x+ Z.

P r o o f. By [18, Remark 3.4] we have (a) and (b). Assume xn = yn + λrmn (au)
for large n. Then

y − x+ rm(λau) ∈ Fin,

and, by (b), we get y− x ∈ rmA+Fin ⊂ Z+Fin ⊂ Z. Therefore y ∈ x+Z. �
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Example 1. Assume s ∈ R, (s+1)(s+2) . . .(s+m) �= 0, and t ∈ (−∞,m− 1].
Then (

o(ns), o(ns+m)
)
,

(
O(ns), O(ns+m)

)
,

(
A(m− t), o(nt)

)
are m-pairs.

Example 2. Assume s ∈ (−∞,−m), t ∈ (−∞, 0], and u ∈ [1,∞). Then(
o(ns), o(ns+m)

)
,

(
O(ns), O(ns+m)

)
,

(
A(m− t), o(nt)

)
,

(
A(m+ u), A(u)

)
are evanescent m-pairs.

We say that a subset A of SQ is an m-space if (A,A) is an m-pair.

Example 3. If λ ∈ (0, 1) ∪ (1,∞), then o(λn) and O(λn) are m-spaces.

2.3. The fixed point lemma

����� 2.6� Assume y ∈ SQ, ρ ∈ o(1), and

S = {x ∈ SQ: |x− y| ≤ |ρ|}.
Then the formula

d(x, y) = sup
n∈N

|xn − yn|
defines a metric on S such that any continuous map H : S → S has a fixed point.

P r o o f. The assertion is a consequence of [17, Theorem 3.3 and Theorem 3.1].
�

3. Approximative solutions

This section is devoted to approximative solutions. By an approximative solu-
tion we mean a sequence y which is asymptotically equivalent to some solution.
For a sequence x ∈ SQ we define the sequence G(x) by

G(x)(n) = anf(n, xσ(n)). (3)

����	�� 3.1� Assume (A,Z) is an evanescent m-pair, a∈A, p∈N, y∈Δ−mb

U ⊂ R, M > 0, y(N) ⊂ Int(U,Mrmp |a|), |f(n, t)| ≤ M for (n, t) ∈ N×U,

and f is continuous on N× R. Then y ∈ Solp(E) + Z.

P r o o f. Define ρ ∈ SQ and S ⊂ SQ by

ρn =

{
Mrmn |a| for n ≥ p

0 for n < p
, S = {x ∈ SQ : |x− y| ≤ ρ}. (4)
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Since the sequence rm|a| is nonincreasing, we have ρn ≤ ρp for any n. Assume
x ∈ S. If k ∈ N, then |xσ(k) − yσ(k)| ≤ ρσ(k) ≤ ρp and we obtain

xσ(k) ∈ B(yσ(k), ρp) ⊂ U.

Hence |f(k, xσ(k))| ≤ M . Thus, for any x ∈ S, we have

Gx ∈ O(a) ⊂ A ⊂ A(m).

Let

H : S → SQ, H(x)(n) =

{
yn for n < p,
yn + (−1)mrmn Gx for n ≥ p.

(5)

If x ∈ S and n ≥ p, then

|H(x)(n)− yn| = |rmn Gx| ≤ rmn |Gx| ≤ Mrmn |a| = ρn.

Hence HS ⊂ S. Let ε > 0. Choose q ∈ N and β > 0 such that

M

∞∑
n=q

nm−1|an| < ε and β

q∑
n=p

nm−1|an| < ε. (6)

Let

D =
{
(n, t) ∈ N× R : n ∈ N(p, q) and |t− yσ(n)| ≤ ρn

}
.

Then D is a compact subset of R2. Hence f is uniformly continuous on D and
there exists δ > 0 such that if (n, s), (n, t) ∈ D and |s− t| < δ, then

|f(n, s)− f(n, t)| < β.

Let x, y ∈ S, ‖x− y‖ < δ. Using Lemma 2.3 we obtain

‖Hx−Hz‖ = ‖rm(Gx−Gz)‖ = sup
n≥p

|rmn (Gx−Gz)| ≤ sup
n≥p

rmn |Gx−Gz|

= rmp |Gx−Gz| ≤
∞∑

n=p

nm−1|G(x)(n)−G(z)(n)|

≤
q∑

n=p

nm−1|G(x)(n)−G(z)(n)|+
∞∑

n=q

nm−1|G(x)(n)−G(z)(n)|

≤ β

q∑
n=p

nm−1an +

∞∑
n=q

nm−1|G(x)(n)|+
∞∑

n=q

nm−1|G(z)(n)|

≤ ε +M

∞∑
n=q

nm−1|an|+M

∞∑
n=q

nm−1|an| ≤ 3ε.

Hence the map H : S → S is continuous. By Lemma 2.6, there exists an x ∈ S
such that Hx = x. Then, for n ≥ p, we get

xn = yn + (−1)mrmn Gx. (7)
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Hence for n ≥ p, we have

Δmxn = Δmyn +Δm(−1)mrmn G(x) = bn +G(x)(n).

Therefore x ∈ Solp(E). Using (7) and Lemma 2.5 we get y ∈ x+ Z. �


�	����	� 3.1� Assume (A,Z) is an evanescent m-pair, a ∈ A, y ∈ Δ−mb,
and there exists a uniform neighborhood U of the set y(N) such that the restric-
tion f |N× U is continuous and bounded. Then y ∈ Sol(E) + Z.

P r o o f. Choose a constant M such |f(n, t)| ≤ M for any (n, t) ∈ N× U . More-
over, choose a positive ε such that y(N) ⊂ Int(U, ε). Since rmn |a| = o(1), there
exists an index p such that Mrmp |a| < ε. Then

y(N) ⊂ Int(U,Mrmp |a|)
and, by Theorem 3.1, we get

y ∈ Solp(E) + Z ⊂ Sol(E) + Z. �

����	�� 3.2� Assume (A,Z) is an evanescent m-pair, a ∈ A, L,M > 0,
w ∈ SQ∗,

g : [0,∞) → [0,∞), g[0, L] ⊂ [0,M ], |f(n, t)|
≤ g(|tw−1

n |) for (n, t) ∈ N× R,

p ∈ N, f is continuous, y ∈ Δ−mb, and |y ◦ σ| ≤ L|w| −Mrmp |a|. Then
y ∈ Solp(E) + Z.

P r o o f. Define ρ and S by (4). Let x ∈ S. Using the inequality

|y ◦ σ| ≤ L|w| −Mrmp |a|,
we get ∣∣∣∣xσ(n)

wn

∣∣∣∣ =

∣∣∣∣xσ(n) − yσ(n) + yσ(n)

|wn|
∣∣∣∣

≤ |xσ(n) − yσ(n)|+ |yσ(n)|
|wn|

≤ Mrmp |a|+ |yσ(n)|
wn

≤ L for any n.

Using the inequality

|f(n, t)| ≤ g(|tw−1
n |) and inclusion g[0, L] ⊂ [0,M ],

we have

|f(n, xσ(n))| ≤ g

( |xσ(n)|
wn

)
≤ M for any n.
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Therefore,
|G(x)(n)| ≤ Man.

Now, repeating the second part of the proof of Theorem 3.1, we obtain

y ∈ Solp(E) + Z. �


�	����	� 3.2� Assume (A,Z) is an evanescent m-pair, a ∈ A, w ∈ SQ,
|w| ≥ λ > 0, y ∈ Δ−mb, y ◦ σ ∈ O(w), g is locally bounded, f is is continuous
and (g, w)-dominated. Then

y ∈ Sol(E) + Z.

P r o o f. Choose a positive constant P such that |y ◦ σ| ≤ P |w|. Let
L = P + 1 and α = inf{L|wn| − |yσ(n)| : n ∈ N}.

Then

L|wn| − |yσ(n)| = P |wn| − |yσ(n)|+ |wn| ≥ P |wn| − |yσ(n)|+ λ ≥ λ for any n.

Hence α≥ λ > 0. By Lemma 2.2, there exists a positive constant M such that
g[0, L]⊂ [0,M ]. Since limn→∞ rmn |a| = 0, there exists an index p such that

Mrmp |a| ≤ α.
Then

Mrmp |a| ≤ Lwn − |yσ(n)| for any n.

Hence, by Theorem 3.2, y ∈ Solp(E) + Z ⊂ Sol(E) + Z. �

4. Approximations of solutions

In this section, we present results concerning the approximations of solutions.
In what follows, we assume that

g : [0,∞) → [0,∞).

We say that g is of Bihari type if g(t) > 0 for t > 0 and for any c > 0 we have
∞∫
c

dt

g(t)
= ∞.

����	�� 4.1� If (A,Z) is an m-pair, a∈A, and x is an (f, σ)-bounded solution
of (E), then x ∈ Δ−mb+ Z.

P r o o f. Since x is a solution of (E), we have

Δmxn = anf(n, xσ(n)) + bn for all large n.

Hence, there exists a bounded sequence u such that Δmx = au + b. Therefore
Δmx ∈ O(a) + b and, by Lemma 2.4, we get x ∈ Δ−mb+ Z. �
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�	����	� 4.1� If (A,Z) is an m-pair, a, b ∈ A, and x is an (f, σ)-bounded
solution of (E), then x ∈ Pol(m− 1) + Z.

P r o o f. By Lemma 2.4, we have Pol(m−1)+Z = Δ−mb+Z. Hence the assertion
is a consequence of Theorem 4.1. �

�	����	� 4.2� Assume (A,Z) is an m-pair, a ∈ A, Z ⊂ O(1), u ∈ O(1),
b = Δmu, and f is locally equibounded. Then for any bounded solution x of (E)
there exists a constant c ∈ R such that

x ∈ u+ c+ Z. (8)

P r o o f. By Lemma 2.1 x is (f, σ)-bounded. By Theorem 4.1, x ∈
Δ−mb+ Z. Note that

Δ−mb = u+ Pol(m− 1).

Choose z ∈ Z and ϕ ∈ Pol(m− 1) such that

x = u+ ϕ+ z.

Then ϕ = x− u− z is bounded. Hence ϕ is constant and we get (8). �
����	�� 4.2� Assume that (A,Z) is an m-pair, a ∈ A, w ∈ SQ∗, O(wn+1) =
O(wn), the sequence σ(n) − n is bounded, g is locally bounded, and f is (g, w)-
-dominated. Then

O(w) ∩ Sol(E) ⊂ Δ−mb + Z.

P r o o f. Choose k ∈ N such that

|σ(n)− n| ≤ k for any n.

Since wn+1=O(wn), there exists a constant M>1 such that |wn+1|≤M |wn| for
large n. Then

|wn+2| ≤ M |wn+1| ≤ M 2|wn|, . . . , |wn+k| ≤ Mk|wn|.
Hence, for any p ∈ N(0, k), we have

|wn+p| ≤ Mk|wn| for large n.

Analogously, since wn = O(wn+1), there exists a constant Q > 1 such that for
any p ∈ N(0, k), we have

|wn−p| ≤ Qk|wn| for large n.

Hence, there exists a constant L ≥ max(Mk, Qk) such that∣∣w(σ(n))∣∣ ≤ L|wn| for any n.

Let
x ∈ O(w) ∩ Sol(E).

Choose a positive constant P1 such that |xn| ≤ P1|wn| for any n. Let P = LP1.
Then |xσ(n)| ≤ P1|wσ(n)| ≤ P |wn| for any n. (9)
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By Lemma 2.2 there exists a positive constant Q1 such that

g(s) ≤ Q1 for any s ∈ [0, P ]. (10)

Using (1), (9), and (10) we get

|f(n, xσ(n))| ≤ g

( |xσ(n)|
|wn|

)
≤ Q1.

Hence x ∈ Sol(E) and the sequence (f(n, xσ(n)) is bounded. Therefore, using

Lemma 2.4, we obtain x ∈ Δ−mb+ Z. �


�	����	� 4.3� Assume the assumptions of Theorem 4.2 are satisfied and
b ∈ A. Then

O(w) ∩ Sol(E) ⊂ Pol(m− 1) + Z.

P r o o f. The assertion is a consequence of Theorem 4.2 and Lemma 2.4. �

In the proof of the next theorem we will use the following two lemmas.

����� 4.1� Assume u ∈ SQ, u ≥ 0, a ∈ A(1), g : [0,∞) → [0,∞),

M, c ∈ (0,∞), p ∈ N, un ≤ c+M

n−1∑
j=p

|aj |g(uj) for n ≥ p,

g is nondecreasing and of Bihari type. Then the sequence u is bounded.

P r o o f. The assertion is a consequence of [19, Lemma 4.1]. �

����� 4.2� [15, Lemma 7.3] If x is a sequence of real numbers, m ∈ N and
p ∈ N(m) then there exists a positive constant L = L(x, p,m) such that

|xn| ≤ nm−1

⎛
⎝L+

n−1∑
i=p

|Δmxi|
⎞
⎠ for n ≥ p.

����	�� 4.3� Assume (A,Z) is an m-pair, σ(n) ≤ n for large n,

a ∈ A ∩A(1), b ∈ A(1), w ∈ SQ∗, w−1 ∈ O(n−m+1),

g is nondecreasing and of Bihari type, and f is (g, w)-dominated. Then

Sol(E) ⊂ Δ−mb + Z.

Moreover, if b ∈ A, then

Sol(E) ⊂ Pol(m− 1) + Z.
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P r o o f. Assume x is a solution of (E). Choose an index p such that

Δmxn = anf(n, xσ(n)) + bn for any n ≥ p.

Choose M > 0 such that

|w−1
n | ≤ Mn1−m.

For n ∈ N let

un =
∣∣xσ(n)w

−1
n

∣∣ .
By Lemma 4.2, there exists a positive constant L such that

|xσ(n)| ≤ σ(n)m−1

⎛
⎝L+

σ(n)−1∑
i=p

|Δmxi|
⎞
⎠≤ nm−1

⎛
⎝L+

n−1∑
i=p

|Δmxi|
⎞
⎠.

Let c = ML+M
∑∞

i=1 |bi|. Then

un =
∣∣xσ(n)w

−1
n

∣∣ ≤ ML+M

n−1∑
i=p

|Δmxi| = ML+M

n−1∑
i=p

∣∣bi + aif
(
j, xσ(j)

)∣∣

≤ ML+M

∞∑
i=1

|bi|+M

n−1∑
i=p

|ai|g(ui) = c+M

n−1∑
i=p

|ai|g(ui).

Hence, by Lemma 4.1, the sequence u is bounded. Therefore, there exists a con-
stant Q > 1 such that g(un) ≤ Q for any n and we get∣∣f(n, xσ(n))

∣∣ ≤ g
(∣∣xσ(n)w

−1
n

∣∣) = g(un) ≤ Q

for any n. Hence x is an (f, σ)-bounded solution and, by Theorem 4.1, we get

x ∈ Δ−m + Z.

If b ∈ A, then, using Lemma 2.4 (b), we obtain

x ∈ Pol(m− 1) + Z. �


�	����	� 4.4� Assume s ∈ (−∞, 0], σ(n) ≤ n for large n,

a ∈ A(m− s), b ∈ A(1), |f(n, t)| ≤ g(n1−m|t|) for any (n, t) ∈ N× R,

and g is nondecreasing and of Bihari type. Then

Sol(E) ⊂ Δ−mb + o(ns).

Moreover, if b ∈ A(m− s), then

Sol(E) ⊂ Pol(m− 1) + o(ns).

P r o o f. By Example 2,
(
A(m − s), o(ns)

)
is an m-pair. Hence the assertion is

a consequence of Theorem 4.3. �
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