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ABSTRACT. The algorithm for estimating the stability domain of zero equilib-
rium to the system of nonlinear differential equations with a quadratic part and
a fractional part is proposed in the article. The second Lyapunov method with
quadratic Lyapunov functions is used as a method for studying such systems.

1. Introduction

The theory and applications of nonlinear differential equations form an im-
portant part of modern nonlinear dynamics. These equations are natural mathe-
matical models of various real-life phenomena, such as population dynamics and
ecology, physiology and medicine, economics and other natural sciences. For this
reason, the study of the stability of such models is extremely important.

One of the first methods to study the stability of zero solution to nonlin-
ear systems is the method of linearization and stability analysis, based on the
stability of the linear approximation system. Such types of work were done in
the second half of the last century, for example [6], [8], [9]. The basic idea is:
“If zero solution of the linear approximation is asymptotically stable, then in a
sufficiently small neighbourhood of the equilibrium, the trivial solution of the
original nonlinear system will be also stable.”
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If the system is asymptotically stable, then it comes to zero equilibrium po-
sition in an infinite time interval. An important characteristic of stability is the
time for which the solution of the system goes into an ε neighbourhood of the
origin of the system and will not leave it, this is, ‖x(t)‖ ≤ ε. Using the obtained
convergence estimate, it is possible to find the time for which the solution of the
system from a position x(t0) falls into the ε neighbourhood of the zero position.

For systems of linear stationary differential equations

x′(t) = Ax(t), t ≥ t0 , (1)

where A is an n × n constant matrix, the estimates of the above type were
obtained in [3]. In order to formulate the results obtained there, we introduce
the notations associated with the Lyapunov matrix equation

ATH +HA = −C. (2)

If the matrix A is asymptotically stable, then for any positive definite n × n
matrix C there exists a unique solution to (2). Such a solution is a positive
definite n×n matrix H, see in [4]. Matrices C and H from the Lyapunov matrix
equation (2) play an important role in estimating the convergence of solutions to
an equilibrium. Namely, the following estimate of the exponential convergence
of solutions to linear system (1) is derived in [4]

‖x(t)‖ ≤ [ϕ(H) ‖x(t0)‖
]
e−

1
2γ(H)(t−t0), (3)

where

ϕ(H) =
λmax(H)

λmin(H)
, γ(H) =

λmin(C)

λmax(H)
, (4)

λmax(·) and λmin(·) denote the largest and smallest eigenvalues of the corre-
sponding symmetric matrix, and

‖x(t)‖ =

√√√√ n∑
i=1

x2
i (t) (5)

denotes the vector norm.

In this paper we deal with nonlinear systems in order to estimate the conver-
gence of their solutions to stable singular points. The stability domain of the zero
equilibrium of the systems of nonlinear differential equations with quadratic part
and a fractional part is estimated. As a method of investigation such systems,
the second Lyapunov method with quadratic Lyapunov functions is used [2].
The second Lyapunov method using the Lyapunov function of Lurje-Postnikov
type was used in [5] to obtain an estimation of a solution to a control equation
with nonlinearity of a sector form.

It should be noted that the Lyapunov function in quadratic form is determined
by a symmetric, positive definite matrix H, which is the solution to the Lyapunov
matrix equation (2) in the case, when the matrix A in the linear part of nonlinear
system is a constant matrix.
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STABILITY OF THE EQUILIBRIUM OF NONLINEAR DYNAMICAL SYSTEMS

2. Systems with the quadratic right-hand side

In this section we consider systems with special form of nonlinearity, namely,
systems with the quadratic right-hand side, written in a vector-matrix form [1,
4, 7],

x′(t) = Ax(t) +XT (t)Bx(t), (6)

where A is an n× n constant matrix, B = (B1, B2, . . . , Bn)
T
, Bi, i = 1, 2, . . . , n

are n× n constant matrices,

Bi =

⎛
⎜⎜⎜⎜⎜⎜⎝

bi11 bi12 . . . bi1n

bi21 bi22 . . . bi2n

...
...

. . .
...

bin1 bin2 . . . binn,

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and XT =
(
X1(t), X2(t), . . . , Xn(t)

)
, Xi(t), i = 1, 2, . . . , n are n × n matrices

in which only the i-th row is nonzero,

X1(t)=

⎛
⎜⎜⎜⎝
x1(t) x2(t) . . . xn(t)
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞
⎟⎟⎟⎠, . . . , Xn(t)=

⎛
⎜⎜⎜⎝

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
x1(t) x2(t) . . . xn(t)

⎞
⎟⎟⎟⎠.

Recall that if the matrix A of the linear part in (6) be asymptotically stable,
that is, all its eigenvalues have negative real parts, Reλi(A) < 0, i = 1, . . . , n,
then, as follows from the stability theory of linear approximation, the zero solu-
tion of the corresponding nonlinear system is also asymptotically stable.

The following form of matrix norm will be used in our considerations

‖A‖ =
√

λmax(ATA). (7)

������� 2.1� Suppose that the matrix A in (6) is asymptotically stable. Then
the trivial solution to (6) is asymptotically stable. Moreover, the domain

Gr0 = max
r>0

{Gr : Gr ⊂ G0} , (8)

where

Gr =
{
x ∈ Rn : xTHx < r2

}
, G0 =

{
x ∈ R

n : ‖x‖ <
λmin(C)

2‖H‖ ‖B‖
}
,

is the domain of stability.
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P r o o f. We calculate the total derivative of the Lyapunov function in the qua-
dratic form, V (x) = xTHx, along the trajectories of system (6)

dV(x(t))

d t
= xT (t)

[(
ATH +HA

)
+
(
BTX(t)H +HXTB

)]
x(t). (9)

Taking into account (2), equation (9) can be rewritten into the form

dV(x(t))

d t
= −xT (t)

[
C − (BTX(t)H +HXT (t)B

)]
x(t).

Therefore, the stability domain is the interior of the level surface of the Lyapunov
function, which lies within the domain

G0 =
{
x ∈ R

n : C − BTXH −HXTB > Θ
}
,

where Θ denotes the zero matrix, and the expression inside denotes that the rele-
vant matrix is positive definite. Since, in view of the vector and matrix norms
defined by (5) and (7), we have ‖X(t)‖ = ‖x(t)‖, thus the total derivative of the
Lyapunov function can be estimated as

dV(x(t))

d t
< −[λmin(C)− 2‖H‖ ‖B‖ ‖x(t)‖ ]‖x(t)‖2. (10)

Therefore, if the inequality

‖x(t)‖ <
λmin(C)

2‖H‖ ‖B‖
is satisfied, then the total derivative of the Lyapunov function is negative. �

���	�
 2.2� Obviously, to obtain the ”maximum” domain of stability, the
sphere G0 should have the radius

R =
λmin(C)

2‖H‖ ‖B‖ ,

and the r should ”stretch” as long as the ellipse xTHx = r2 touches the sphere.

������� 2.3� Suppose that the matrix A in (6) is asymptotically stable. Then
for any solution to (6) satisfying the initial condition

‖x(0)‖ <
γ(H)

2‖B‖ϕ(H)
, (11)

the following estimate

‖x(t)‖ ≤ γ(H)‖x(0)‖[
γ(H)− 2‖B‖ϕ(H) ‖x(0)‖ ]e 1

2γ(H)t + 2‖B‖ϕ(H)‖x(0)‖ (12)

for the convergence of solutions to the zero singular point holds.
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P r o o f. The total derivative of the Lyapunov function V (x) = xTHx along
trajectories of system (6) is given by (9). Since for V (x) two-sided inequality,

λmin(H)‖x‖2 ≤ V (x) ≤ λmax(H)‖x‖2, (13)

is satisfied, then the estimate (10) of the Lyapunov function can be rewritten as

dV(x(t))

d t
≤ − λmin(C)

λmax(H)
V (x(t)) + 2λmax(H)‖B‖V

3
2 (x(t))

λmin(H)
,

or, taking into account (4), we get

dV(x(t))

d t
≤ − γ(H)V (x(t)) + 2‖B‖V

3
2 (x(t))ϕ(H)√
λmin(H)

.

Dividing by V
3
2 (x) and denoting

V − 1
2 (x(t)) = z(t), (14)

we obtain

−2
d z(t)

d t
≤ −γ(H)z(t) + 2‖B‖ ϕ(H)√

λmin(H)
,

and from here
d z(t)

d t
≥ 1

2
γ(H)z(t)− ‖B‖ϕ(H)√

λmin(H)
.

Solving the inequality by analogy with a linear nonhomogeneous equation,
we have

‖z(t)‖ ≥
[
z(0)−2

‖B‖ϕ(H)

γ(H)
√
λmin(H)

]
e

1
2γ(H)t+2

‖B‖ϕ(H)

γ(H)
√
λmin(H)

.

Since (14), we get

V − 1
2 (x(t)) ≥

[
V − 1

2 (x(0))− 2
‖B‖ϕ(H)

γ(H)
√
λmin(H)

]
e

1
2γ(H)t+2

‖B‖ϕ(H)

γ(H)
√

λmin(H)
,

or

V
1
2 (x(t)) ≥

([
V − 1

2 (x(0))−2
‖B‖ϕ(H)

γ(H)
√
λmin(H)

]
e

1
2γ(H)t+2

‖B‖ϕ(H)

γ(H)
√
λmin(H)

)−1

.

Consequently, using two-sided inequality (13), we obtain

√
λmin(H)‖x(t)‖ ≤ γ(H)

√
λmin(H)‖x(0)‖(

γ(H)− 2‖B‖ϕ(H)‖x(0)‖)e 1
2γ(H)t + 2‖B‖ϕ(H)‖x(0)‖ .

Therefore, any solution x(t) to (6) satisfying the initial condition (11) under the
assumption x(0) ∈ G0, is estimated by (12). �
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���	�
 2.4� In applications one can find nonlinear systems with a quadratic
part in the form

x′
i(t) =

[
− ai +

n∑
j=1

bijxj(t)

]
xi(t), i = 1, 2, . . . , n, (15)

where ai, bij ∈ R
+, i, j = 1, 2, . . . , n.

If we denote A = diag(a1, a2, . . . , an), B = (B1, B2, . . . , Bn)
T
, Bi, i = 1, 2, . . . , n

are n× n constant matrices in which only the i-th column is nonzero,

Bi =

⎛
⎜⎜⎜⎝

0 . . . bi2 . . . 0
0 . . . bi2 . . . 0
... . . .

...
. . .

...
0 . . . bin . . . 0

⎞
⎟⎟⎟⎠ ,

and XT as in system (6), then system (15) can be written in the form

x′(t) = −Ax(t) +XT (t)Bx(t). (16)

Since ai > 0, i = 1, 2, . . . , n, all eigenvalues are negative, which means that the
trivial solution to (15) is asymptotically stable, and the result of Theorem 2.3
can be applied to estimate solutions to system (16) as well as (15).

The second singular point x0 = (x0
1, x

0
2, . . . , x

0
n)

T to system (16) is solution
to algebraic system

B0x = a, (17)
where

B0 =

⎛
⎜⎜⎜⎝
b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

. . .
...

bn1 bn2 . . . bnn

⎞
⎟⎟⎟⎠ , a =

(
a1, a2, ..., an

)T
,

under assumption that detB0 �= 0.

Then, using substitution y(t) = x(t) − x0, we obtain the transformed system
with the zero equilibrium in the form

y′(t) = Āy(t) + Y T (t)By(t), (18)

where

Ā =

⎛
⎜⎜⎜⎜⎝

b11x
0
1 b12x

0
1 . . . b1nx

0
1

b21x
0
2 b22x

0
2 . . . b2nx

0
2

...
...

. . .
...

bn1x
0
n bn2x

0
n . . . bnnx

0
n

⎞
⎟⎟⎟⎟⎠ .

If the matrix Ā is asymptotically stable, then the result of Theorem 2.3 can be
applied to estimate solutions to system (18) as well as (15).

76



STABILITY OF THE EQUILIBRIUM OF NONLINEAR DYNAMICAL SYSTEMS

��	��� 2.1� We illustrate the result obtained on a scalar equation

x′(t) = −ax(t) + bx2(t), a, b > 0. (19)

Since λ = −1, the trivial solution to equation (19) is stable. Any solution to (19),
satisfying the initial condition x(0) = x0, can be determined by the formula

x(t) =
ax(0)e−at

a− bx(0) [1− e−at]
.

To estimate these solutions in a neighbourhood of the trivial solution, we take the
Lyapunov function in the form V (x) = x2. So, H = 1, λmin(H) = λmax(H) = 1,
C = 1, ϕ(H) = 1, γ(H) = 2a. In accordance with the result of Theorem 2.3,
convergence to the zero singular point of any solution to (19), satisfying initial
condition x(0) < a

b , is estimated as follows

x(t) ≤ ax(0)[
a− bx(0)

]
eat + bx(0)

.

As a result, the exact solution to equation (19) coincides with the obtained
estimate, using by quadratic Lyapunov function.

It should be noted, the second equilibrium x = a
b of equation (19) is unstable.

���	�
 2.5� Interesting results of estimating the convergence of solutions to
the zero singular point using the Lyapunov function can be obtained for the
planar system with the quadratic right-hand side, this is, for system

x′
1(t) = a11x2(t) + a12x2(t) + b1

11x
2
1(t) + 2b1

12x1x2 + b1
22x

2
2(t),

x′
2(t) = a21x1(t) + a22x2(t) + b2

11x
2
1(t) + 2b2

12x1x2 + b2
22x

2
2(t).

(20)

Using notations

A =

(
a11 a12

a21 a22

)
, B1 =

(
b1
11 b1

12

b1
12 b1

22

)
, B2 =

(
b2
11 b2

12

b2
12 b2

22

)
, B =

(
B1, B2

)T
system (20) can be rewritten into the vector-matrix form (6). Under the as-
sumption that Reλ1,2(A) < 0, Theorem 2.3 can be applied to estimate solutions
to (20). Thus, the total derivative of the Lyapunov function along trajectories
of system (20) can be estimated as in (10), where

‖H‖ = λmax(H) =
1

2

(
h11 + h22 +

√
(h11 − h22)2 + 4h2

12

)
,

λmin(C) =
1

2

(
c11 + c22 −

√
(c11 − c22)2 + 4c2

12

)
,

‖B‖ = λmax(B
TB).
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Therefore, in view of (8), the interior of the ellipse

h11x
2 + 2h12xy + h22y

2 < r2
0, r0 =

λmin(C)

2‖H‖ ‖B‖
is the guaranteed domain of stability.

3. Systems with a fractional part

Let us consider a nonlinear system of two differential equations with fractional
parts depending on four parameters α, ε, γ, μ ∈ R in the form

x′(t) = x(t)− x(t)y(t)

1 + αx(t)
− εx2(t),

y′(t) = −γy(t) +
x(t)y(t)

1 + αx(t)
+ μy2(t).

(21)

By using the linearization method, we determine the behavior of trajectories in
a neighbourhood of singular points and the phase portrait of the system.

Solving the system of algebraic equations,[
1− y(t)

1 + αx(t)
− εx(t)

]
x(t) =0,

[
−γ +

x(t)

1 + αx(t)
+ μy(t)

]
y(t) =0

we obtain singular points which we will discussed about.

1. In a neighbourhood of the singular point O1(x1, y1), x1 = y1 = 0, the asso-
ciated linear system to system (21) is

x′(t) = x(t),

y′(t) = −γ y(t),

with eigenvalues λ1 = 1, λ2 = −γ. Therefore, if γ > 0, then the zero equilibrium
is a saddle.

2. In a neighbourhood of the singular point O2(x2, y2), x2 = 0, y2 = γ
μ , the

associated linear system to system (21) is the system

x′(t) =
(
1− γ

μ

)
x(t),

y′(t) =
γ

μ
x(t) + γ

(
y(t)− γ

μ

)
,
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with eigenvalues λ1 = γ, λ2 = 1 − γ
μ . Therefore, if γ > 0 and γ

μ > 1, then

the equilibrium O2 is a saddle. However, if γ > 0, but γ
μ < 1, then the equi-

librium O2 is an unstable knot. Given the considerations in the previous point,
we do not consider the case γ < 0.

3. In a neighbourhood of the singular point O3(x3, y3), x3 = 1
ε , y3 = 0, the

associated linear system to system (21) is the system

x′(t) = −
(
x(t)− 1

ε

)
− 1

ε+ α
y(t),

y′(t) =
(
− γ +

1

ε+ α

)
y(t),

with eigenvalues λ1 = −1, λ2 = − γ + 1
ε+α . Therefore, if γ > 1

ε+α , then the

equilibrium O3 is a stable knot. However, if γ < 1
ε+α , then the equilibrium O3

is a saddle.

4. Solving system of algebraic equations

1− y

1 + αx
− εx =0,

−γ +
x

1 + αx
+ μy =0,

the last singular points can be obtained. However, the system implies third order
algebraic equation of the form

μ(1− ε x)(1 + αx)2 − γ(1 + αx) = 0,

that has at least one real root. It seems that this equilibrium is a saddle.

Consequently, from our considerations follows the statement.

������	�� 3.1� If γ > 1
ε+α and γ > μ, then the trajectories arise from the

point O2(x2, y2), x2 = 0, y2 = γ
μ , and passing O1(x1, y1), x1 = y1 = 0 they

converge to the stable position O3(x3, y3), x3 = 1
ε , y3 = 0.
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